1
|
van Beljouw SPB, Brouns SJJ. CRISPR-controlled proteases. Biochem Soc Trans 2024; 52:441-453. [PMID: 38334140 DOI: 10.1042/bst20230962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
With the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.
Collapse
Affiliation(s)
- Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| |
Collapse
|
2
|
Kolan D, Cattan-Tsaushu E, Enav H, Freiman Z, Malinsky-Rushansky N, Ninio S, Avrani S. Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality. THE ISME JOURNAL 2024; 18:wrad008. [PMID: 38365231 PMCID: PMC10811720 DOI: 10.1093/ismejo/wrad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 02/18/2024]
Abstract
Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.
Collapse
Affiliation(s)
- Dikla Kolan
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Esther Cattan-Tsaushu
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Hagay Enav
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| | - Zohar Freiman
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Nechama Malinsky-Rushansky
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Shira Ninio
- Kinneret Limnological Laboratory (KLL) Israel Oceanographic and Limnological Research (IOLR), Migdal 1495000, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, University of Haifa, Mount Carmel, Haifa 3103301, Israel
| |
Collapse
|
3
|
Yin L, Zheng Z, Li Y, Li X, Cheng D, Dong C, Liu Y, Zhao J. PatU3 plays a central role in coordinating cell division and differentiation in pattern formation of filamentous cyanobacterium Nostoc sp. PCC 7120. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2896-2909. [PMID: 37505430 DOI: 10.1007/s11427-023-2380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/31/2023] [Indexed: 07/29/2023]
Abstract
Spatial periodic signal for cell differentiation in some multicellular organisms is generated according to Turing's principle for pattern formation. How a dividing cell responds to the signal of differentiation is addressed with the filamentous cyanobacterium Nostoc sp. PCC 7120, which forms the patterned distribution of heterocysts. We show that differentiation of a dividing cell was delayed until its division was completed and only one daughter cell became heterocyst. A mutant of patU3, which encodes an inhibitor of heterocyst formation, showed no such delay and formed heterocyst pairs from the daughter cells of cell division or dumbbell-shaped heterocysts from the cells undergoing cytokinesis. The patA mutant, which forms heterocysts only at the filament ends, restored intercalary heterocysts by a single nucleotide mutation of patU3, and double mutants of patU3/patA and patU3/hetF had the phenotypes of the patU3 mutant. We provide evidence that HetF, which can degrade PatU3, is recruited to cell divisome through its C-terminal domain. A HetF mutant with its N-terminal peptidase domain but lacking the C-terminal domain could not prevent the formation of heterocyst pairs, suggesting that the divisome recruitment of HetF is needed to sequester HetF for the delay of differentiation in dividing cells. Our study demonstrates that PatU3 plays a key role in cell-division coupled control of differentiation.
Collapse
Affiliation(s)
- Lei Yin
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zhenggao Zheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yilin Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiying Li
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dan Cheng
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunxia Dong
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yixuan Liu
- National Teaching Center for Experimental Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jindong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing, 100871, China.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Whitman BT, Wang Y, Murray CRA, Glover MJN, Owttrim GW. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in Synechocystis sp. Strain PCC 6803. Appl Environ Microbiol 2023; 89:e0001523. [PMID: 36920190 PMCID: PMC10132119 DOI: 10.1128/aem.00015-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Compartmentalization of macromolecules into discrete non-lipid-bound bodies by liquid-liquid phase separation (LLPS) is a well-characterized regulatory mechanism frequently associated with the cellular stress response in eukaryotes. In contrast, the formation and importance of similar complexes is just becoming evident in bacteria. Here, we identify LLPS as the mechanism by which the DEAD-box RNA helicase, cyanobacterial RNA helicase redox (CrhR), compartmentalizes into dynamic membraneless organelles in a temporal and spatial manner in response to abiotic stress in the cyanobacterium Synechocystis sp. strain PCC 6803. Stress conditions induced CrhR to form a single crescent localized exterior to the thylakoid membrane, indicating that this region is a crucial domain in the cyanobacterial stress response. These crescents rapidly dissipate upon alleviation of the stress conditions. Furthermore, CrhR aggregation was mediated by LLPS in an RNA-dependent reaction. We propose that dynamic CrhR condensation performs crucial roles in RNA metabolism, enabling rapid adaptation of the photosynthetic apparatus to environmental stresses. These results expand our understanding of the role that functional compartmentalization of RNA helicases and thus RNA processing in membraneless organelles by LLPS-mediated protein condensation performs in the bacterial response to environmental stress. IMPORTANCE Oxygen-evolving photosynthetic cyanobacteria evolved ~3 billion years ago, performing fundamental roles in the biogeochemical evolution of the early Earth and continue to perform fundamental roles in nutrient cycling and primary productivity today. The phylum consists of diverse species that flourish in heterogeneous environments. A prime driver for survival is the ability to alter photosynthetic performance in response to the shifting environmental conditions these organisms continuously encounter. This study demonstrated that diverse abiotic stresses elicit dramatic changes in localization and structural organization of the RNA helicase CrhR associated with the photosynthetic thylakoid membrane. These dynamic changes, mediated by a liquid-liquid phase separation (LLPS)-mediated mechanism, reveal a novel mechanism by which cyanobacteria can compartmentalize the activity of ribonucleoprotein complexes in membraneless organelles. The results have significant consequences for understanding bacterial adaptation and survival in response to changing environmental conditions.
Collapse
Affiliation(s)
- Brendan T. Whitman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cameron R. A. Murray
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark J. N. Glover
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - George W. Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Liu J, Xing WY, Liu B, Zhang CC. Three-dimensional coordination of cell-division site positioning in a filamentous cyanobacterium. PNAS NEXUS 2022; 2:pgac307. [PMID: 36743469 PMCID: PMC9896137 DOI: 10.1093/pnasnexus/pgac307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Bacterial cells mostly divide symmetrically. In the filamentous, multicellular cyanobacterium Anabaena, cell-division planes are aligned vertically relative to the long axis of every single cell. This observation suggests that both the placement and the angle of the division planes are controlled in every single cell so that the filament can grow in one single dimension along the long axis. In this study, we showed that inactivation of patU3 encoding a cell-division inhibitor led cells to divide asymmetrically in two dimensions leading to twisted filaments, indicating that PatU3 controls not only the position but also the angle of the division planes. Deletion of the conserved minC and minD genes affected cell division symmetry, but not the angle of the division planes. Remarkably, when both patU3 and minCD were inactivated, cells could divide asymmetrically over 360° angles in three dimensions across different cellular sections, producing not only cells with irregular sizes, but also branching filaments. This study demonstrated the existence of a system operating in a three-dimensional manner for the control of cell division in Anabaena. Such a regulation may have been evolved to accommodate multicellular behaviors, a hallmark in evolution.
Collapse
Affiliation(s)
| | | | - Bowen Liu
- Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
| | | |
Collapse
|
6
|
A proteolytic pathway coordinates cell division and heterocyst differentiation in the cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2022; 119:e2207963119. [PMID: 36037363 PMCID: PMC9457339 DOI: 10.1073/pnas.2207963119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The filamentous, multicellular cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a prokaryotic model for the study of cell differentiation and cell-cell interactions. Upon combined-nitrogen deprivation, Anabaena forms a particular cell type, heterocyst, for aerobic nitrogen fixation. Heterocysts are semiregularly spaced among vegetative cells. Heterocyst differentiation is coupled to cell division, but the underlying mechanism remains unclear. This mechanism could be mediated by the putative protease HetF, which is a divisome component and is necessary for heterocyst differentiation. In this study, by suppressor screening, we identified PatU3, as a negative regulator acting downstream of HetF for cell division and heterocyst development. The inactivation of patU3 restored the capacity of cell division and heterocyst differentiation in the ΔhetF mutant, and overexpression of patU3 inhibited both processes in the wild-type background. We demonstrated that PatU3 was a specific substrate of the protease activity of HetF. Consequently, PatU3 accumulated in the hetF-deficient mutant, which was responsible for the resultant mutant phenotype. The cleavage site of PatU3 by HetF was mapped after the Arg117 residue, whose mutation made PatU3 resistant to HetF processing, and mimicked the effect of hetF deletion. Our results provided evidence that HetF regulated cell division and heterocyst differentiation by controlling the inhibitory effects of PatU3. This proteolytic pathway constituted a mechanism for the coordination between cell division and differentiation in a prokaryotic model used for studies on developmental biology and multicellularity.
Collapse
|
7
|
Abstract
Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; ,
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China; , .,Institut WUT-AMU, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Xu X, Rachedi R, Foglino M, Talla E, Latifi A. Interaction network among factors involved in heterocyst-patterning in cyanobacteria. Mol Genet Genomics 2022; 297:999-1015. [PMID: 35577979 DOI: 10.1007/s00438-022-01902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
The genetically regulated pattern of heterocyst formation in multicellular cyanobacteria represents the simplest model to address how patterns emerge and are established, the signals that control them, and the regulatory pathways that act downstream. Although numerous factors involved in this process have been identified, the mechanisms of action of many of them remain largely unknown. The aim of this study was to identify specific relationships between 14 factors required for cell differentiation and pattern formation by exploring their putative physical interactions in the cyanobacterium model Nostoc sp. PCC 7120 and by probing their evolutionary conservation and distribution across the cyanobacterial phylum. A bacterial two-hybrid assay indicated that 10 of the 14 factors studied here are engaged in more than one protein-protein interaction. The transcriptional regulator PatB was central in this network as it showed the highest number of binary interactions. A phylum-wide genomic survey of the distribution of these factors in cyanobacteria showed that they are all highly conserved in the genomes of heterocyst-forming strains, with the PatN protein being almost restricted to this clade. Interestingly, eight of the factors that were shown to be capable of protein interactions were identified as key elements in the evolutionary genomics analysis. These data suggest that a network of 12 proteins may play a crucial role in heterocyst development and patterning. Unraveling the physical and functional interactions between these factors during heterocyst development will certainly shed light on the mechanisms underlying pattern establishment in cyanobacteria.
Collapse
Affiliation(s)
- Xiaomei Xu
- Aix-Marseille University, CNRS, IMM, LCB, Laboratoire de Chimie Bactérienne, France, Marseille
| | - Raphaël Rachedi
- Aix-Marseille University, CNRS, IMM, LCB, Laboratoire de Chimie Bactérienne, France, Marseille
| | - Maryline Foglino
- Aix-Marseille University, CNRS, IMM, LCB, Laboratoire de Chimie Bactérienne, France, Marseille
| | - Emmanuel Talla
- Aix-Marseille University, CNRS, IMM, LCB, Laboratoire de Chimie Bactérienne, France, Marseille.
| | - Amel Latifi
- Aix-Marseille University, CNRS, IMM, LCB, Laboratoire de Chimie Bactérienne, France, Marseille.
| |
Collapse
|
9
|
The Heterocyst-Specific Small RNA NsiR1 Regulates the Commitment to Differentiation in Nostoc. Microbiol Spectr 2022; 10:e0227421. [PMID: 35230129 PMCID: PMC9045159 DOI: 10.1128/spectrum.02274-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Heterocysts are specialized cells that filamentous cyanobacteria differentiate for the fixation of atmospheric nitrogen when other nitrogen sources are not available. Heterocyst differentiation at semiregular intervals along the filaments requires complex structural and metabolic changes that are under the control of the master transcriptional regulator HetR. NsiR1 (nitrogen stress-induced RNA 1) is a HetR-dependent noncoding RNA that is expressed from multiple chromosomal copies, some identical, some slightly divergent in sequence, specifically in heterocysts from very early stages of differentiation. We have previously shown that NsiR1 inhibits translation of the overlapping hetF mRNA by an antisense mechanism. Here, we identify alr3234, a hetP-like gene involved in the regulation of commitment (point of no return) to heterocyst differentiation, as a target of NsiR1. A strain overexpressing one of the identical copies of NsiR1 commits to heterocyst development earlier than the wild type. The posttranscriptional regulation exerted by NsiR1 on the expression of two genes involved in heterocyst differentiation and commitment, hetF and alr3234, adds a new level of complexity to the network of transcriptional regulation and protein-protein interactions that participate in heterocyst differentiation. IMPORTANCE Heterocysts are nitrogen-fixing specialized cells that appear at semiregular intervals along cyanobacterial filaments upon nitrogen starvation. The differentiation and patterning of heterocysts is a model for the study of cell differentiation in multicellular prokaryotes. The regulation of differentiation, which is only partially understood, includes transcriptional changes, factor diffusion between cells, and protein-protein interactions. This work describes the identification of a novel target for NsiR1, a small RNA (sRNA) encoded in multiple slightly divergent copies, and shows how different copies of “sibling” sRNAs regulate the expression of different targets involved in one of the few examples of a differentiation process in prokaryotes.
Collapse
|
10
|
Liu J, Xing WY, Zhang JY, Zeng X, Yang Y, Zhang CC. Functions of the Essential Gene mraY in Cellular Morphogenesis and Development of the Filamentous Cyanobacterium Anabaena PCC 7120. Front Microbiol 2021; 12:765878. [PMID: 34745074 PMCID: PMC8566892 DOI: 10.3389/fmicb.2021.765878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial cell shape is determined by the peptidoglycan (PG) layer. The cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a filamentous strain with ovoid-shaped cells connected together with incomplete cell constriction. When deprived of combined nitrogen in the growth medium, about 5–10% of the cells differentiate into heterocysts, cells devoted to nitrogen fixation. It has been shown that PG synthesis is modulated during heterocyst development and some penicillin-binding proteins (PBPs) participating in PG synthesis are required for heterocyst morphogenesis or functioning. Anabaena has multiple PBPs with functional redundancy. In this study, in order to examine the function of PG synthesis and its relationship with heterocyst development, we created a conditional mutant of mraY, a gene necessary for the synthesis of the PG precursor, lipid I. We show that mraY is required for cell and filament integrity. Furthermore, when mraY expression was being limited, persistent septal PG synthetic activity was observed, resulting in increase in cell width. Under non-permissive conditions, filaments and cells were rapidly lysed, and no sign of heterocyst development within the time window allowed was detected after nitrogen starvation. When mraY expression was being limited, a high percentage of heterocyst doublets were found. These doublets are formed likely as a consequence of delayed cell division and persistent septal PG synthesis. MraY interacts with components of both the elongasome and the divisome, in particular those directly involved in PG synthesis, including HetF, which is required for both cell division and heterocyst formation.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Yue Xing
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institut WUT-AMU, Aix-Marseille University and Wuhan University of Technology, Wuhan, China
| |
Collapse
|
11
|
Wang L, Niu TC, Valladares A, Lin GM, Zhang JY, Herrero A, Chen WL, Zhang CC. The developmental regulator PatD modulates assembly of the cell-division protein FtsZ in the cyanobacterium Anabaena sp. PCC 7120. Environ Microbiol 2021; 23:4823-4837. [PMID: 34296514 DOI: 10.1111/1462-2920.15682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tian-Cai Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Gui-Ming Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,Institut AMU-WUT, Aix-Marseille University and Wuhan University of Technology, Wuhan, Hubei, 430070, China
| |
Collapse
|