1
|
Soares R, Fonseca BM, Nash BW, Paquete CM, Louro RO. A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature. BMC Genomics 2024; 25:982. [PMID: 39428470 PMCID: PMC11492766 DOI: 10.1186/s12864-024-10872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Multiheme cytochromes c (MHC) provide prokaryotes with a broad metabolic versatility that contributes to their role in the biogeochemical cycling of the elements and in energy production in bioelectrochemical systems. However, MHC have only been isolated and studied in detail from a limited number of species. Among these, Desulfuromonadia spp. are particularly MHC-rich. To obtain a broad view of the diversity of MHC, we employed bioinformatic tools to study the cytochromome encoded in the genomes of the Desulfuromonadia class. RESULTS We found that the distribution of the MHC families follows a different pattern between the two orders of the Desulfuromonadia class and that there is great diversity in the number of heme-binding motifs in MHC. However, the vast majority of MHC have up to 12 heme-binding motifs. MHC predicted to be extracellular are the least conserved and show high diversity, whereas inner membrane MHC are well conserved and show lower diversity. Although the most prevalent MHC have homologues already characterized, nearly half of the MHC families in the Desulforomonadia class have no known characterized homologues. AlphaFold2 was employed to predict their 3D structures. This provides an atlas of novel MHC, including examples with high beta-sheet content and nanowire MHC with unprecedented high numbers of putative heme cofactors per polypeptide. CONCLUSIONS This work illuminates for the first time the universe of experimentally uncharacterized cytochromes that are likely to contribute to the metabolic versatility and to the fitness of Desulfuromonadia in diverse environmental conditions and to drive biotechnological applications of these organisms.
Collapse
Affiliation(s)
- Ricardo Soares
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Bruno M Fonseca
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Benjamin W Nash
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Catarina M Paquete
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Ricardo O Louro
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
2
|
Hsu D, Flynn JR, Schuler CJ, Santelli CM, Toner BM, Bond DR, Gralnick JA. Isolation and genomic analysis of " Metallumcola ferriviriculae" MK1, a Gram-positive, Fe(III)-reducing bacterium from the Soudan Underground Mine, an iron-rich Martian analog site. Appl Environ Microbiol 2024; 90:e0004424. [PMID: 39007603 PMCID: PMC11337815 DOI: 10.1128/aem.00044-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
The Soudan Underground Mine State Park, found in the Vermilion Iron Range in northern Minnesota, provides access to a ~ 2.7 billion-year-old banded iron formation. Exploratory boreholes drilled between 1958 and 1962 on the 27th level (713 m underground) of the mine intersect calcium and iron-rich brines that have recently been subject to metagenomic analysis and microbial enrichments. Using concentrated brine samples pumped from a borehole depth of up to 55 m, a novel Gram-positive bacterium was enriched under anaerobic, acetate-oxidizing, and Fe(III) citrate-reducing conditions. The isolated bacterium, designated strain MK1, is non-motile, rod-shaped, spore-forming, anaerobic, and mesophilic, with a growth range between 24°C and 30°C. The complete circular MK1 genome was found to be 3,720,236 bp and encodes 25 putative multiheme cytochromes, including homologs to inner membrane cytochromes in the Gram-negative bacterium Geobacter sulfurreducens and cytoplasmic membrane and periplasmic cytochromes in the Gram-positive bacterium Thermincola potens. However, MK1 does not encode homologs of the peptidoglycan (CwcA) and cell surface-associated (OcwA) multiheme cytochromes proposed to be required by T. potens to perform extracellular electron transfer. The 16S rRNA gene sequence of MK1 indicates that its closest related isolate is Desulfitibacter alkalitolerans strain sk.kt5 (91% sequence identity), which places MK1 in a novel genus within the Desulfitibacteraceae family and Moorellales order. Within the Moorellales order, only Calderihabitans maritimus strain KKC1 has been reported to reduce Fe(III), and only D. alkalitolerans can also grow in temperatures below 40°C. Thus, MK1 represents a novel species within a novel genus, for which we propose the name "Metallumcola ferriviriculae" strain MK1, and provides a unique opportunity to study a cytochrome-rich, mesophilic, Gram-positive, spore-forming Fe(III)-reducing bacterium.IMPORTANCEThe Soudan Underground Mine State Park gives access to understudied regions of the deep terrestrial subsurface that potentially predate the Great Oxidation Event. Studying organisms that have been relatively unperturbed by surface conditions for as long as 2.7 billion years may give us a window into ancient life before oxygen dominated the planet. Additionally, studying microbes from anoxic and iron-rich environments can help us better understand the requirements of life in analogous environments, such as on Mars. The isolation and characterization of "Metallumcola ferriviriculae" strain MK1 give us insights into a novel genus and species that is distinct both from its closest related isolates and from iron reducers characterized to date. "M. ferriviriculae" strain MK1 may also act as a model organism to study how the processes of sporulation and germination are affected by insoluble extracellular acceptors, as well as the impact of spores in the deep terrestrial biosphere.
Collapse
Affiliation(s)
- David Hsu
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jack R. Flynn
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Christopher J. Schuler
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Cara M. Santelli
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
| | - Brandy M. Toner
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Earth and Environmental Sciences, University of Minnesota-Twin Cities, Minneapolis, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Daniel R. Bond
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A. Gralnick
- BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
4
|
Saghaï A, Hallin S. Diversity and ecology of NrfA-dependent ammonifying microorganisms. Trends Microbiol 2024; 32:602-613. [PMID: 38462391 DOI: 10.1016/j.tim.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Nitrate ammonifiers are a taxonomically diverse group of microorganisms that reduce nitrate to ammonium, which is released, and thereby contribute to the retention of nitrogen in ecosystems. Despite their importance for understanding the fate of nitrate, they remain a largely overlooked group in the nitrogen cycle. Here, we present the latest advances on free-living microorganisms using NrfA to reduce nitrite during ammonification. We describe their diversity and ecology in terrestrial and aquatic environments, as well as the environmental factors influencing the competition for nitrate with denitrifiers that reduce nitrate to gaseous nitrogen species, including the greenhouse gas nitrous oxide (N2O). We further review the capacity of ammonifiers for other redox reactions, showing that they likely play multiple roles in the cycling of elements.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
5
|
Naradasu D, Miran W, Okamoto A. Electrochemical Characterization of Two Gut Microbial Strains Cooperatively Promoting Multiple Sclerosis Pathogenesis. Microorganisms 2024; 12:257. [PMID: 38399661 PMCID: PMC10892914 DOI: 10.3390/microorganisms12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we explored the extracellular electron transfer (EET) capabilities of two bacterial strains, OTU0001 and OTU0002, which are demonstrated in biofilm formation in mouse gut and the induction of autoimmune diseases like multiple sclerosis. OTU0002 displayed significant electrogenic behaviour, producing microbial current on an indium tin-doped oxide electrode surface, particularly in the presence of glucose, with a current density of 60 nA/cm2. The presence of cell-surface redox substrate potentially mediating EET was revealed by the redox-based staining method and electrochemical voltammetry assay. However, medium swapping analyses and the addition of flavins, a model redox mediator, suggest that the current production is dominated by soluble endogenous redox substrates in OTU0002. Given redox substrates were detected at the cell surface, the secreted redox molecule may interact with the cellular surface of OTU0002. In contrast to OTU0002, OTU0001 did not exhibit notable electrochemical activity, lacking cell-surface redox molecules. Further, the mixture of the two strains did not increase the current production from OTU0001, suggesting that OTU0001 does not support the EET mechanism of OTU0002. The present work revealed the coexistence of EET and non-EET capable pathogens in multi-species biofilm.
Collapse
Affiliation(s)
- Divya Naradasu
- Oral Microbiology, Bristol Dental School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
- Graduate School of Science and Engineering, College of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
6
|
Pimenta AI, Paquete CM, Morgado L, Edwards MJ, Clarke TA, Salgueiro CA, Pereira IAC, Duarte AG. Characterization of the inner membrane cytochrome ImcH from Geobacter reveals its importance for extracellular electron transfer and energy conservation. Protein Sci 2023; 32:e4796. [PMID: 37779214 PMCID: PMC10601379 DOI: 10.1002/pro.4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | | | - Thomas A. Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Américo G. Duarte
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
7
|
Baquero DP, Cvirkaite-Krupovic V, Hu SS, Fields JL, Liu X, Rensing C, Egelman EH, Krupovic M, Wang F. Extracellular cytochrome nanowires appear to be ubiquitous in prokaryotes. Cell 2023; 186:2853-2864.e8. [PMID: 37290436 PMCID: PMC10330847 DOI: 10.1016/j.cell.2023.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Electrically conductive appendages from the anaerobic bacterium Geobacter sulfurreducens, recently identified as extracellular cytochrome nanowires (ECNs), have received wide attention due to numerous potential applications. However, whether other organisms employ similar ECNs for electron transfer remains unknown. Here, using cryoelectron microscopy, we describe the atomic structures of two ECNs from two major orders of hyperthermophilic archaea present in deep-sea hydrothermal vents and terrestrial hot springs. Homologs of Archaeoglobus veneficus ECN are widespread among mesophilic methane-oxidizing Methanoperedenaceae, alkane-degrading Syntrophoarchaeales archaea, and in the recently described megaplasmids called Borgs. The ECN protein subunits lack similarities in their folds; however, they share a common heme arrangement, suggesting an evolutionarily optimized heme packing for efficient electron transfer. The detection of ECNs in archaea suggests that filaments containing closely stacked hemes may be a common and widespread mechanism for long-range electron transfer in both prokaryotic domains of life.
Collapse
Affiliation(s)
- Diana P Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | | | - Shengen Shawn Hu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Jessie Lynda Fields
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France.
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
8
|
Tikhonova TV, Osipov EM, Dergousova NI, Boyko KM, Elizarov IM, Gavrilov SN, Khrenova MG, Robb FT, Solovieva AY, Bonch-Osmolovskaya EA, Popov VO. Extracellular Fe(III) reductase structure reveals a modular organization enabling S-layer insertion and electron transfer to insoluble substrates. Structure 2023; 31:174-184.e3. [PMID: 36630959 DOI: 10.1016/j.str.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/16/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023]
Abstract
The thermophilic anaerobic Gram-positive bacterium Carboxydothermus ferrireducens utilizes insoluble Fe(III) oxides as electron acceptors in respiratory processes using an extracellular 11-heme cytochrome c OmhA as a terminal reductase. OmhA is able to transfer electrons to soluble and insoluble Fe(III) compounds, substrates of multiheme oxidoreductases, and soluble electron shuttles. The crystal structure of OmhA at 2.5 Å resolution shows that it consists of two functionally distinct parts: the cytochrome с electron transfer and the S-layer binding domains. Nonaheme C-terminal subdomain of the cytochrome с domain is structurally similar to the extracellular multiheme cytochrome OcwA from the metal-reducing Gram-positive bacterium "Thermincola potens." S-layer binding domain of OmhA is responsible for interaction with the S-layer that surrounds the Carboxydothermus ferrireducens cell envelope. The structural foundations enabling the embedding of extracellular multiheme cytochromes to the S-layer of a Gram-positive-type cell wall and putative electron transfer pathways to insoluble minerals are discussed.
Collapse
Affiliation(s)
- Tamara V Tikhonova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Evgenii M Osipov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation; Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Natalia I Dergousova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Konstantin M Boyko
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Ivan M Elizarov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Sergey N Gavrilov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Maria G Khrenova
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation; Department of Chemistry, Lomonosov Moscow State University, 1 Lenin Hills, Building 3, Moscow 119991, Russian Federation
| | - Frank T Robb
- Institute of Marine and Environmental Technology, Center for Environmental Science, University of Maryland, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Anastasia Y Solovieva
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation
| | - Elizaveta A Bonch-Osmolovskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation; Department of Biology, Lomonosov Moscow State University, 1 Lenin Hills, Building 12, Moscow 119991, Russian Federation
| | - Vladimir O Popov
- Research Center of Biotechnology of the Russian Academy of Sciences, 33 Leninsky Prospect, Building 1, Moscow 119071, Russian Federation; Department of Biology, Lomonosov Moscow State University, 1 Lenin Hills, Building 12, Moscow 119991, Russian Federation.
| |
Collapse
|
9
|
Khomyakova MA, Zavarzina DG, Merkel AY, Klyukina AA, Pikhtereva VA, Gavrilov SN, Slobodkin AI. The first cultivated representatives of the actinobacterial lineage OPB41 isolated from subsurface environments constitute a novel order Anaerosomatales. Front Microbiol 2022; 13:1047580. [PMID: 36439822 PMCID: PMC9686372 DOI: 10.3389/fmicb.2022.1047580] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 08/01/2023] Open
Abstract
The continental subsurface harbors microbial populations highly enriched in uncultured taxa. OPB41 is an uncultured order-level phylogenetic lineage within the actinobacterial class Coriobacteriia. OPB41 bacteria have a wide geographical distribution, but the physiology and metabolic traits of this cosmopolitan group remain elusive. From two contrasting subsurface environments, a terrestrial mud volcano and a deep subsurface aquifer, located in the central part of Eurasia, within the Caucasus petroleum region, we have isolated two pure cultures of anaerobic actinobacteria belonging to OPB41. The cells of both strains are small non-motile rods forming numerous pili-like appendages. Strain M08DHBT is mesophilic, while strain Es71-Z0120T is a true thermophile having a broad temperature range for growth (25-77°C). Strain M08DHBT anaerobically reduces sulfur compounds and utilizes an aromatic compound 3,4-dihydroxybenzoic acid. Strain Es71-Z0120T is an obligate dissimilatory Fe(III) reducer that is unable to utilize aromatic compounds. Both isolates grow lithotrophically and consume molecular hydrogen or formate using either thiosulfate, elemental sulfur, or Fe(III) as an electron acceptor. Genomes of the strains encode the putative reductive glycine pathway for autotrophic CO2 fixation, Ni-Fe hydrogenases, putative thiosulfate/polysulfide reductases, and multiheme c-type cytochromes presumably involved in dissimilatory Fe(III) reduction. We propose to assign the isolated strains to the novel taxa of the species-order levels and describe strain M08DHBT as Anaerosoma tenue gen. nov., sp. nov., and strain Es71-Z0120T as Parvivirga hydrogeniphila gen. nov., sp. nov., being members of Anaerosomatales ord. nov. This work expands the knowledge of the diversity, metabolic functions, and ecological role of the phylum Actinomycetota.
Collapse
Affiliation(s)
- Maria A. Khomyakova
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria G. Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Valeria A. Pikhtereva
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I. Slobodkin
- Winogradsky Institute of Microbiology, FRC Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Soares R, Costa NL, Paquete CM, Andreini C, Louro RO. A new paradigm of multiheme cytochrome evolution by grafting and pruning protein modules. Mol Biol Evol 2022; 39:6609985. [PMID: 35714268 PMCID: PMC9250108 DOI: 10.1093/molbev/msac139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiheme cytochromes play key roles in diverse biogeochemical cycles, but understanding the origin and evolution of these proteins is a challenge due to their ancient origin and complex structure. Up until now, the evolution of multiheme cytochromes composed by multiple redox modules in a single polypeptide chain was proposed to occur by gene fusion events. In this context, the pentaheme nitrite reductase NrfA and the tetraheme cytochrome c554 were previously proposed to be at the origin of the extant octa- and nonaheme cytochrome c involved in metabolic pathways that contribute to the nitrogen, sulfur, and iron biogeochemical cycles by a gene fusion event. Here, we combine structural and character-based phylogenetic analysis with an unbiased root placement method to refine the evolutionary relationships between these multiheme cytochromes. The evidence show that NrfA and cytochrome c554 belong to different clades, which suggests that these two multiheme cytochromes are products of truncation of ancestral octaheme cytochromes related to extant octaheme nitrite reductase and MccA, respectively. From our phylogenetic analysis, the last common ancestor is predicted to be an octaheme cytochrome with nitrite reduction ability. Evolution from this octaheme framework led to the great diversity of extant multiheme cytochromes analyzed here by pruning and grafting of protein modules and hemes. By shedding light into the evolution of multiheme cytochromes that intervene in different biogeochemical cycles, this work contributes to our understanding about the interplay between biology and geochemistry across large time scales in the history of Earth.
Collapse
Affiliation(s)
- Ricardo Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal.,Instituto Nacional de Investigação Agrária e Veterinária, Portugal
| | - Nazua L Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| | - Claudia Andreini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
11
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
12
|
Electron transfer in Gram-positive bacteria: enhancement strategies for bioelectrochemical applications. World J Microbiol Biotechnol 2022; 38:83. [DOI: 10.1007/s11274-022-03255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
|
13
|
Zavarzina DG, Prokofeva MI, Pikhtereva VA, Klyukina AA, Maslov AA, Merkel AY, Gavrilov SN. Deferrivibrio essentukiensis sp. nov., gen. nov., a Representative of Deferrivibrionaceae fam. nov., Isolated from the Subsurface Aquifer of Caucasian Mineral Drinking Waters. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Electrografted anthraquinone to monitor pH at the biofilm-anode interface in a wastewater microbial fuel cell. Colloids Surf B Biointerfaces 2021; 210:112274. [PMID: 34894599 DOI: 10.1016/j.colsurfb.2021.112274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022]
Abstract
Electrografted anthraquinone on graphite was used as a probe to monitor the pH change at the biofilm-electrode interface at the anode of a microbial fuel cell inoculated with wastewater. The grafting procedure was optimized so that the pH-dependent electrochemical response of the grafted quinone did not overlay with that of the electroactive biofilm. The variation of the formal potential of the grafted quinone as a function of pH was linear over the pH range 1-10 with a slope of - 64 mV. This allowed to monitor the interfacial pH change over three weeks of biofilm colonization of the electrode. During that time the interfacial pH decreased from neutrality to 5.3 while the anolyte only acidified down to pH 6.2. This finding is relevant as local pH change usually leads to alterations of the bioenergetics process of microbial communities and hence on the performance of bioelectrochemical devices.
Collapse
|
15
|
Bird LJ, Kundu BB, Tschirhart T, Corts AD, Su L, Gralnick JA, Ajo-Franklin CM, Glaven SM. Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synth Biol 2021; 10:2808-2823. [PMID: 34637280 DOI: 10.1021/acssynbio.1c00335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electroactive bacteria produce or consume electrical current by moving electrons to and from extracellular acceptors and donors. This specialized process, known as extracellular electron transfer, relies on pathways composed of redox active proteins and biomolecules and has enabled technologies ranging from harvesting energy on the sea floor, to chemical sensing, to carbon capture. Harnessing and controlling extracellular electron transfer pathways using bioengineering and synthetic biology promises to heighten the limits of established technologies and open doors to new possibilities. In this review, we provide an overview of recent advancements in genetic tools for manipulating native electroactive bacteria to control extracellular electron transfer. After reviewing electron transfer pathways in natively electroactive organisms, we examine lessons learned from the introduction of extracellular electron transfer pathways into Escherichia coli. We conclude by presenting challenges to future efforts and give examples of opportunities to bioengineer microbes for electrochemical applications.
Collapse
Affiliation(s)
- Lina J. Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Biki B. Kundu
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77005, United States
| | - Tanya Tschirhart
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Anna D. Corts
- Joyn Bio, Boston, Massachusetts 02210, United States
| | - Lin Su
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, People’s Republic of China
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jeffrey A. Gralnick
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | | | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
16
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
17
|
Blake RC, Nautiyal A, Smith KA, Walton NN, Pendleton B, Wang Z. Ferrimicrobium acidiphilum Exchanges Electrons With a Platinum Electrode via a Cytochrome With Reduced Absorbance Maxima at 448 and 605 nm. Front Microbiol 2021; 12:705187. [PMID: 34381433 PMCID: PMC8350767 DOI: 10.3389/fmicb.2021.705187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023] Open
Abstract
Ferrimicrobium acidiphilum is a Gram-positive member of the Actinobacteria phylum that can respire aerobically or anaerobically with soluble Fe(II) or Fe(III), respectively, in sulfuric acid at pH 1.5. Cyclic voltammetry measurements using intact F. acidiphilum at pH 1.5 produced fully reversible voltammograms that were highly reproducible. The maximum current observed with the anodic peak was considerably less than was the maximum current observed with the cathodic peak. This difference was attributed to the competition between the platinum electrode and the soluble oxygen for the available electrons that were introduced by the cathodic wave into this facultative aerobic organism. The standard reduction potential of the intact organism was determined to be 786 mV vs. the standard hydrogen electrode, slightly more positive than that of 735 mV that was determined for soluble iron at pH 1.5 using the same apparatus. Chronocoulometry measurements conducted at different cell densities revealed that the intact organism remained in close proximity to the working electrode during the measurement, whereas soluble ionic iron did not. When the cyclic voltammetry of intact F. acidiphilum was monitored using an integrating cavity absorption meter, the only small changes in absorbance that were detected were consistent with the participation of a cellular cytochrome with reduced absorbance peaks at 448 and 605 nm. The cytochrome that participated in the exchange of electrons between the intact organism and extracellular solid electrodes like platinum was the same cytochrome whose oxidation was previously shown to be rate-limiting when the organism respired aerobically on extracellular soluble iron.
Collapse
Affiliation(s)
- Robert C Blake
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Amit Nautiyal
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States
| | - Kayla A Smith
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Noelle N Walton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Brealand Pendleton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Zhe Wang
- Department of Chemistry, Oakland University, Rochester, NY, United States
| |
Collapse
|
18
|
Analysis of a Methanogen and an Actinobacterium Dominating the Thermophilic Microbial Community of an Electromethanogenic Biocathode. ACTA ACUST UNITED AC 2021; 2021:8865133. [PMID: 33746613 PMCID: PMC7943316 DOI: 10.1155/2021/8865133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Electromethanogenesis refers to the bioelectrochemical synthesis of methane from CO2 by biocathodes. In an electromethanogenic system using thermophilic microorganisms, metagenomic analysis along with quantitative real-time polymerase chain reaction and fluorescence in situ hybridization revealed that the biocathode microbiota was dominated by the methanogen Methanothermobacter sp. strain EMTCatA1 and the actinobacterium Coriobacteriaceae sp. strain EMTCatB1. RNA sequencing was used to compare the transcriptome profiles of each strain at the methane-producing biocathodes with those in an open circuit and with the methanogenesis inhibitor 2-bromoethanesulfonate (BrES). For the methanogen, genes related to hydrogenotrophic methanogenesis were highly expressed in a manner similar to those observed under H2-limited conditions. For the actinobacterium, the expression profiles of genes encoding multiheme c-type cytochromes and membrane-bound oxidoreductases suggested that the actinobacterium directly takes up electrons from the electrode. In both strains, various stress-related genes were commonly induced in the open-circuit biocathodes and biocathodes with BrES. This study provides a molecular inventory of the dominant species of an electromethanogenic biocathode with functional insights and therefore represents the first multiomics characterization of an electromethanogenic biocathode.
Collapse
|
19
|
Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148416. [PMID: 33753023 DOI: 10.1016/j.bbabio.2021.148416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
In prokaryotes, the proton or sodium motive force required for ATP synthesis is produced by respiratory complexes that present an ion-pumping mechanism or are involved in redox loops performed by membrane proteins that usually have substrate and quinone-binding sites on opposite sides of the membrane. Some respiratory complexes include a dimeric redox module composed of a quinone-interacting membrane protein of the NrfD family and an iron‑sulfur protein of the NrfC family. The QrcABCD complex of sulfate reducers, which includes the QrcCD module homologous to NrfCD, was recently shown to perform electrogenic quinone reduction providing the first conclusive evidence for energy conservation among this family. Similar redox modules are present in multiple respiratory complexes, which can be associated with electroneutral, energy-driven or electrogenic reactions. This work discusses the presence of the NrfCD/PsrBC dimeric redox module in different bioenergetics contexts and its role in prokaryotic energy conservation mechanisms.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| | - Ana C C Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Gonçalo Manteigas
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Renato M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| |
Collapse
|
20
|
Faustino MM, Fonseca BM, Costa NL, Lousa D, Louro RO, Paquete CM. Crossing the Wall: Characterization of the Multiheme Cytochromes Involved in the Extracellular Electron Transfer Pathway of Thermincola ferriacetica. Microorganisms 2021; 9:microorganisms9020293. [PMID: 33572691 PMCID: PMC7911101 DOI: 10.3390/microorganisms9020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Bioelectrochemical systems (BES) are emerging as a suite of versatile sustainable technologies to produce electricity and added-value compounds from renewable and carbon-neutral sources using electroactive organisms. The incomplete knowledge on the molecular processes that allow electroactive organisms to exchange electrons with electrodes has prevented their real-world implementation. In this manuscript we investigate the extracellular electron transfer processes performed by the thermophilic Gram-positive bacteria belonging to the Thermincola genus, which were found to produce higher levels of current and tolerate higher temperatures in BES than mesophilic Gram-negative bacteria. In our study, three multiheme c-type cytochromes, Tfer_0070, Tfer_0075, and Tfer_1887, proposed to be involved in the extracellular electron transfer pathway of T. ferriacetica, were cloned and over-expressed in E. coli. Tfer_0070 (ImdcA) and Tfer_1887 (PdcA) were purified and biochemically characterized. The electrochemical characterization of these proteins supports a pathway of extracellular electron transfer via these two proteins. By contrast, Tfer_0075 (CwcA) could not be stabilized in solution, in agreement with its proposed insertion in the peptidoglycan wall. However, based on the homology with the outer-membrane cytochrome OmcS, a structural model for CwcA was developed, providing a molecular perspective into the mechanisms of electron transfer across the peptidoglycan layer in Thermincola.
Collapse
|
21
|
Gavrilov SN, Zavarzina DG, Elizarov IM, Tikhonova TV, Dergousova NI, Popov VO, Lloyd JR, Knight D, El-Naggar MY, Pirbadian S, Leung KM, Robb FT, Zakhartsev MV, Bretschger O, Bonch-Osmolovskaya EA. Novel Extracellular Electron Transfer Channels in a Gram-Positive Thermophilic Bacterium. Front Microbiol 2021; 11:597818. [PMID: 33505370 PMCID: PMC7829351 DOI: 10.3389/fmicb.2020.597818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Biogenic transformation of Fe minerals, associated with extracellular electron transfer (EET), allows microorganisms to exploit high-potential refractory electron acceptors for energy generation. EET-capable thermophiles are dominated by hyperthermophilic archaea and Gram-positive bacteria. Information on their EET pathways is sparse. Here, we describe EET channels in the thermophilic Gram-positive bacterium Carboxydothermus ferrireducens that drive exoelectrogenesis and rapid conversion of amorphous mineral ferrihydrite to large magnetite crystals. Microscopic studies indicated biocontrolled formation of unusual formicary-like ultrastructure of the magnetite crystals and revealed active colonization of anodes in bioelectrochemical systems (BESs) by C. ferrireducens. The internal structure of micron-scale biogenic magnetite crystals is reported for the first time. Genome analysis and expression profiling revealed three constitutive c-type multiheme cytochromes involved in electron exchange with ferrihydrite or an anode, sharing insignificant homology with previously described EET-related cytochromes thus representing novel determinants of EET. Our studies identify these cytochromes as extracellular and reveal potentially novel mechanisms of cell-to-mineral interactions in thermal environments.
Collapse
Affiliation(s)
- Sergey N Gavrilov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Daria G Zavarzina
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Ivan M Elizarov
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia
| | - Tamara V Tikhonova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia I Dergousova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Kurchatov Complex NBICS-Technologies, National Research Center "Kurchatov Institute," Moscow, Russia
| | - Jonathan R Lloyd
- Dalton Nuclear Institute, FSE Research Institutes, The University of Manchester, Manchester, United Kingdom
| | - David Knight
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | - Sahand Pirbadian
- University of Southern California, Los Angeles, CA, United States
| | - Kar Man Leung
- University of Southern California, Los Angeles, CA, United States
| | - Frank T Robb
- School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | | | | | - Elizaveta A Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, FRC Biotechnology Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Fan YY, Tang Q, Li Y, Li FH, Wu JH, Li WW, Yu HQ. Rapid and highly efficient genomic engineering with a novel iEditing device for programming versatile extracellular electron transfer of electroactive bacteria. Environ Microbiol 2021; 23:1238-1255. [PMID: 33369000 DOI: 10.1111/1462-2920.15374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
The advances in synthetic biology bring exciting new opportunities to reprogram microorganisms with novel functionalities for environmental applications. For real-world applications, a genetic tool that enables genetic engineering in a stably genomic inherited manner is greatly desired. In this work, we design a novel genetic device for rapid and efficient genome engineering based on the intron-encoded homing-endonuclease empowered genome editing (iEditing). The iEditing device enables rapid and efficient genome engineering in Shewanella oneidensis MR-1, the representative strain of the electroactive bacteria group. Moreover, combining with the Red or RecET recombination system, the genome-editing efficiency was greatly improved, up to approximately 100%. Significantly, the iEditing device itself is eliminated simultaneously when genome editing occurs, thereby requiring no follow-up to remove the encoding system. Then, we develop a new extracellular electron transfer (EET) engineering strategy by programming the parallel EET systems to enhance versatile EET. The engineered strains exhibit sufficiently enhanced electron output and pollutant reduction ability. Furthermore, this device has demonstrated its great potential to be extended for genome editing in other important microbes. This work provides a useful and efficient tool for the rapid generation of synthetic microorganisms for various environmental applications.
Collapse
Affiliation(s)
- Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Tang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-He Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing-Hang Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
23
|
Xiao X, Yu HQ. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Curr Opin Chem Biol 2020; 59:104-110. [DOI: 10.1016/j.cbpa.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
|
24
|
Paquete CM. Electroactivity across the cell wall of Gram-positive bacteria. Comput Struct Biotechnol J 2020; 18:3796-3802. [PMID: 33335679 PMCID: PMC7720022 DOI: 10.1016/j.csbj.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growing interest on sustainable biotechnological processes for the production of energy and industrial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms that are able to exchange electrons with an electrode) and the characterization of their extracellular electron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer. However, in the last decade, an increased number of Gram-positive bacteria have been found to perform extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is introduced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted. This understanding is fundamental to advance the implementation of these organisms in sustainable biotechnological processes, either through modification of the systems or through genetic engineering, where the organisms can be optimized to become better catalysts.
Collapse
Affiliation(s)
- Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
25
|
Shrestha N, Tripathi AK, Govil T, Sani RK, Urgun-Demirtas M, Kasthuri V, Gadhamshetty V. Electricity from lignocellulosic substrates by thermophilic Geobacillus species. Sci Rep 2020; 10:17047. [PMID: 33046790 PMCID: PMC7552438 DOI: 10.1038/s41598-020-72866-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/09/2022] Open
Abstract
Given our vast lignocellulosic biomass reserves and the difficulty in bioprocessing them without expensive pretreatment and fuel separation steps, the conversion of lignocellulosic biomass directly into electricity would be beneficial. Here we report the previously unexplored capabilities of thermophilic Geobacillus sp. strain WSUCF1 to generate electricity directly from such complex substrates in microbial fuel cells. This process obviates the need for exogenous enzymes and redox mediator supplements. Cyclic voltammetry and chromatography studies revealed the electrochemical signatures of riboflavin molecules that reflect mediated electron transfer capabilities of strain WSUCF1. Proteomics and genomics analysis corroborated that WSUCF1 biofilms uses type-II NADH dehydrogenase and demethylmenaquinone methyltransferase to transfer the electrons to conducting anode via the redox active pheromone lipoproteins localized at the cell membrane.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,Department of Civil and Environmental Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, 47803, USA.
| | - Abhilash Kumar Tripathi
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tanvi Govil
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Rajesh Kumar Sani
- Department of Biological and Chemical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - Meltem Urgun-Demirtas
- Energy Global Security Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Venkateswaran Kasthuri
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA. .,BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
26
|
Li DB, Edwards MJ, Blake AW, Newton-Payne SE, Piper SEH, Jenner LP, Sokol KP, Reisner E, Van Wonderen JH, Clarke TA, Butt JN. His/Met heme ligation in the PioA outer membrane cytochrome enabling light-driven extracellular electron transfer by Rhodopseudomonas palustris TIE-1. NANOTECHNOLOGY 2020; 31:354002. [PMID: 32403091 DOI: 10.1088/1361-6528/ab92c7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A growing number of bacterial species are known to move electrons across their cell envelopes. Naturally this occurs in support of energy conservation and carbon-fixation. For biotechnology it allows electron exchange between bacteria and electrodes in microbial fuel cells and during microbial electrosynthesis. In this context Rhodopseudomonas palustris TIE-1 is of much interest. These bacteria respond to light by taking electrons from their external environment, including electrodes, to drive CO2-fixation. The PioA cytochrome, that spans the bacterial outer membrane, is essential for this electron transfer and yet little is known about its structure and electron transfer properties. Here we reveal the ten c-type hemes of PioA are redox active across the window +250 to -400 mV versus Standard Hydrogen Electrode and that the hemes with most positive reduction potentials have His/Met and His/H2O ligation. These chemical and redox properties distinguish PioA from the more widely studied family of MtrA outer membrane decaheme cytochromes with ten His/His ligated hemes. We predict a structure for PioA in which the hemes form a chain spanning the longest dimension of the protein, from Heme 1 to Heme 10. Hemes 2, 3 and 7 are identified as those most likely to have His/Met and/or His/H2O ligation. Sequence analysis suggests His/Met ligation of Heme 2 and/or 7 is a defining feature of decaheme PioA homologs from over 30 different bacterial genera. His/Met ligation of Heme 3 appears to be less common and primarily associated with PioA homologs from purple non-sulphur bacteria belonging to the alphaproteobacteria class.
Collapse
Affiliation(s)
- Dao-Bo Li
- School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom. Present address: Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China and State Key Laboratory of Applied Microbiology Southern China, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li J, Tang Q, Li Y, Fan YY, Li FH, Wu JH, Min D, Li WW, Lam PKS, Yu HQ. Rediverting Electron Flux with an Engineered CRISPR-ddAsCpf1 System to Enhance the Pollutant Degradation Capacity of Shewanella oneidensis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3599-3608. [PMID: 32062962 DOI: 10.1021/acs.est.9b06378] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pursuing efficient approaches to promote the extracellular electron transfer (EET) of extracellular respiratory bacteria is essential to their application in environmental remediation and waste treatment. Here, we report a new strategy of tuning electron flux by clustered regularly interspaced short palindromic repeat (CRISPR)-ddAsCpf1-based rediverting (namely STAR) to enhance the EET capacity of Shewanella oneidensis MR-1, a model extracellular respiratory bacterium widely present in the environment. The developed CRISPR-ddAsCpf1 system enabled approximately 100% gene repression with the green fluorescent protein (GFP) as a reporter. Using a WO3 probe, 10 representative genes encoding for putative competitive electron transfer proteins were screened, among which 7 genes were identified as valid targets for EET enhancement. Repressing the valid genes not only increased the transcription level of the l-lactate metabolism genes but also affected the genes involved in direct and indirect EET. Increased riboflavin production was also observed. The feasibility of this strategy to enhance the bioreduction of methyl orange, an organic pollutant, and chromium, a typical heavy metal, was demonstrated. This work implies a great potential of the STAR strategy with the CIRPSR-ddAsCpf1 system for enhancing bacterial EET to favor more efficient environmental remediation applications.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Feng-He Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
| | - Paul K S Lam
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou 215123, China
| |
Collapse
|
28
|
Edwards MJ, Richardson DJ, Paquete CM, Clarke TA. Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Sci 2019; 29:830-842. [PMID: 31721352 PMCID: PMC7096707 DOI: 10.1002/pro.3787] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Heme containing proteins are involved in a broad range of cellular functions, from oxygen sensing and transport to catalyzing oxidoreductive reactions. The two major types of cytochrome (b-type and c-type) only differ in their mechanism of heme attachment, but this has major implications for their cellular roles in both localization and mechanism. The b-type cytochromes are commonly cytoplasmic, or are within the cytoplasmic membrane, while c-type cytochromes are always found outside of the cytoplasm. The mechanism of heme attachment allows for complex c-type multiheme complexes, having the capacity to hold multiple electrons, to be assembled. These are increasingly being identified as secreted into the extracellular environment. For organisms that respire using extracellular substrates, these large multiheme cytochromes allow for electron transfer networks from the cytoplasmic membrane to the cell exterior for the reduction of extracellular electron acceptors. In this review the structures and functions of these networks and the mechanisms by which electrons are transferred to extracellular substrates is described.
Collapse
Affiliation(s)
- Marcus J Edwards
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, UK
| | - David J Richardson
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, UK
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, UK
| |
Collapse
|