1
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
2
|
Chen T, Mo C, Yuan Y, Li S, Wu Y, Liao X, Yang Y. Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133789. [PMID: 38394893 DOI: 10.1016/j.jhazmat.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yilin Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yinbao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Zhu S, Hong J, Wang T. Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species. Nat Commun 2024; 15:800. [PMID: 38280843 PMCID: PMC10821886 DOI: 10.1038/s41467-024-45154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024] Open
Abstract
Natural microbial ecosystems harbor substantial diversity of competing species. Explaining such diversity is challenging, because in classic theories it is extremely infeasible for a large community of competing species to stably coexist in homogeneous environments. One important aspect mostly overlooked in these theories, however, is that microbes commonly share genetic materials with their neighbors through horizontal gene transfer (HGT), which enables the dynamic change of species growth rates due to the fitness effects of the mobile genetic elements (MGEs). Here, we establish a framework of species competition by accounting for the dynamic gene flow among competing microbes. Combining theoretical derivation and numerical simulations, we show that in many conditions HGT can surprisingly overcome the biodiversity limit predicted by the classic model and allow the coexistence of many competitors, by enabling dynamic neutrality of competing species. In contrast with the static neutrality proposed by previous theories, the diversity maintained by HGT is highly stable against random perturbations of microbial fitness. Our work highlights the importance of considering gene flow when addressing fundamental ecological questions in the world of microbes and has broad implications for the design and engineering of complex microbial consortia.
Collapse
Affiliation(s)
- Shiben Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juken Hong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Teng Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Sánchez-Urtaza S, Ocampo-Sosa A, Rodríguez-Grande J, El-Kholy MA, Shawky SM, Alkorta I, Gallego L. Plasmid content of carbapenem resistant Acinetobacter baumannii isolates belonging to five International Clones collected from hospitals of Alexandria, Egypt. Front Cell Infect Microbiol 2024; 13:1332736. [PMID: 38264728 PMCID: PMC10803598 DOI: 10.3389/fcimb.2023.1332736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Multidrug resistant Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. During the last decades it has become a major threat for healthcare settings due to the high antibiotic resistance rates among these isolates. Many resistance determinants are coded by conjugative or mobilizable plasmids, facilitating their dissemination. The majority of plasmids harbored by Acinetobacter species are less than 20 Kb, however, high molecular weight elements are the most clinically relevant since they usually contain antibiotic resistance genes. The aim of this work was to describe, classify and determine the genetic content of plasmids harbored by carbapem resistant A. baumannii isolates belonging to predominant clonal lineages circulating in hospitals from Alexandria, Egypt. The isolates were subjected to S1-Pulsed Field Gel Electrophoresis experiments to identify high molecular weight plasmids. To further analyze the plasmid content and the genetic localization of the antibiotic resistance genes, isolates were sequenced by Illumina Miseq and MinION Mk1C and a hybrid assembly was performed using Unicycler v0.5.0. Plasmids were detected with MOBsuite 3.0.3 and Copla.py v.1.0 and mapped using the online software Proksee.ca. Replicase genes were further analyzed through a BLAST against the Acinetobacter Plasmid Typing database. Eleven plasmids ranging in size from 4.9 to 205.6 Kb were characterized and mapped. All isolates contained plasmids, and, in many cases, more than two elements were identified. Antimicrobial resistance genes such as bla OXA-23, bla GES-like, aph(3')-VI and qacEΔ1 were found in likely conjugative large plasmids; while virulence determinants such as septicolysin or TonB-dependent receptors were identified in plasmids of small size. Some of these resistance determinants were, in turn, located within transposons and class 1 integrons. Among the identified plasmids, the majority encoded proteins belonging to the Rep_3 family, but replicases of the RepPriCT_1 (Aci6) family were also identified. Plasmids are of high interest as antibiotic resistance control tools, since they may be used as genetic markers for antibiotic resistance and virulence, and also as targets for the development of compounds that can inhibit transfer processes.
Collapse
Affiliation(s)
- Sandra Sánchez-Urtaza
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Alain Ocampo-Sosa
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Rodríguez-Grande
- Microbiology Service, University Hospital Marqués de Valdecilla, Health Research Institute (IDIVAL), Santander, Spain
| | - Mohammed A. El-Kholy
- Department of Microbiology and Biotechnology, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology & Maritime Transport (AASTMT), Alexandria, Egypt
| | - Sherine M. Shawky
- Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
| | - Lucia Gallego
- Laboratory of Antibiotics and Molecular Bacteriology, Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
5
|
Wang YZ, An XL, Fan XT, Pu Q, Li H, Liu WZ, Chen Z, Su JQ. Visible light-activated photosensitizer inhibits the plasmid-mediated horizontal gene transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132564. [PMID: 37734313 DOI: 10.1016/j.jhazmat.2023.132564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Inhibition of plasmid transfer, including transformation and conjugation, is essential to prevent the spread of plasmid-encoded antimicrobial resistance. Photosensitizers have been successfully used in the treatment of serious infectious diseases, however, the effects of photosensitizers on the plasmid transfer are still elusive. In this study, we determined the transformation and conjugation efficiency of plasmid pUC19 and pRP4, respectively, when exposed to a photosensitizer (Visible Light-activated Rose Bengal, VLRB). The results showed that the activation of VLRB resulted in up to a 580-fold decrease in the transformation frequency of pUC19 and a 10-fold decrease in the conjugation frequency of pRP4 compared with the non-VLRB control. The inhibition of pUC19 transformation by VLRB exhibited a dose-dependent manner and was attributed to the changes in the plasmid conformation. The inhibition of pRP4 conjugation was associated with the generation of extracellular free radicals, induced oxidative stress, suppression of the mating pair formation gene (trbBp) and DNA transfer and replication gene (trfAp), and enhanced expression of the global regulatory genes (korA, korB, and trbA). These findings highlight the potential of visible light-activated photosensitizer for mitigating the dissemination of plasmid-encoded antibiotic resistance genes.
Collapse
Affiliation(s)
- Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiao-Ting Fan
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wen-Zhen Liu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhuo Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
6
|
Bravo A, Moreno-Blanco A, Espinosa M. One Earth: The Equilibrium between the Human and the Bacterial Worlds. Int J Mol Sci 2023; 24:15047. [PMID: 37894729 PMCID: PMC10606248 DOI: 10.3390/ijms242015047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Misuse and abuse of antibiotics on humans, cattle, and crops have led to the selection of multi-resistant pathogenic bacteria, the most feared 'superbugs'. Infections caused by superbugs are progressively difficult to treat, with a subsequent increase in lethality: the toll on human lives is predicted to reach 10 million by 2050. Here we review three concepts linked to the growing resistance to antibiotics, namely (i) the Resistome, which refers to the collection of bacterial genes that confer resistance to antibiotics, (ii) the Mobilome, which includes all the mobile genetic elements that participate in the spreading of antibiotic resistance among bacteria by horizontal gene transfer processes, and (iii) the Nichome, which refers to the set of genes that are expressed when bacteria try to colonize new niches. We also discuss the strategies that can be used to tackle bacterial infections and propose an entente cordiale with the bacterial world so that instead of war and destruction of the 'fierce enemy' we can achieve a peaceful coexistence (the One Earth concept) between the human and the bacterial worlds. This, in turn, will contribute to microbial biodiversity, which is crucial in a globally changing climate due to anthropogenic activities.
Collapse
Affiliation(s)
- Alicia Bravo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | - Manuel Espinosa
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| |
Collapse
|
7
|
Yin L, Wang X, Xu H, Yin B, Wang X, Zhang Y, Li X, Luo Y, Chen Z. Unrecognized risk of perfluorooctane sulfonate in promoting conjugative transfers of bacterial antibiotic resistance genes. Appl Environ Microbiol 2023; 89:e0053323. [PMID: 37565764 PMCID: PMC10537727 DOI: 10.1128/aem.00533-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Antibiotic resistance is a major global health crisis facing humanity, with horizontal gene transfer (HGT) as a principal dissemination mechanism in the natural and clinical environments. Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse effects on humans. However, it is unknown whether PFASs affect the HGT of bacterial antibiotic resistance. Using a genetically engineered Escherichia coli MG1655 as the donor of plasmid-encoded antibiotic resistance genes (ARGs), E. coli J53 and soil bacterial community as two different recipients, this study demonstrated that the conjugation frequency of ARGs between two E. coli strains was (1.45 ± 0.17) × 10-5 and perfluorooctane sulfonate (PFOS) at environmentally relevant concentrations (2-50 μg L-1) increased conjugation transfer between E. coli strains by up to 3.25-fold. Increases in reactive oxygen species production, cell membrane permeability, biofilm formation capacity, and cell contact in two E. coli strains were proposed as major promotion mechanisms from PFOS exposure. Weighted gene co-expression network analysis of transcriptome data identified a series of candidate genes whose expression changes could contribute to the increase in conjugation transfer induced by PFOS. Furthermore, PFOS also generally increased the ARG transfer into the studied soil bacterial community, although the uptake ability of different community members of the plasmid either increased or decreased upon PFOS exposure depending on specific bacterial taxa. Overall, this study reveals an unrecognized risk of PFOS in accelerating the dissemination of antibiotic resistance. IMPORTANCE Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse health effects. Although the influence of environmental pollutants on the spread of antibiotic resistance, one of the biggest threats to global health, has attracted increasing attention in recent years, it is unknown whether environmental residues of PFASs affect the dissemination of bacterial antibiotic resistance. Considering PFASs, often called "forever" compounds, have significantly higher environmental persistence than most emerging organic contaminants, exploring the effect of PFASs on the spread of antibiotic resistance is more environmentally relevant and has essential ecological and health significance. By systematically examining the influence of perfluorooctane sulfonate on the antibiotic resistance gene conjugative transfer, not only at the single-strain level but also at the community level, this study has uncovered an unrecognized risk of PFASs in promoting conjugative transfers of bacterial antibiotic resistance genes, which could be incorporated into the risk assessment framework of PFASs.
Collapse
Affiliation(s)
- Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Han Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Bo Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xingshuo Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yulin Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xinyao Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Li X, Chen G, Liu L, Wang G. Anaerobic sludge digestion elevates dissemination risks of bacterial antibiotic resistance in effluent supernatant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117854. [PMID: 37023605 DOI: 10.1016/j.jenvman.2023.117854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Anaerobic digestion following a variety of pretreatments is a promising technique for the reduction of excess sludge in municipal wastewater treatment plants (MWWTPs), and eliminations of possible pathogens, viruses, protozoa, and other disease-causing organisms. Notwithstanding a rapidly increasing health concern of antibiotic resistant bacteria (ARB) in MWWTPs, dissemination risks of ARB in anaerobic digestion processes are still poorly understood, especially in the digested supernatant. Taking the representative ARB with respect to the common tetracycline-, sulfamethoxazole-, clindamycin- and ciprofloxacin resistance, we investigated the compositions of ARB in the sludge and supernatant, and quantified their variations along the entire anaerobic sludge digestion process following ultrasonication-, alkali-hydrolysis- and alkali-ultrasonication pretreatments, respectively. Results showed that the abundance of ARB was diminished by up to 90% from the sludge along anaerobic digestion coupling with the pretreatments. Surprisingly, pretreatments clearly boosted the abundance of specific ARB (e.g., 2.3 × 102 CFU/mL of tetracycline-resistant bacteria) in the supernatant that otherwise remained relatively low value of 0.6 × 102 CFU/mL from the direct digestion. Measurements of the soluble-, loosely-bound- and tightly-bound extracellular polymeric substances components revealed a gradually intensified destruction of the sludge aggregates along the entire anaerobic digestion processes, which could be likely responsible to the increase of the ARB abundance in the supernatant. Furthermore, analysis of the bacterial community components showed that the ARB populations were strongly correlated with the occurrence of Bacteroidetes, Patescibacteria, and Tenericutes. Interestingly, intensified conjugal transfer (0.015) of antibiotic resistance genes (ARGs) was observed upon returning of the digested supernatant to the biological treatment system. It implies the likelihood of ARGs spreading and subsequent ecological risks upon anaerobic digestion towards reducing excess sludge, and therefore requires further attentions for the excess sludge treatments especially of supernatant.
Collapse
Affiliation(s)
- Xia Li
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guowei Chen
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Li Liu
- Department of Municipal Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Xiao Y, Zhang Y, Xie F, Olsen RH, Shi L, Li L. Inhibition of Plasmid Conjugation in Escherichia coli by Targeting rbsB Gene Using CRISPRi System. Int J Mol Sci 2023; 24:10585. [PMID: 37445761 DOI: 10.3390/ijms241310585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic-resistant genes (ARGs) among human pathogens. The spread of ARGs can be halted or diminished by interfering with the conjugation process. In this study, we explored the possibility of using an rbsB gene as a single target to inhibit plasmid-mediated horizontal gene transfer in Escherichia coli by CRISPR interference (CRISPRi) system. Three single-guide RNAs (sgRNAs) were designed to target the rbsB gene. The transcriptional levels of the rbsB gene, the conjugation-related genes, and the conjugation efficiency in the CRISPRi strain were tested. We further explored the effect of the repressed expression of the rbsB gene on the quorum sensing (QS) system and biofilm formation. The results showed that the constructed CRISPRi system was effective in repressing the transcriptional level of the rbsB gene at a rate of 66.4%. The repressed expression of the rbsB gene resulted in the reduced conjugation rate of RP4 plasmid by 88.7%, which significantly inhibited the expression of the conjugation-related genes (trbBp, trfAp, traF and traJ) and increased the global regulator genes (korA, korB and trbA). The repressed rbsB gene expression reduced the depletion of autoinducer 2 signals (AI-2) by 12.8% and biofilm formation by a rate of 68.2%. The results of this study indicated the rbsB gene could be used as a universal target for the inhibition of conjugation. The constructed conjugative CRISPRi system has the potential to be used in ARG high-risk areas.
Collapse
Affiliation(s)
- Yawen Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Fengjun Xie
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
11
|
Ding D, Wang B, Zhang X, Zhang J, Zhang H, Liu X, Gao Z, Yu Z. The spread of antibiotic resistance to humans and potential protection strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114734. [PMID: 36950985 DOI: 10.1016/j.ecoenv.2023.114734] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic resistance is currently one of the greatest threats to human health. Widespread use and residues of antibiotics in humans, animals, and the environment can exert selective pressure on antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG), accelerating the flow of antibiotic resistance. As ARG spreads to the population, the burden of antibiotic resistance in humans increases, which may have potential health effects on people. Therefore, it is critical to mitigate the spread of antibiotic resistance to humans and reduce the load of antibiotic resistance in humans. This review briefly described the information of global antibiotic consumption information and national action plans (NAPs) to combat antibiotic resistance and provided a set of feasible control strategies for the transmission of ARB and ARG to humans in three areas including (a) Reducing the colonization capacity of exogenous ARB, (b) Enhancing human colonization resistance and mitigating the horizontal gene transfer (HGT) of ARG, (c) Reversing ARB antibiotic resistance. With the hope of achieving interdisciplinary one-health prevention and control of bacterial resistance.
Collapse
Affiliation(s)
- Dong Ding
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Bin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Liu W, Huang Y, Zhang H, Liu Z, Huan Q, Xiao X, Wang Z. Factors and Mechanisms Influencing Conjugation In Vivo in the Gastrointestinal Tract Environment: A Review. Int J Mol Sci 2023; 24:5919. [PMID: 36982992 PMCID: PMC10059276 DOI: 10.3390/ijms24065919] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence and spread of antibiotic resistance genes (ARGs) have imposed a serious threat on global public health. Horizontal gene transfer (HGT) via plasmids is mainly responsible for the spread of ARGs, and conjugation plays an important role in HGT. The conjugation process is very active in vivo and its effect on the spreading of ARGs may be underestimated. In this review, factors affecting conjugation in vivo, especially in the intestinal environment, are summarized. In addition, the potential mechanisms affecting conjugation in vivo are summarized from the perspectives of bacterial colonization and the conjugation process.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Yanhu Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Han Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Ziyi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Quanmin Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| | - Xia Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225012, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
13
|
Kothari A, Kumar P, Gaurav A, Kaushal K, Pandey A, Yadav SRM, Jain N, Omar BJ. Association of antibiotics and heavy metal arsenic to horizontal gene transfer from multidrug-resistant clinical strains to antibiotic-sensitive environmental strains. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130260. [PMID: 36327832 DOI: 10.1016/j.jhazmat.2022.130260] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The emergence of multidrug-resistant bacteria is currently posing a significant threat to global public health. By testing for resistance to different antibiotic classes, we discovered that the majority of clinical bacteria are multidrug-resistant. These clinical multidrug-resistant species have antibiotic resistance genes on their plasmids that can be horizontally transferred to various antibiotic susceptible environmental bacterial species, resulting in antibiotic-resistant transconjugates. Furthermore, we discovered that the presence of an optimal concentration of antibiotics or heavy metal (arsenic) facilitates horizontal gene transfer through the formation of transconjugants. Notably, the addition of a conjugation inhibitor (2-hexadecynoic acid, a synthetic fatty acid) completely blocked the formation of antibiotic or arsenic-induced transconjugants. We discovered a high level of arsenic in water from the Shukratal region, Uttarakhand, India, which corresponded to a high serum level of arsenic in clinically infected individuals from the Shukratal region compared to other locations in Uttarakhand. Importantly, bacterial strains isolated from infected people who drink water from the Shukratal region with high arsenic levels were found to be more antibiotic-resistant than strains isolated from other sites. We discovered that bacterial strains isolated from individuals with high serum arsenic levels are significantly more resistant to antibiotics than individuals with low serum arsenic levels within the Shurkratal. This research sheds light on imminent threats to global health in which improper clinical, industrial, and other waste disposal, increased antibiotic concentrations in the environment, and increased human interference can easily transform commensal and pathogenic bacteria found in environmental niches into life-threatening multidrug-resistant superbugs.
Collapse
Affiliation(s)
- Ashish Kothari
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Prashant Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | | | - Karanvir Kaushal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Atul Pandey
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Neeraj Jain
- Department of Medical Oncology, All India Institute of Medical Sciences, Rishikesh 249203, India; Division of Cancer Biology, Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| |
Collapse
|
14
|
Kessler C, Hou J, Neo O, Buckner MMC. In situ, in vivo, and in vitro approaches for studying AMR plasmid conjugation in the gut microbiome. FEMS Microbiol Rev 2022; 47:6807411. [PMID: 36341518 PMCID: PMC9841969 DOI: 10.1093/femsre/fuac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat, with evolution and spread of resistance to frontline antibiotics outpacing the development of novel treatments. The spread of AMR is perpetuated by transfer of antimicrobial resistance genes (ARGs) between bacteria, notably those encoded by conjugative plasmids. The human gut microbiome is a known 'melting pot' for plasmid conjugation, with ARG transfer in this environment widely documented. There is a need to better understand the factors affecting the incidence of these transfer events, and to investigate methods of potentially counteracting the spread of ARGs. This review describes the use and potential of three approaches to studying conjugation in the human gut: observation of in situ events in hospitalized patients, modelling of the microbiome in vivo predominantly in rodent models, and the use of in vitro models of various complexities. Each has brought unique insights to our understanding of conjugation in the gut. The use and development of these systems, and combinations thereof, will be pivotal in better understanding the significance, prevalence, and manipulability of horizontal gene transfer in the gut microbiome.
Collapse
Affiliation(s)
- Celia Kessler
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Jingping Hou
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Onalenna Neo
- Institute of Microbiology and Infection College of Medical and Dental Sciences Biosciences Building University Road West University of Birmingham, B15 2TT, United Kingdom
| | - Michelle M C Buckner
- Corresponding author: Biosciences Building, University Road West, University of Birmingham, Birmingham B15 2TT, United Kingdom. Tel: +44 (0)121 415 8758; E-mail:
| |
Collapse
|
15
|
Antibiotic resistance in the commensal human gut microbiota. Curr Opin Microbiol 2022; 68:102150. [DOI: 10.1016/j.mib.2022.102150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
|
16
|
Dimitriu T. Evolution of horizontal transmission in antimicrobial resistance plasmids. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35849537 DOI: 10.1099/mic.0.001214] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mobile genetic elements (MGEs) are one of the main vectors for the spread of antimicrobial resistance (AMR) across bacteria, due to their ability to move horizontally between bacterial lineages. Horizontal transmission of AMR can increase AMR prevalence at multiple scales, from increasing the prevalence of infections by resistant bacteria to pathogen epidemics and worldwide spread of AMR across species. Among MGEs, conjugative plasmids are the main contributors to the spread of AMR. This review discusses the selective pressures acting on MGEs and their hosts to promote or limit the horizontal transmission of MGEs, the mechanisms by which transmission rates can evolve, and their implications for limiting the spread of AMR, with a focus on AMR plasmids.
Collapse
|
17
|
Vinayamohan PG, Pellissery AJ, Venkitanarayanan K. Role of Horizontal Gene Transfer in the Dissemination of Antimicrobial Resistance in Food Animal Production. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|