1
|
May TW, Hawksworth DL. Proposals for consideration at IMC12 to modify provisions related solely to fungi in Chapter F of the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 2024; 15:25. [PMID: 39143648 PMCID: PMC11323459 DOI: 10.1186/s43008-024-00152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/06/2024] [Indexed: 08/16/2024] Open
Abstract
Seven proposals or sets of proposals to modify the provisions of Chapter F of the International Code of Nomenclature for algae, fungi, and plants (ICNafp) have been received. These proposals are formally presented together here. The topics addressed relate to: fungi whose morph-names have the same epithet; the listing of synonyms under entries for protected names in the Code Appendices; the processes of protection and rejection; the use of DNA sequences as nomenclatural types; the use of genomes as nomenclatural types; and the designation of fungi known only from DNA sequences. In addition, a suggestion is included to update the mention of the World Directory of Culture Collections in Article 40.7 Note 4. A Synopsis of the formal proposals will be provided in early July 2024, and the mycological community will be invited to provide a guiding vote on the proposals with a closing date of 2 August 2024. Final decisions on the proposals will be made following debate at the Fungal Nomenclature Session of IMC12 in August 2024.
Collapse
Affiliation(s)
- Tom W May
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, VIC, 3004, Australia.
- Fungal Nomenclature Bureau, XII International Mycological Congress, Maastricht, The Netherlands.
| | - David L Hawksworth
- Fungal Nomenclature Bureau, XII International Mycological Congress, Maastricht, The Netherlands
- Comparative Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3AE, UK
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
- Jilin Agricultural University, Changchun, Jilin Province, 130118, China
- Geography and Environmental Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Gryganskyi AP, Hajek AE, Voloshchuk N, Idnurm A, Eilenberg J, Manfrino RG, Bushley KE, Kava L, Kutovenko VB, Anike F, Nie Y. Potential for Use of Species in the Subfamily Erynioideae for Biological Control and Biotechnology. Microorganisms 2024; 12:168. [PMID: 38257994 PMCID: PMC10820730 DOI: 10.3390/microorganisms12010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The fungal order Entomophthorales in the Zoopagomycota includes many fungal pathogens of arthropods. This review explores six genera in the subfamily Erynioideae within the family Entomophthoraceae, namely, Erynia, Furia, Orthomyces, Pandora, Strongwellsea, and Zoophthora. This is the largest subfamily in the Entomophthorales, including 126 described species. The species diversity, global distribution, and host range of this subfamily are summarized. Relatively few taxa are geographically widespread, and few have broad host ranges, which contrasts with many species with single reports from one location and one host species. The insect orders infected by the greatest numbers of species are the Diptera and Hemiptera. Across the subfamily, relatively few species have been cultivated in vitro, and those that have require more specialized media than many other fungi. Given their potential to attack arthropods and their position in the fungal evolutionary tree, we discuss which species might be adopted for biological control purposes or biotechnological innovations. Current challenges in the implementation of these species in biotechnology include the limited ability or difficulty in culturing many in vitro, a correlated paucity of genomic resources, and considerations regarding the host ranges of different species.
Collapse
Affiliation(s)
- Andrii P. Gryganskyi
- Division of Biological & Nanoscale Technologies, UES, Inc., Dayton, OH 45432, USA
| | - Ann E. Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA;
| | - Nataliya Voloshchuk
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Jørgen Eilenberg
- Department of Plant & Environmental Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark;
| | - Romina G. Manfrino
- CEPAVE—Center for Parasitological & Vector Studies, CONICET-National Scientific & Technical Research Council, UNLP-National University of La Plata, La Plata 1900, Buenos Aires, Argentina;
| | | | - Liudmyla Kava
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine; (N.V.); (L.K.)
| | - Vira B. Kutovenko
- Agrobiological Faculty of Plant Protection, National University of Life & Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine;
| | - Felicia Anike
- Department of Natural Resources & Environmental Design, North Carolina Agricultural & Technical State University, Greensboro, NC 27401, USA;
| | - Yong Nie
- School of Civil Engineering & Architecture, Anhui University of Technology, Ma’anshan 243002, China;
| |
Collapse
|
3
|
Danz A, Quandt CA. A review of the taxonomic diversity, host-parasite interactions, and experimental research on chytrids that parasitize diatoms. Front Microbiol 2023; 14:1281648. [PMID: 38029223 PMCID: PMC10643281 DOI: 10.3389/fmicb.2023.1281648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Diatoms (Bacillariophyta) are a major source of primary production on Earth, generating between 1/4 to 1/2 of all oxygen. They are found in almost all bodies of water, the ice of mountains, the arctic and the antarctic, and soils. Diatoms are also a major source of food in aquatic systems, a key component of the silica cycle, and are carbon capturers in oceans. Recently, diatoms have been examined as sources of biofuels, food, and other economic boons. Chytrids are members of the Kingdom fungi comprising, at a minimum, Chytridiomycota, Blastocladiomycota, and Neocallimastigales. Most chytrids are saprobes, plant pathogens, or parasites, and play an important role in aquatic ecosystems. Chytrid parasitism of diatoms has been reported to cause epidemics of over 90% fatality, though most of the information regarding these epidemics is limited to interactions between just a few hosts and parasites. Given the ubiquity of diatoms, their importance in natural and economic systems, and the massive impact epidemics can have on populations, the relative lack of knowledge regarding parasitism by chytrids is alarming. Here we present a list of the firsthand accounts of diatoms reported parasitized by chytrids. The list includes 162 named parasitic chytrid-diatom interactions, with 63 unique chytrid taxa from 11 genera, and 74 unique diatom taxa from 28 genera. Prior to this review, no list of all documented diatom-chytrid interactions existed. We also synthesize the currently known methods of infection, defense, and experiments examining diatoms and chytrids, and we document the great need for work examining both a greater breadth of taxonomic diversity of parasites and hosts, and a greater depth of experiments probing their interactions. This resource is intended to serve as a building block for future researchers studying diatom-parasite interactions and global planktonic communities in both fresh and marine systems.
Collapse
Affiliation(s)
- August Danz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
- University of Colorado Museum of Natural History, Boulder, CO, United States
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|