1
|
Jin G, Khan F, Kim Y. A Comparative Analysis of Different Xenorhabdus Strains Reveals a Virulent Factor, Cyclic Pro-Phe, Using a Differential Expression Profile Analysis of Non-Ribosomal Peptide Synthetases. INSECTS 2024; 15:710. [PMID: 39336678 PMCID: PMC11432276 DOI: 10.3390/insects15090710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Entomopathogenic bacteria, classified into the genus Xenorhabdus, exhibit a dual lifestyle as mutualistic symbionts to Steinernema nematodes and as pathogens to a broad range of insects. Bacterial virulence depends on toxin proteins that induce toxemia and various immunosuppressive secondary metabolites that cause septicemia. Particularly, the immunosuppressive properties of Xenorhabdus bacteria determine the variability of their insecticidal activities. This study explored the role of peptide metabolites in virulence and its variation among six bacterial strains across three species: X. nematophila, X. bovienii, and X. hominickii. Initially, their virulence significantly varied against a susceptible lepidopteran host, Maruca vitrata, but showed less variation against a tolerant coleopteran host, Tenebrio molitor, with high median lethal bacterial doses. In M. vitrata, virulence was strongly correlated with bacterial growth rate and inhibitory activity against phospholipase A2. Secondly, the six strains differed in the compositions of their secreted secondary metabolites, analyzed by GC-MS following ethyl acetate extraction. Notably, there was significant variation in the production of di- or tetra-peptides. Highly virulent strains commonly produced the cyclic Pro-Phe (cPF). Thirdly, the expression of non-ribosomal peptide synthetase (NRPS) genes varied greatly among the strains. NRPS genes were minimally expressed in the tolerant T. molitor and highly expressed in the susceptible M. vitrata. In M. vitrata, specific NRPS genes were markedly expressed in the virulent strains. Finally, cPF demonstrated potent immunosuppressive activity against the cellular and humoral responses of M. vitrata. The addition of cPF significantly enhanced the virulence against the tolerant T. molitor. These findings suggest that immunosuppression is necessary for the pathogenicity of Xenorhabdus bacteria, wherein NRPS products play a critical role in suppressing immune-associated factors in target insects.
Collapse
Affiliation(s)
- Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
2
|
Bientz V, Lanois A, Ginibre N, Pagès S, Ogier JC, George S, Rialle S, Brillard J. OxyR is required for oxidative stress resistance of the entomopathogenic bacterium Xenorhabdus nematophila and has a minor role during the bacterial interaction with its hosts. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001481. [PMID: 39058385 PMCID: PMC11281485 DOI: 10.1099/mic.0.001481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Xenorhabdus nematophila is a Gram-negative bacterium, mutualistically associated with the soil nematode Steinernema carpocapsae, and this nemato-bacterial complex is parasitic for a broad spectrum of insects. The transcriptional regulator OxyR is widely conserved in bacteria and activates the transcription of a set of genes that influence cellular defence against oxidative stress. It is also involved in the virulence of several bacterial pathogens. The aim of this study was to identify the X. nematophila OxyR regulon and investigate its role in the bacterial life cycle. An oxyR mutant was constructed in X. nematophila and phenotypically characterized in vitro and in vivo after reassociation with its nematode partner. OxyR plays a major role during the X. nematophila resistance to oxidative stress in vitro. Transcriptome analysis allowed the identification of 59 genes differentially regulated in the oxyR mutant compared to the parental strain. In vivo, the oxyR mutant was able to reassociate with the nematode as efficiently as the control strain. These nemato-bacterial complexes harbouring the oxyR mutant symbiont were able to rapidly kill the insect larvae in less than 48 h after infestation, suggesting that factors other than OxyR could also allow X. nematophila to cope with oxidative stress encountered during this phase of infection in insect. The significantly increased number of offspring of the nemato-bacterial complex when reassociated with the X. nematophila oxyR mutant compared to the control strain revealed a potential role of OxyR during this symbiotic stage of the bacterial life cycle.
Collapse
Affiliation(s)
| | - Anne Lanois
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, INRAE, Univ. Montpellier, Montpellier, France
| | | | - Simon George
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Stéphanie Rialle
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | |
Collapse
|
3
|
Ogier JC, Akhurst R, Boemare N, Gaudriault S. The endosymbiont and the second bacterial circle of entomopathogenic nematodes. Trends Microbiol 2023; 31:629-643. [PMID: 36801155 DOI: 10.1016/j.tim.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/19/2023]
Abstract
Single host-symbiont interactions should be reconsidered from the perspective of the pathobiome. We revisit here the interactions between entomopathogenic nematodes (EPNs) and their microbiota. We first describe the discovery of these EPNs and their bacterial endosymbionts. We also consider EPN-like nematodes and their putative symbionts. Recent high-throughput sequencing studies have shown that EPNs and EPN-like nematodes are also associated with other bacterial communities, referred to here as the second bacterial circle of EPNs. Current findings suggest that some members of this second bacterial circle contribute to the pathogenic success of nematodes. We suggest that the endosymbiont and the second bacterial circle delimit an EPN pathobiome.
Collapse
Affiliation(s)
| | | | - Noël Boemare
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | |
Collapse
|
4
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
5
|
Mucci NC, Jones KA, Cao M, Wyatt MR, Foye S, Kauffman SJ, Richards GR, Taufer M, Chikaraishi Y, Steffan SA, Campagna SR, Goodrich-Blair H. Apex Predator Nematodes and Meso-Predator Bacteria Consume Their Basal Insect Prey through Discrete Stages of Chemical Transformations. mSystems 2022; 7:e0031222. [PMID: 35543104 PMCID: PMC9241642 DOI: 10.1128/msystems.00312-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial symbiosis drives physiological processes of higher-order systems, including the acquisition and consumption of nutrients that support symbiotic partner reproduction. Metabolic analytics provide new avenues to examine how chemical ecology, or the conversion of existing biomass to new forms, changes over a symbiotic life cycle. We applied these approaches to the nematode Steinernema carpocapsae, its mutualist bacterium, Xenorhabdus nematophila, and the insects they infect. The nematode-bacterium pair infects, kills, and reproduces in an insect until nutrients are depleted. To understand the conversion of insect biomass over time into either nematode or bacterium biomass, we integrated information from trophic, metabolomic, and gene regulation analyses. Trophic analysis established bacteria as meso-predators and primary insect consumers. Nematodes hold a trophic position of 4.6, indicative of an apex predator, consuming bacteria and likely other nematodes. Metabolic changes associated with Galleria mellonella insect bioconversion were assessed using multivariate statistical analyses of metabolomics data sets derived from sampling over an infection time course. Statistically significant, discrete phases were detected, indicating the insect chemical environment changes reproducibly during bioconversion. A novel hierarchical clustering method was designed to probe molecular abundance fluctuation patterns over time, revealing distinct metabolite clusters that exhibit similar abundance shifts across the time course. Composite data suggest bacterial tryptophan and nematode kynurenine pathways are coordinated for reciprocal exchange of tryptophan and NAD+ and for synthesis of intermediates that can have complex effects on bacterial phenotypes and nematode behaviors. Our analysis of pathways and metabolites reveals the chemistry underlying the recycling of organic material during carnivory. IMPORTANCE The processes by which organic life is consumed and reborn in a complex ecosystem were investigated through a multiomics approach applied to the tripartite Xenorhabdus bacterium-Steinernema nematode-Galleria insect symbiosis. Trophic analyses demonstrate the primary consumers of the insect are the bacteria, and the nematode in turn consumes the bacteria. This suggests the Steinernema-Xenorhabdus mutualism is a form of agriculture in which the nematode cultivates the bacterial food sources by inoculating them into insect hosts. Metabolomics analysis revealed a shift in biological material throughout progression of the life cycle: active infection, insect death, and conversion of cadaver tissues into bacterial biomass and nematode tissue. We show that each phase of the life cycle is metabolically distinct, with significant differences including those in the tricarboxylic acid cycle and amino acid pathways. Our findings demonstrate that symbiotic life cycles can be defined by reproducible stage-specific chemical signatures, enhancing our broad understanding of metabolic processes that underpin a three-way symbiosis.
Collapse
Affiliation(s)
- Nicholas C. Mucci
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Katarina A. Jones
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Mengyi Cao
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michael R. Wyatt
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Shane Foye
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Gregory R. Richards
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Michela Taufer
- Department of Electrical Engineering and Computer Science, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Yoshito Chikaraishi
- Institute of Low Temperature Science, Hokkaido University, Japan
- Biogeochemistry Research Center, Japan Agency for Marine-Earth Science and Technology, Japan
| | - Shawn A. Steffan
- Department of Entomology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- U.S. Department of Agriculture, Agricultural Research Service, Madison, Wisconsin, USA
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Biological and Small Molecule Mass Spectrometry Core, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee–Knoxville, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Nandy P. The role of sigma factor competition in bacterial adaptation under prolonged starvation. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35594140 DOI: 10.1099/mic.0.001195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study of adaptive microbial evolution in the laboratory can illuminate the genetic mechanisms of gaining fitness under a pre-defined set of selection factors. Laboratory evolution of bacteria under long-term starvation has gained importance in recent years because of its ability to uncover adaptive strategies that overcome prolonged nutrient limitation, a condition often encountered by natural microbes. In this evolutionary paradigm, bacteria are maintained in an energy-restricted environment in a growth phase called long-term stationary phase (LTSP). This phase is characterized by a stable, viable population size and highly dynamic genetic changes. Multiple independent iterations of LTSP evolution experiments have given rise to mutants that are slow-growing compared to the ancestor. Although the antagonistic regulation between rapid growth and the stress response is well-known in bacteria (especially Escherichia coli), the growth deficit of many LTSP-adapted mutants has not been explored in detail. In this review, I pinpoint the trade-off between growth and stress response as a dominant driver of evolutionary strategies under prolonged starvation. Focusing on mainly E. coli-based research, I discuss the various affectors and regulators of the competition between sigma factors to occupy their targets on the genome, and assess its effect on growth advantage in stationary phase (GASP). Finally, I comment on some crucial issues that hinder the progress of the field, including identification of novel metabolites in nutrient-depleted media, and the importance of using multidisciplinary research to resolve them.
Collapse
Affiliation(s)
- Pabitra Nandy
- National Centre for Biological Sciences (NCBS-TIFR), Bangalore, India.,Max Planck Institute for Evolutionary Biology, Plӧn, Germany
| |
Collapse
|
7
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Faucher C, Mazana V, Kardacz M, Parthuisot N, Ferdy JB, Duneau D. Step-Specific Adaptation and Trade-Off over the Course of an Infection by GASP Mutation Small Colony Variants. mBio 2021; 12:e01399-20. [PMID: 33436427 PMCID: PMC7845629 DOI: 10.1128/mbio.01399-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
During an infection, parasites face a succession of challenges, each decisive for disease outcome. The diversity of challenges requires a series of parasite adaptations to successfully multiply and transmit from host to host. Thus, the pathogen genotypes that succeed during one step might be counterselected in later stages of the infection. Using the bacterium Xenorhabdus nematophila and adult Drosophila melanogaster flies as hosts, we showed that such step-specific adaptations, here linked to GASP (i.e., growth advantage in stationary phase) mutations in the X. nematophila master gene regulator lrp, exist and can trade off with each other. We found that nonsense lrp mutations had lowered the ability to resist the host immune response, while all classes of mutations in lrp were associated with a decrease in the ability to proliferate during early infection. We demonstrate that reduced proliferation of X. nematophila best explains diminished virulence in this infection model. Finally, decreased proliferation during the first step of infection is accompanied by improved proliferation during late infection, suggesting a trade-off between the adaptations to each step. Step-specific adaptations could play a crucial role in the chronic phase of infections in any disease organisms that show similar small colony variants (SCVs) to X. nematophilaIMPORTANCE Within-host evolution has been described in many bacterial diseases, and the genetic basis behind the adaptations has stimulated a lot of interest. Yet, the studied adaptations are generally focused on antibiotic resistance and rarely on the adaptation to the environment given by the host, and the potential trade-offs hindering adaptations to each step of the infection are rarely considered. Those trade-offs are key to understanding intrahost evolution and thus the dynamics of the infection. However, understanding these trade-offs supposes a detailed study of host-pathogen interactions at each step of the infection process, with an adapted methodology for each step. Using Drosophila melanogaster as the host and the bacterium Xenorhabdus nematophila, we investigated the bacterial adaptations resulting from GASP mutations known to induce the small colony variant (SCV) phenotype positively selected within the host over the course of an infection, as well as the trade-off between step-specific adaptations.
Collapse
Affiliation(s)
- Christian Faucher
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Vincent Mazana
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Marion Kardacz
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Nathalie Parthuisot
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Baptiste Ferdy
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - David Duneau
- CNRS, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Université Toulouse 3 Paul Sabatier, Toulouse, France
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
9
|
Cao M, Goodrich-Blair H. Xenorhabdus nematophila bacteria shift from mutualistic to virulent Lrp-dependent phenotypes within the receptacles of Steinernema carpocapsae insect-infective stage nematodes. Environ Microbiol 2020; 22:5433-5449. [PMID: 33078552 DOI: 10.1111/1462-2920.15286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 01/06/2023]
Abstract
Xenorhabdus nematophila bacteria are mutualists of Steinernema carpocapsae nematodes and pathogens of insects. Xenorhabdus nematophila exhibits phenotypic variation between insect virulence (V) and the mutualistic (M) support of nematode reproduction and colonization initiation in the infective juvenile (IJ) stage nematode that carries X. nematophila between insect hosts. The V and M phenotypes occur reciprocally depending on levels of the transcription factor Lrp: high-Lrp expressors are M+V- while low-Lrp expressors are V+M-. We report here that variable (wild type) or fixed high-Lrp expressors also are optimized, relative to low- or no-Lrp expressors, for colonization of additional nematode stages: juvenile, adult and pre-transmission infective juvenile (IJ). In contrast, we found that after the bacterial population had undergone outgrowth in mature IJs, the advantage for colonization shifted to low-Lrp expressors: fixed low-Lrp expressors (M-V+) and wild type (M+V+) exhibited higher average bacterial CFU per IJ than did high-Lrp (M+V-) or no-Lrp (M-V-) strains. Further, the bacterial population becomes increasingly low-Lrp expressing, based on expression of an Lrp-dependent fluorescent reporter, as IJs age. These data support a model that virulent X. nematophila have a selective advantage and accumulate in aging IJs in advance of exposure to insect hosts in which this phenotype is necessary.
Collapse
Affiliation(s)
- Mengyi Cao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|