1
|
Dopson M, Rezaei Somee M, González-Rosales C, Lui LM, Turner S, Buck M, Nilsson E, Westmeijer G, Ashoor K, Nielsen TN, Mehrshad M, Bertilsson S. Novel candidate taxa contribute to key metabolic processes in Fennoscandian Shield deep groundwaters. ISME COMMUNICATIONS 2024; 4:ycae113. [PMID: 39421601 PMCID: PMC11484514 DOI: 10.1093/ismeco/ycae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The continental deep biosphere contains a vast reservoir of microorganisms, although a large proportion of its diversity remains both uncultured and undescribed. In this study, the metabolic potential (metagenomes) and activity (metatranscriptomes) of the microbial communities in Fennoscandian Shield deep subsurface groundwaters were characterized with a focus on novel taxa. DNA sequencing generated 1270 de-replicated metagenome-assembled genomes and single-amplified genomes, containing 7 novel classes, 34 orders, and 72 families. The majority of novel taxa were affiliated with Patescibacteria, whereas among novel archaea taxa, Thermoproteota and Nanoarchaeota representatives dominated. Metatranscriptomes revealed that 30 of the 112 novel taxa at the class, order, and family levels were active in at least one investigated groundwater sample, implying that novel taxa represent a partially active but hitherto uncharacterized deep biosphere component. The novel taxa genomes coded for carbon fixation predominantly via the Wood-Ljungdahl pathway, nitrogen fixation, sulfur plus hydrogen oxidation, and fermentative pathways, including acetogenesis. These metabolic processes contributed significantly to the total community's capacity, with up to 9.9% of fermentation, 6.4% of the Wood-Ljungdahl pathway, 6.8% of sulfur plus 8.6% of hydrogen oxidation, and energy conservation via nitrate (4.4%) and sulfate (6.0%) reduction. Key novel taxa included the UBA9089 phylum, with representatives having a prominent role in carbon fixation, nitrate and sulfate reduction, and organic and inorganic electron donor oxidation. These data provided insights into deep biosphere microbial diversity and their contribution to nutrient and energy cycling in this ecosystem.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Maryam Rezaei Somee
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Lauren M Lui
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Kamal Ashoor
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Torben N Nielsen
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| |
Collapse
|
2
|
Lopez-Fernandez M, Westmeijer G, Turner S, Broman E, Ståhle M, Bertilsson S, Dopson M. Thiobacillus as a key player for biofilm formation in oligotrophic groundwaters of the Fennoscandian Shield. NPJ Biofilms Microbiomes 2023; 9:41. [PMID: 37349512 DOI: 10.1038/s41522-023-00408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Biofilm formation is a common adaptation for microbes in energy-limited conditions such as those prevalent in the vast deep terrestrial biosphere. However, due to the low biomass and the inaccessible nature of subsurface groundwaters, the microbial populations and genes involved in its formation are understudied. Here, a flow-cell system was designed to investigate biofilm formation under in situ conditions in two groundwaters of contrasting age and geochemistry at the Äspö Hard Rock Laboratory, Sweden. Metatranscriptomes showed Thiobacillus, Sideroxydans, and Desulforegula to be abundant and together accounted for 31% of the transcripts in the biofilm communities. Differential expression analysis highlighted Thiobacillus to have a principal role in biofilm formation in these oligotrophic groundwaters by being involved in relevant processes such as the formation of extracellular matrix, quorum sensing, and cell motility. The findings revealed an active biofilm community with sulfur cycling as a prominent mode of energy conservation in the deep biosphere.
Collapse
Affiliation(s)
- Margarita Lopez-Fernandez
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden.
- Department of Microbiology, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain.
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius väg 20 A, 106 91, Stockholm, Sweden
| | - Magnus Ståhle
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE75007, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, 392 31, Kalmar, Sweden
| |
Collapse
|
3
|
Osterholz H, Turner S, Alakangas LJ, Tullborg EL, Dittmar T, Kalinowski BE, Dopson M. Terrigenous dissolved organic matter persists in the energy-limited deep groundwaters of the Fennoscandian Shield. Nat Commun 2022; 13:4837. [PMID: 35977924 PMCID: PMC9385861 DOI: 10.1038/s41467-022-32457-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
The deep terrestrial biosphere encompasses the life below the photosynthesis-fueled surface that perseveres in typically nutrient and energy depleted anoxic groundwaters. The composition and cycling of this vast dissolved organic matter (DOM) reservoir relevant to the global carbon cycle remains to be deciphered. Here we show that recent Baltic Sea-influenced to ancient pre-Holocene saline Fennoscandian Shield deep bedrock fracture waters carried DOM with a strong terrigenous signature and varying contributions from abiotic and biotic processes. Removal of easily degraded carbon at the surface-to-groundwater transition and corresponding microbial community assembly processes likely resulted in the highly similar DOM signatures across the notably different water types that selected for a core microbiome. In combination with the aliphatic character, depleted δ13C signatures in DOM indicated recent microbial production in the oldest, saline groundwater. Our study revealed the persistence of terrestrially-sourced carbon in severely energy limited deep continental groundwaters supporting deep microbial life.
Collapse
Affiliation(s)
- Helena Osterholz
- Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
| | - Stephanie Turner
- Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linda J Alakangas
- Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,Swedish Nuclear Fuel and Waste Management Company, Äspö Hard Rock Laboratory, Oskarshamn, Sweden
| | | | - Thorsten Dittmar
- Marine Geochemistry, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University, Oldenburg, Germany
| | - Birgitta E Kalinowski
- Swedish Nuclear Fuel and Waste Management Company, Äspö Hard Rock Laboratory, Oskarshamn, Sweden
| | - Mark Dopson
- Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
4
|
Zhang Y, Thompson KN, Branck T, Yan Yan, Nguyen LH, Franzosa EA, Huttenhower C. Metatranscriptomics for the Human Microbiome and Microbial Community Functional Profiling. Annu Rev Biomed Data Sci 2021; 4:279-311. [PMID: 34465175 DOI: 10.1146/annurev-biodatasci-031121-103035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shotgun metatranscriptomics (MTX) is an increasingly practical way to survey microbial community gene function and regulation at scale. This review begins by summarizing the motivations for community transcriptomics and the history of the field. We then explore the principles, best practices, and challenges of contemporary MTX workflows: beginning with laboratory methods for isolation and sequencing of community RNA, followed by informatics methods for quantifying RNA features, and finally statistical methods for detecting differential expression in a community context. In thesecond half of the review, we survey important biological findings from the MTX literature, drawing examples from the human microbiome, other (nonhuman) host-associated microbiomes, and the environment. Across these examples, MTX methods prove invaluable for probing microbe-microbe and host-microbe interactions, the dynamics of energy harvest and chemical cycling, and responses to environmental stresses. We conclude with a review of open challenges in the MTX field, including making assays and analyses more robust, accessible, and adaptable to new technologies; deciphering roles for millions of uncharacterized microbial transcripts; and solving applied problems such as biomarker discovery and development of microbial therapeutics.
Collapse
Affiliation(s)
- Yancong Zhang
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kelsey N Thompson
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Tobyn Branck
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Systems, Synthetic, and Quantitative Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yan Yan
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Long H Nguyen
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02108, USA
| | - Eric A Franzosa
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Curtis Huttenhower
- Harvard Chan Microbiome in Public Health Center and Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA; , .,Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Mehrshad M, Lopez-Fernandez M, Sundh J, Bell E, Simone D, Buck M, Bernier-Latmani R, Bertilsson S, Dopson M. Energy efficiency and biological interactions define the core microbiome of deep oligotrophic groundwater. Nat Commun 2021; 12:4253. [PMID: 34253732 PMCID: PMC8275790 DOI: 10.1038/s41467-021-24549-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
While oligotrophic deep groundwaters host active microbes attuned to the low-end of the bioenergetics spectrum, the ecological constraints on microbial niches in these ecosystems and their consequences for microbiome convergence are unknown. Here, we provide a genome-resolved, integrated omics analysis comparing archaeal and bacterial communities in disconnected fracture fluids of the Fennoscandian Shield in Europe. Leveraging a dataset that combines metagenomes, single cell genomes, and metatranscriptomes, we show that groundwaters flowing in similar lithologies offer fixed niches that are occupied by a common core microbiome. Functional expression analysis highlights that these deep groundwater ecosystems foster diverse, yet cooperative communities adapted to this setting. We suggest that these communities stimulate cooperation by expression of functions related to ecological traits, such as aggregate or biofilm formation, while alleviating the burden on microorganisms producing compounds or functions that provide a collective benefit by facilitating reciprocal promiscuous metabolic partnerships with other members of the community. We hypothesize that an episodic lifestyle enabled by reversible bacteriostatic functions ensures the subsistence of the oligotrophic deep groundwater microbiome.
Collapse
Affiliation(s)
- Maliheh Mehrshad
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Margarita Lopez-Fernandez
- grid.8148.50000 0001 2174 3522Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden ,grid.4489.10000000121678994Present Address: Department of Microbiology, University of Granada, Granada, Spain
| | - John Sundh
- grid.10548.380000 0004 1936 9377Dept of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Emma Bell
- grid.5333.60000000121839049Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland ,grid.22072.350000 0004 1936 7697Present Address: Department of Biological Sciences, University of Calgary, Calgary, Alberta Canada
| | - Domenico Simone
- grid.8148.50000 0001 2174 3522Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden ,grid.6341.00000 0000 8578 2742SLU Bioinformatics Infrastructure, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Moritz Buck
- grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rizlan Bernier-Latmani
- grid.5333.60000000121839049Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stefan Bertilsson
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mark Dopson
- grid.8148.50000 0001 2174 3522Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
The Fennoscandian Shield deep terrestrial virosphere suggests slow motion 'boom and burst' cycles. Commun Biol 2021; 4:307. [PMID: 33686191 PMCID: PMC7940616 DOI: 10.1038/s42003-021-01810-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles. Karin Holmfeldt et al. sequence metagenomes and metatranscriptomes of viruses in deep groundwaters down to 448 m below the surface. The results reveal ecological dynamics of viruses including slow motion ‘boom and burst’ cycles and a ‘kill the winner’ model potentially driven by viral predation.
Collapse
|