1
|
Sabri M, El Handi K, El Tousy A, De Stradis A, Elbeaino T. Synergistic antibacterial activity of Lactococcus lactis and Xylella phage MATE 2 for an effective biocontrol strategy against black rot disease in broccoli. Front Microbiol 2024; 15:1468792. [PMID: 39224218 PMCID: PMC11366581 DOI: 10.3389/fmicb.2024.1468792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is considered the most destructive disease affecting cruciferous vegetables, resulting in significant losses worldwide. The need for biocontrol agents against Xcc that can reduce reliance on chemical pesticides, enhance sustainability, and ensure crops and environmental health is crucial. Combining phages with other antibacterial agents (i.e., antibiotics and bacteriocins) to treat bacterial infections is gaining increased attention due to the frequently observed synergistic effects. This study introduces for the first time the combination of a lytic phage, i.e., Xylella phage MATE 2 (MATE 2) with nisin-producing Lactococcus lactis subsp. lactis (L. lactis) bacterium as an eco-friendly, cost-effective, and practical strategy for controlling Xcc in cruciferous vegetables. The antibacterial efficacy of MATE 2 and L. lactis, individually and in combination, against Xcc was investigated through a series of in vitro assays and in planta experiments conducted on broccoli plants. The time-killing curves results showed that under conditions of reduced Xcc population concentration (103 CFU/mL), MATE 2 at 108 PFU/mL exerted a persistent inhibitory effect on Xcc growth for 7 days. The Spot assays and v-qPCR analysis showed that both L. lactis and its bacteriocin nisin have significant antibacterial potential to contrast Xcc. Furthermore, combined application of MATE 2 and L. lactis in broccoli plants by foliar spraying generated significant synergistic efficacy in preventing Xcc infections, achieving a 71% reduction in symptoms, compared with 64 and 38% for single applications, respectively. In this study, the positive synergistic effect of the combined application of phage and beneficial bacteria in preventing black rot disease underscores this eco-friendly and cost-effective approach as a promising control measure against plant bacterial diseases.
Collapse
Affiliation(s)
- Miloud Sabri
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Kaoutar El Handi
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Abderrahim El Tousy
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Bari, Italy
| | - Toufic Elbeaino
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, Portici, Italy
| |
Collapse
|
2
|
Li Q, Hou Z, Zhou D, Jia M, Lu S, Yu J. A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:1046181. [PMID: 36438094 PMCID: PMC9684715 DOI: 10.3389/fpls.2022.1046181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/08/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H2O2) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.
Collapse
|
3
|
Morinière L, Mirabel L, Gueguen E, Bertolla F. A Comprehensive Overview of the Genes and Functions Required for Lettuce Infection by the Hemibiotrophic Phytopathogen Xanthomonas hortorum pv. vitians. mSystems 2022; 7:e0129021. [PMID: 35311560 PMCID: PMC9040725 DOI: 10.1128/msystems.01290-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The successful infection of a host plant by a phytopathogenic bacterium depends on a finely tuned molecular cross talk between the two partners. Thanks to transposon insertion sequencing techniques (Tn-seq), whole genomes can now be assessed to determine which genes are important for the fitness of several plant-associated bacteria in planta. Despite its agricultural relevance, the dynamic molecular interaction established between the foliar hemibiotrophic phytopathogen Xanthomonas hortorum pv. vitians and its host, lettuce (Lactuca sativa), remains completely unknown. To decipher the genes and functions mobilized by the pathogen throughout the infection process, we conducted a Tn-seq experiment in lettuce leaves to mimic the selective pressure occurring during natural infection. This genome-wide screening identified 170 genes whose disruption caused serious fitness defects in lettuce. A thorough examination of these genes using comparative genomics and gene set enrichment analyses highlighted that several functions and pathways were highly critical for the pathogen's survival. Numerous genes involved in amino acid, nucleic acid, and exopolysaccharide biosynthesis were critical. The xps type II secretion system operon, a few TonB-dependent transporters involved in carbohydrate or siderophore scavenging, and multiple genes of the carbohydrate catabolism pathways were also critical, emphasizing the importance of nutrition systems in a nutrient-limited environment. Finally, several genes implied in camouflage from the plant immune system and resistance to immunity-induced oxidative stress were strongly involved in host colonization. As a whole, these results highlight some of the central metabolic pathways and cellular functions critical for Xanthomonas host adaptation and pathogenesis. IMPORTANCE Xanthomonas hortorum was recently the subject of renewed interest, as several studies highlighted that its members were responsible for diseases in a wide range of plant species, including crops of agricultural relevance (e.g., tomato and carrot). Among X. hortorum variants, X. hortorum pv. vitians is a reemerging foliar hemibiotrophic phytopathogen responsible for severe outbreaks of bacterial leaf spot of lettuce all around the world. Despite recent findings, sustainable and practical means of disease control remain to be developed. Understanding the host-pathogen interaction from a molecular perspective is crucial to support these efforts. The genes and functions mobilized by X. hortorum pv. vitians during its interaction with lettuce had never been investigated. Our study sheds light on these processes by screening the whole pathogen genome for genes critical for its fitness during the infection process, using transposon insertion sequencing and comparative genomics.
Collapse
Affiliation(s)
- Lucas Morinière
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Laurène Mirabel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| | - Erwan Gueguen
- Université Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, Villeurbanne, France
| | - Franck Bertolla
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
4
|
N-Acetylglucosamine Sensing and Metabolic Engineering for Attenuating Human and Plant Pathogens. Bioengineering (Basel) 2022; 9:bioengineering9020064. [PMID: 35200417 PMCID: PMC8869657 DOI: 10.3390/bioengineering9020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
During evolution, both human and plant pathogens have evolved to utilize a diverse range of carbon sources. N-acetylglucosamine (GlcNAc), an amino sugar, is one of the major carbon sources utilized by several human and phytopathogens. GlcNAc regulates the expression of many virulence genes of pathogens. In fact, GlcNAc catabolism is also involved in the regulation of virulence and pathogenesis of various human pathogens, including Candida albicans, Vibrio cholerae, Leishmania donovani, Mycobacterium, and phytopathogens such as Magnaporthe oryzae. Moreover, GlcNAc is also a well-known structural component of many bacterial and fungal pathogen cell walls, suggesting its possible role in cell signaling. Over the last few decades, many studies have been performed to study GlcNAc sensing, signaling, and metabolism to better understand the GlcNAc roles in pathogenesis in order to identify new drug targets. In this review, we provide recent insights into GlcNAc-mediated cell signaling and pathogenesis. Further, we describe how the GlcNAc metabolic pathway can be targeted to reduce the pathogens’ virulence in order to control the disease prevalence and crop productivity.
Collapse
|
5
|
Phenotypic and Molecular-Phylogenetic Analyses Reveal Distinct Features of Crown Gall-Associated Xanthomonas Strains. Microbiol Spectr 2022; 10:e0057721. [PMID: 35107322 PMCID: PMC8809331 DOI: 10.1128/spectrum.00577-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In summer 2019, widespread occurrence of crown gall disease caused by Agrobacterium spp. was observed on commercially grown ornamental plants in southern Iran. Beside agrobacteria, pale yellow-pigmented Gram-negative strains resembling the members of Xanthomonas were also associated with crown gall tissues on weeping fig (Ficus benjamina) and Amaranthus sp. plants. The purpose of the present study was to characterize the crown gall-associated Xanthomonas strains using plant inoculation assays, molecular-phylogenetic analyses, and comparative genomics approaches. Pathogenicity tests showed that the Xanthomonas strains did not induce disease symptoms on their host of isolation. However, the strains induced hypersensitive reaction on tobacco, geranium, melon, squash, and tomato leaves via leaf infiltration. Multilocus sequence analysis suggested that the strains belong to clade IA of Xanthomonas, phylogenetically close to Xanthomonas translucens, X. theicola, and X. hyacinthi. Average nucleotide identity and digital DNA-DNA hybridization values between the whole-genome sequences of the strains isolated in this study and reference Xanthomonas strains are far below the accepted thresholds for the definition of prokaryotic species, signifying that these strains could be defined as two new species within clade IA of Xanthomonas. Comparative genomics showed that the strains isolated from crown gall tissues are genetically distinct from X. translucens, as almost all the type III secretion system genes and type III effectors are lacking in the former group. The data obtained in this study provide novel insight into the breadth of genetic diversity of crown gall-associated bacteria and pave the way for research on gall-associated Xanthomonas-plant interactions. IMPORTANCE Tumorigenic agrobacteria—members of the bacterial family Rhizobiaceae—cause crown gall and hairy root diseases on a broad range of plant species. These bacteria are responsible for economic losses in nurseries of important fruit trees and ornamental plants. The microclimate of crown gall and their accompanying microorganisms has rarely been studied for the microbial diversity and population dynamics of gall-associated bacteria. Here, we employed a series of biochemical tests, pathogenicity assays, and molecular-phylogenetic analyses, supplemented with comparative genomics, to elucidate the biological features, taxonomic position, and genomic repertories of five crown gall-associated Xanthomonas strains isolated from weeping fig and Amaranthus sp. plants in Iran. The strains investigated in this study induced hypersensitive reactions (HR) on geranium, melon, squash, tobacco, and tomato leaves, while they were nonpathogenic on their host of isolation. Phylogenetic analyses and whole-genome-sequence-based average nucleotide identity (ANI)/digital DNA-DNA hybridization (dDDH) calculations suggested that the Xanthomonas strains isolated from crown gall tissues belong to two taxonomically unique clades closely related to the clade IA species of the genus, i.e., X. translucens, X. hyacinthi, and X. theicola.
Collapse
|
6
|
Gueddou A, Sarker I, Sen A, Ghodhbane-Gtari F, Benson DR, Armengaud J, Gtari M. Effect of actinorhizal root exudates on the proteomes of Frankia soli NRRL B-16219, a strain colonizing the root tissues of its actinorhizal host via intercellular pathway. Res Microbiol 2021; 173:103900. [PMID: 34800660 DOI: 10.1016/j.resmic.2021.103900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Frankia and actinorhizal plants exchange signals in the rhizosphere leading to specific mutual recognition of partners and nitrogen-fixing nodule organogenesis. Frankia soli strain NRRL B-16219, from the Elaeagnus specificity group, colonizes the root tissues of its actinorhizal host through direct intercellular penetration of root epidermis cells and cortex. Here, we studied the early proteogenomic response of strain NRRL B-16219 to treatment with root exudates from compatible Elaeagnus angustifolia, and incompatible Ceanothus thyrsiflorus and Coriaria myrtifolia, host plants grown in nitrogen depleted hydroponic medium. Next-generation proteomics was used to identify the main Frankia proteins differentially expressed in response to the root exudates. No products of the nod genes present in B-16219 were detected. Proteins specifically upregulated in presence of E. angustifolia root exudates include those connected to nitrogen fixation and assimilation (glutamate synthetase, hydrogenase and squalene synthesis), respiration (oxidative phosphorylation and citric acid cycle pathways), oxidative stress (catalase, superoxide dismutase, and peroxidase), proteolysis (proteasome, protease, and peptidase) and plant cell wall degrading proteins involved in the depolymerization of celluloses (endoglucanase, glycosyltransferase, beta-mannanases, glycoside hydrolase and glycosyl hydrolase). Proteomic data obtained in this study will help link signaling molecules/factors to their biosynthetic pathways once those factors have been fully characterized.
Collapse
Affiliation(s)
- Abdellatif Gueddou
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia
| | - Indrani Sarker
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri, India
| | - Faten Ghodhbane-Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia
| | - David R Benson
- Department of Molecular and Cell Biology, U-3125, University of Connecticut, Storrs, CT, USA
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour La Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Maher Gtari
- USCR Bactériologie Moléculaire & Génomique, Institut National des Sciences Appliquées et de Technologie, Université Carthage, Centre Urbain Nord, BP 676-1080, Tunis Cedex, Tunisia; LR Microorganismes & Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 - El Manar Tunisia.
| |
Collapse
|
7
|
H. D. Sagawa C, de A. B. Assis R, Zaini PA, Wilmarth PA, Phinney BS, Moreira LM, Dandekar AM. Proteome Analysis of Walnut Bacterial Blight Disease. Int J Mol Sci 2020; 21:E7453. [PMID: 33050347 PMCID: PMC7593943 DOI: 10.3390/ijms21207453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
The interaction between the plant host, walnut (Juglans regia; Jr), and a deadly pathogen (Xanthomonas arboricola pv. juglandis 417; Xaj) can lead to walnut bacterial blight (WB), which depletes walnut productivity by degrading the nut quality. Here, we dissect this pathosystem using tandem mass tag quantitative proteomics. Walnut hull tissues inoculated with Xaj were compared to mock-inoculated tissues, and 3972 proteins were identified, of which 3296 are from Jr and 676 from Xaj. Proteins with differential abundance include oxidoreductases, proteases, and enzymes involved in energy metabolism and amino acid interconversion pathways. Defense responses and plant hormone biosynthesis were also increased. Xaj proteins detected in infected tissues demonstrate its ability to adapt to the host microenvironment, limiting iron availability, coping with copper toxicity, and maintaining energy and intermediary metabolism. Secreted proteases and extracellular secretion apparatus such as type IV pilus for twitching motility and type III secretion effectors indicate putative factors recognized by the host. Taken together, these results suggest intense degradation processes, oxidative stress, and general arrest of the biosynthetic metabolism in infected nuts. Our results provide insights into molecular mechanisms and highlight potential molecular tools for early detection and disease control strategies.
Collapse
Affiliation(s)
- Cíntia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| | - Phillip A. Wilmarth
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, CA 95616, USA;
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (C.H.D.S.); (R.d.A.B.A.); (P.A.Z.)
| |
Collapse
|
8
|
Magnaporthe oryzae MoNdt80 is a transcriptional regulator of GlcNAc catabolic pathway involved in pathogenesis. Microbiol Res 2020; 239:126550. [DOI: 10.1016/j.micres.2020.126550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/01/2023]
|
9
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
10
|
Santiago CRDN, Assis RDAB, Moreira LM, Digiampietri LA. Gene Tags Assessment by Comparative Genomics (GTACG): A User-Friendly Framework for Bacterial Comparative Genomics. Front Genet 2019; 10:725. [PMID: 31507629 PMCID: PMC6718126 DOI: 10.3389/fgene.2019.00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/10/2019] [Indexed: 12/04/2022] Open
Abstract
Genomics research has produced an exponential amount of data. However, the genetic knowledge pertaining to certain phenotypic characteristics is lacking. Also, a considerable part of these genomes have coding sequences (CDSs) with unknown functions, posing additional challenges to researchers. Phylogenetically close microorganisms share much of their CDSs, and certain phenotypes unique to a set of microorganisms may be the result of the genes found exclusively in those microorganisms. This study presents the GTACG framework, an easy-to-use tool for identifying in the subgroups of bacterial genomes whose microorganisms have common phenotypic characteristics, to find data that differentiates them from other associated genomes in a simple and fast way. The GTACG analysis is based on the formation of homologous CDS clusters from local alignments. The front-end is easy to use, and the installation packages have been developed to enable users lacking knowledge of programming languages or bioinformatics analyze high-throughput data using the tool. The validation of the GTACG framework has been carried out based on a case report involving a set of 161 genomes from the Xanthomonadaceae family, in which 19 families of orthologous proteins were found in 90% of the plant-associated genomes, allowing the identification of the proteins potentially associated with adaptation and virulence in plant tissue. The results show the potential use of GTACG in the search for new targets for molecular studies, and GTACG can be used as a research tool by biologists who lack advanced knowledge in the use of computational tools for bacterial comparative genomics.
Collapse
Affiliation(s)
| | - Renata de Almeida Barbosa Assis
- Biotecnology Graduate Program, Núcleo de Pesquisas em Ciências Biológicas, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leandro Marcio Moreira
- Biotecnology Graduate Program, Núcleo de Pesquisas em Ciências Biológicas, Federal University of Ouro Preto, Ouro Preto, Brazil
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Luciano Antonio Digiampietri
- Bioinformatics Graduate Program, University of Sao Paulo, Sao Paulo, Brazil
- School of Arts, Science, and Humanities, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
Gan HM, Szegedi E, Fersi R, Chebil S, Kovács L, Kawaguchi A, Hudson AO, Burr TJ, Savka MA. Insight Into the Microbial Co-occurrence and Diversity of 73 Grapevine ( Vitis vinifera) Crown Galls Collected Across the Northern Hemisphere. Front Microbiol 2019; 10:1896. [PMID: 31456792 PMCID: PMC6700373 DOI: 10.3389/fmicb.2019.01896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Crown gall (CG) is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of CG is Agrobacterium or Allorhizobium strains that harbor a tumor-inducing plasmid (pTi). The microbial community within the CG tumor has not been widely elucidated and it is not known if certain members of this microbial community promote or inhibit CG. This study investigated the microbiotas of grapevine CG tumor tissues from seven infected vineyards located in Hungary, Japan, Tunisia, and the United States. Heavy co-amplification of grapevine chloroplast and mitochondrial ribosomal RNA genes was observed with the widely used Illumina V3-V4 16S rRNA gene primers, requiring the design of a new reverse primer to enrich for bacterial 16S rRNA from CG tumors. The operational taxonomic unit (OTU) clustering approach is not suitable for CG microbiota analysis as it collapsed several ecologically distinct Agrobacterium species into a single OTU due to low interspecies genetic divergence. The CG microbial community assemblages were significantly different across sampling sites (ANOSIM global R = 0.63, p-value = 0.001) with evidence of site-specific differentially abundant ASVs. The presence of Allorhizobium vitis in the CG microbiota is almost always accompanied by Xanthomonas and Novosphingobium, the latter may promote the spread of pTi plasmid by way of acyl-homoserine lactone signal production, whereas the former may take advantage of the presence of substrates associated with plant cell wall growth and repair. The technical and biological insights gained from this study will contribute to the understanding of complex interaction between the grapevine and its microbial community and may facilitate better management of CG disease in the future.
Collapse
Affiliation(s)
- Han Ming Gan
- Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ernõ Szegedi
- National Agricultural Research and Innovation Centre, Research Institute for Viticulture and Enology, Kecskemét, Hungary
| | - Rabeb Fersi
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - Samir Chebil
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - László Kovács
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Akira Kawaguchi
- Western Region Agricultural Research Center, National Agricultural and Food Research Organization, Fukuyama, Japan
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Thomas J. Burr
- Section of Plant Pathology, School of Integrative Plant Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Michael A. Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
12
|
van Hulten M, Chatterjee S, van den Burg HA. Infection Assay for Xanthomonas campestris pv. campestris in Arabidopsis thaliana Mimicking Natural Entry via Hydathodes. Methods Mol Biol 2019; 1991:159-185. [PMID: 31041772 DOI: 10.1007/978-1-4939-9458-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) causes the devastating disease Black rot in Brassicaceae. Typically Xcc enters the plant through specialized organs on the leaf margin, called hydathodes, and spreads from there through the vasculature. In order to mimic natural entry as closely as possible, we here describe a "hydathode guttation"-based entry assay for Xcc in Arabidopsis. This disease assay combines spray inoculation with the induction of guttation and allows reabsorption of guttation droplets by the plant. Moreover, our assay relies on a bioluminescent reporter strain of Xcc to allow direct visualization of both entry and subsequent spreading of Xcc in its host. The assay allows the routine infection from one to two hydathodes per Arabidopsis leaf. Infections are scored 14 days post inoculation, just before the infection goes systemic.
Collapse
Affiliation(s)
- Marieke van Hulten
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Sayantani Chatterjee
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
SucA-dependent uptake of sucrose across the outer membrane of Caulobacter crescentus. J Microbiol 2018; 56:648-655. [DOI: 10.1007/s12275-018-8225-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
14
|
Schwab S, Terra LA, Baldani JI. Genomic characterization of Nitrospirillum amazonense strain CBAmC, a nitrogen-fixing bacterium isolated from surface-sterilized sugarcane stems. Mol Genet Genomics 2018; 293:997-1016. [PMID: 29696375 DOI: 10.1007/s00438-018-1439-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Nitrospirillum amazonense is a nitrogen-fixing bacterium that shows potential to promote plant growth when inoculated into sugarcane and rice plants. This microorganism has been the subject of biochemical and genetic characterization to elucidate important functions related to host plant interaction and growth promotion, including the determination of draft genome sequences of two strains, Y2 and CBAmC, the second of which is the aim of the present study. CBAmC has been isolated from sugarcane (Saccharum spp.), and is currently used in a sugarcane consortium inoculant with four other nitrogen-fixing bacterial strains. The present paper describes a significant improvement in the genome sequence and assembly for the N. amazonense strain CBAmC, and determination for the first time of a complete genome sequence for this bacterial species, using PacBio technology. The analysis of the genomic data obtained allowed the discovery of genes coding for metabolic pathways and cellular structures that may be determinant for the success of the bacterial establishment and colonization into the host sugarcane plant, besides conferring important characteristics to the inoculant. These include genes for the use of sucrose and N-glycans, biosynthesis of autoinducer molecules, siderophore production and acquisition, auxin and polyamine biosynthesis, flagellum, σ-fimbriae, a variety of secretion systems, and a complete denitrification system. Concerning genes for nitrogenase and auxiliary proteins, it was possible to corroborate literature data that in N. amazonense these probably had originated from horizontal gene transfer, from bacteria of the Rhizobiales order. The complete genomic sequence of the CBAmC strain of N. amazonense revealed that the bacterium harbors four replicons, including three chromosomes and one chromid, a profile that coincides with that of other two strains, according to literature data, suggesting that as a replicon pattern for the species. Finally, results of phylogenomic analyses in this work support the recent reclassification of the species, separating it from the Azospirillum genus. More importantly, results of the present work shall guide subsequent studies on strain CBAmC as well as the development of a sugarcane inoculant.
Collapse
Affiliation(s)
- Stefan Schwab
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil.
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil.
| | - Leonardo Araujo Terra
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil
- Pró-Reitoria de Pesquisa e Pós-Graduação, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, Seropédica, RJ, 23890-000, Brazil
| | - José Ivo Baldani
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, CNPq, Curitiba, Brazil
- Embrapa Agrobiologia, Rodovia BR 465, km 7, Seropédica, RJ, 23891-000, Brazil
| |
Collapse
|
15
|
Assis RDAB, Polloni LC, Patané JSL, Thakur S, Felestrino ÉB, Diaz-Caballero J, Digiampietri LA, Goulart LR, Almeida NF, Nascimento R, Dandekar AM, Zaini PA, Setubal JC, Guttman DS, Moreira LM. Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Sci Rep 2017; 7:16133. [PMID: 29170530 PMCID: PMC5700972 DOI: 10.1038/s41598-017-16325-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023] Open
Abstract
The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.
Collapse
Affiliation(s)
- Renata de A B Assis
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - José S L Patané
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Shalabh Thakur
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Érica B Felestrino
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Julio Diaz-Caballero
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | | | - Luiz Ricardo Goulart
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Nalvo F Almeida
- School of Computing, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, MS, Brazil
| | - Rafael Nascimento
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Paulo A Zaini
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, MG, Brazil.,Department of Plant Sciences, University of California, Davis, CA, USA
| | - João C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, Ontario, M5S 3B2, Canada
| | - Leandro Marcio Moreira
- Center of Research in Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil. .,Department of Biological Science, Institute of Exact and Biological Science, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
16
|
Schatschneider S, Schneider J, Blom J, Létisse F, Niehaus K, Goesmann A, Vorhölter FJ. Systems and synthetic biology perspective of the versatile plant-pathogenic and polysaccharide-producing bacterium Xanthomonas campestris. Microbiology (Reading) 2017; 163:1117-1144. [DOI: 10.1099/mic.0.000473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Sarah Schatschneider
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jessica Schneider
- Bioinformatics Resource Facility, Centrum für Biotechnologie, Universität Bielefeld, Germany
- Present address: Evonik Nutrition and Care GmbH, Kantstr. 2, 33790 Halle-Künsebeck, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Karsten Niehaus
- Abteilung für Proteom und Metabolomforschung, Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Gießen, Germany
| | - Frank-Jörg Vorhölter
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
- Present address: MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| |
Collapse
|
17
|
Moreira LM, Soares MR, Facincani AP, Ferreira CB, Ferreira RM, Ferro MIT, Gozzo FC, Felestrino ÉB, Assis RAB, Garcia CCM, Setubal JC, Ferro JA, de Oliveira JCF. Proteomics-based identification of differentially abundant proteins reveals adaptation mechanisms of Xanthomonas citri subsp. citri during Citrus sinensis infection. BMC Microbiol 2017; 17:155. [PMID: 28693412 PMCID: PMC5504864 DOI: 10.1186/s12866-017-1063-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection. RESULTS For that, a 2D-based proteomic analysis of Xac at 1, 3 and 5 days after inoculation, in comparison to Xac growth in NB media was carried out and followed by MALDI-TOF-TOF identification of 124 unique differentially abundant proteins. Among them, 79 correspond to up-regulated proteins in at least one of the three stages of infection. Our results indicate an important role of proteins related to biofilm synthesis, lipopolysaccharides biosynthesis, and iron uptake and metabolism as possible modulators of plant innate immunity, and revealed an intricate network of proteins involved in reactive oxygen species adaptation during Plants` Oxidative Burst response. We also identified proteins previously unknown to be involved in Xac-Citrus interaction, including the hypothetical protein XAC3981. A mutant strain for this gene has proved to be non-pathogenic in respect to classical symptoms of citrus canker induced in compatible plants. CONCLUSIONS This is the first time that a protein repertoire is shown to be active and working in an integrated manner during the infection process in a compatible host, pointing to an elaborate mechanism for adaptation of Xac once inside the plant.
Collapse
Affiliation(s)
- Leandro M Moreira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil. .,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil.
| | - Márcia R Soares
- Departamento de Bioquímica (DBq), Instituto de Química (IQ), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Agda P Facincani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil.
| | - Cristiano B Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Rafael M Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Maria I T Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Fábio C Gozzo
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Érica B Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Renata A B Assis
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Camila Carrião M Garcia
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.,Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - João C Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Jesus A Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Julio C F de Oliveira
- Departamento de Ciências Biológicas (DCB), Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| |
Collapse
|
18
|
Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 2017; 253:55-61. [DOI: 10.1016/j.jbiotec.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 11/18/2022]
|
19
|
Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C, Sharman A, An G, An K, Ahern KR, Romag A, Brutnell TP, Gutjahr C, Geldner N, Roux C, Martinoia E, Konopka JB, Paszkowski U. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. NATURE PLANTS 2017; 3:17073. [PMID: 28548655 PMCID: PMC5685555 DOI: 10.1038/nplants.2017.73] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Most terrestrial plants, including crops, engage in beneficial interactions with arbuscular mycorrhizal fungi. Vital to the association is mutual recognition involving the release of diffusible signals into the rhizosphere. Previously, we identified the maize no perception 1 (nope1) mutant to be defective in early signalling. Here, we report cloning of ZmNope1 on the basis of synteny with rice. NOPE1 encodes a functional homologue of the Candida albicans N-acetylglucosamine (GlcNAc) transporter NGT1, and represents the first plasma membrane GlcNAc transporter identified from plants. In C. albicans, exposure to GlcNAc activates cell signalling and virulence. Similarly, in Rhizophagus irregularis treatment with rice wild-type but not nope1 root exudates induced transcriptome changes associated with signalling function, suggesting a requirement of NOPE1 function for presymbiotic fungal reprogramming.
Collapse
Affiliation(s)
- Marina Nadal
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ruairidh Sawers
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Shamoon Naseem
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Barbara Bassin
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Corinna Kulicke
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Abigail Sharman
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Kyungsook An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea
| | - Kevin R. Ahern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Amanda Romag
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Thomas P. Brutnell
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Caroline Gutjahr
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christophe Roux
- Université de Toulouse, UPS, UMR5546, Laboratoire de recherche en Sciences Végétales, BP 42617, F-31326 Castanet-Tolosan CEDEX, France
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
- to whom correspondence should be addressed: Uta Paszkowski,
| |
Collapse
|
20
|
Abstract
Complex carbohydrates are ubiquitous in all kingdoms of life. As major components of the plant cell wall they constitute both a rich renewable carbon source for biotechnological transformation into fuels, chemicals and materials, and also form an important energy source as part of a healthy human diet. In both contexts, there has been significant, sustained interest in understanding how microbes transform these substrates. Classical perspectives of microbial polysaccharide degradation are currently being augmented by recent advances in the discovery of lytic polysaccharide monooxygenases (LPMOs) and polysaccharide utilization loci (PULs). Fundamental discoveries in carbohydrate enzymology are both advancing biological understanding, as well as informing applications in industrial biomass conversion and modulation of the human gut microbiota to mediate health benefits.
Collapse
|
21
|
Hao L, Zaini PA, Hoch HC, Burr TJ, Mowery P. Grape Cultivar and Sap Culture Conditions Affect the Development of Xylella fastidiosa Phenotypes Associated with Pierce's Disease. PLoS One 2016; 11:e0160978. [PMID: 27508296 PMCID: PMC4980040 DOI: 10.1371/journal.pone.0160978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Xylella fastidiosa is a xylem-limited bacterium in plant hosts and causes Pierce's disease (PD) of grapevines, which differ in susceptibility according to the Vitis species (spp.). In this work we compared X. fastidiosa biofilm formation and population dynamics when cultured in xylem saps from PD-susceptible and -resistant Vitis spp. under different conditions. Behaviors in a closed-culture system were compared to those in different sap-renewal cultures that would more closely mimic the physicochemical environment encountered in planta. Significant differences in biofilm formation and growth in saps from PD-susceptible and -resistant spp. were only observed using sap renewal culture. Compared to saps from susceptible V. vinifera, those from PD-resistant V. aestivalis supported lower titers of X. fastidiosa and less biofilm and V. champinii suppressed both growth and biofilm formation, behaviors which are correlated with disease susceptibility. Furthermore, in microfluidic chambers X. fastidiosa formed thick mature biofilm with three-dimensional (3-D) structures, such as pillars and mounds, in saps from all susceptible spp. In contrast, only small aggregates of various shapes were formed in saps from four out of five of the resistant spp.; sap from the resistant spp. V. mustangensis was an exception in that it also supported thick lawns of biofilm but not the above described 3-D structures typically seen in a mature biofilm from the susceptible saps. Our findings provide not only critical technical information for future bioassays, but also suggest further understanding of PD susceptibility.
Collapse
Affiliation(s)
- Lingyun Hao
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Paulo A. Zaini
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Harvey C. Hoch
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Thomas J. Burr
- Section of Plant Pathology and Plant-Microbe Biology, SIPS, Cornell University-New York State Agricultural Experiment Station, Geneva, New York, United States of America
| | - Patricia Mowery
- Department of Biology, Hobart and William Smith Colleges, Geneva, New York, United States of America
| |
Collapse
|
22
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|
23
|
Leßmeier L, Alkhateeb RS, Schulte F, Steffens T, Loka TP, Pühler A, Niehaus K, Vorhölter FJ. Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris. J Biotechnol 2016; 232:89-98. [DOI: 10.1016/j.jbiotec.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 11/28/2022]
|
24
|
Gully D, Gargani D, Bonaldi K, Grangeteau C, Chaintreuil C, Fardoux J, Nguyen P, Marchetti R, Nouwen N, Molinaro A, Mergaert P, Giraud E. A Peptidoglycan-Remodeling Enzyme Is Critical for Bacteroid Differentiation in Bradyrhizobium spp. During Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:447-57. [PMID: 26959836 DOI: 10.1094/mpmi-03-16-0052-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.
Collapse
Affiliation(s)
- Djamel Gully
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | | | - Katia Bonaldi
- 3 Center for Chronobiology, Division of Biological Sciences, 9500 Gilman Drive, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Cédric Grangeteau
- 4 UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Clémence Chaintreuil
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Joël Fardoux
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Phuong Nguyen
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Roberta Marchetti
- 5 Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126 Napoli, Italy; and
| | - Nico Nouwen
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonio Molinaro
- 5 Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126 Napoli, Italy; and
| | - Peter Mergaert
- 6 Institute for Integrative Biology of the Cell, UMR 9198, CNRS/Université Paris-Sud/CEA, Gif-sur-Yvette, France
| | - Eric Giraud
- 1 IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| |
Collapse
|
25
|
Datta A, Kundu P, Bhunia A. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. J Colloid Interface Sci 2016; 461:335-345. [DOI: 10.1016/j.jcis.2015.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
26
|
Lannoo N, Van Damme EJM. Review/N-glycans: The making of a varied toolbox. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:67-83. [PMID: 26398792 DOI: 10.1016/j.plantsci.2015.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/23/2023]
Abstract
Asparagine (N)-linked protein glycosylation is one of the most crucial, prevalent, and complex co- and post-translational protein modifications. It plays a pivotal role in protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) as well as in protein sorting, protein function, and in signal transduction. Furthermore, glycosylation modulates many important biological processes including growth, development, morphogenesis, and stress signaling processes. As a consequence, aberrant or altered N-glycosylation is often associated with reduced fitness, diseases, and disorders. The initial steps of N-glycan synthesis at the cytosolic side of the ER membrane and in the lumen of the ER are highly conserved. In contrast, the final N-glycan processing in the Golgi apparatus is organism-specific giving rise to a wide variety of carbohydrate structures. Despite our vast knowledge on N-glycans in yeast and mammals, the modus operandi of N-glycan signaling in plants is still largely unknown. This review will elaborate on the N-glycosylation biosynthesis pathway in plants but will also critically assess how N-glycans are involved in different signaling cascades, either active during normal development or upon abiotic and biotic stresses.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
27
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015. [PMID: 25586188 DOI: 10.1074/jbc.m114.62459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|
28
|
Dupoiron S, Zischek C, Ligat L, Carbonne J, Boulanger A, Dugé de Bernonville T, Lautier M, Rival P, Arlat M, Jamet E, Lauber E, Albenne C. The N-Glycan cluster from Xanthomonas campestris pv. campestris: a toolbox for sequential plant N-glycan processing. J Biol Chem 2015; 290:6022-36. [PMID: 25586188 DOI: 10.1074/jbc.m114.624593] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Glycans are widely distributed in living organisms but represent only a small fraction of the carbohydrates found in plants. This probably explains why they have not previously been considered as substrates exploited by phytopathogenic bacteria during plant infection. Xanthomonas campestris pv. campestris, the causal agent of black rot disease of Brassica plants, possesses a specific system for GlcNAc utilization expressed during host plant infection. This system encompasses a cluster of eight genes (nixE to nixL) encoding glycoside hydrolases (GHs). In this paper, we have characterized the enzymatic activities of these GHs and demonstrated their involvement in sequential degradation of a plant N-glycan using a N-glycopeptide containing two GlcNAcs, three mannoses, one fucose, and one xylose (N2M3FX) as a substrate. The removal of the α-1,3-mannose by the α-mannosidase NixK (GH92) is a prerequisite for the subsequent action of the β-xylosidase NixI (GH3), which is involved in the cleavage of the β-1,2-xylose, followed by the α-mannosidase NixJ (GH125), which removes the α-1,6-mannose. These data, combined to the subcellular localization of the enzymes, allowed us to propose a model of N-glycopeptide processing by X. campestris pv. campestris. This study constitutes the first evidence suggesting N-glycan degradation by a plant pathogen, a feature shared with human pathogenic bacteria. Plant N-glycans should therefore be included in the repertoire of molecules putatively metabolized by phytopathogenic bacteria during their life cycle.
Collapse
Affiliation(s)
- Stéphanie Dupoiron
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Claudine Zischek
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Laetitia Ligat
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Julien Carbonne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Alice Boulanger
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Thomas Dugé de Bernonville
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Martine Lautier
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Pauline Rival
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France, INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Matthieu Arlat
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and the Université de Toulouse, UPS, F-31062 Toulouse, France
| | - Elisabeth Jamet
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| | - Emmanuelle Lauber
- INRA and CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR 2594, F-31326 Castanet-Tolosan, France, and
| | - Cécile Albenne
- From the Université de Toulouse and CNRS, Laboratoire de Recherches en Sciences Végétales, UMR 5546, BP 42617, F-31326 Castanet-Tolosan, France
| |
Collapse
|