1
|
Urzo MLR, Guinto TD, Eusebio-Cope A, Budot BO, Yanoria MJT, Jonson GB, Arakawa M, Kondo H, Suzuki N. Metatranscriptomic Sequencing of Sheath Blight-Associated Isolates of Rhizoctonia solani Revealed Multi-Infection by Diverse Groups of RNA Viruses. Viruses 2024; 16:1152. [PMID: 39066314 PMCID: PMC11281561 DOI: 10.3390/v16071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Rice sheath blight, caused by the soil-borne fungus Rhizoctonia solani (teleomorph: Thanatephorus cucumeris, Basidiomycota), is one of the most devastating phytopathogenic fungal diseases and causes yield loss. Here, we report on a very high prevalence (100%) of potential virus-associated double-stranded RNA (dsRNA) elements for a collection of 39 fungal strains of R. solani from the rice sheath blight samples from at least four major rice-growing areas in the Philippines and a reference isolate from the International Rice Research Institute, showing different colony phenotypes. Their dsRNA profiles suggested the presence of multiple viral infections among these Philippine R. solani populations. Using next-generation sequencing, the viral sequences of the three representative R. solani strains (Ilo-Rs-6, Tar-Rs-3, and Tar-Rs-5) from different rice-growing areas revealed the presence of at least 36 viruses or virus-like agents, with the Tar-Rs-3 strain harboring the largest number of viruses (at least 20 in total). These mycoviruses or their candidates are believed to have single-stranded RNA or dsRNA genomes and they belong to or are associated with the orders Martellivirales, Hepelivirales, Durnavirales, Cryppavirales, Ourlivirales, and Ghabrivirales based on their coding-complete RNA-dependent RNA polymerase sequences. The complete genome sequences of two novel RNA viruses belonging to the proposed family Phlegiviridae and family Mitoviridae were determined.
Collapse
Affiliation(s)
- Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Timothy D. Guinto
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (T.D.G.)
| | - Ana Eusebio-Cope
- Fit-for-Future Genetic Resources Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Bernard O. Budot
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Mary Jeanie T. Yanoria
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Gilda B. Jonson
- Traits for Challenged Environments Unit, Rice Breeding Innovations Department, International Rice Research Institute (IRRI), University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.J.T.Y.); (G.B.J.)
| | - Masao Arakawa
- Faculty of Agriculture, Meijo University, Nagoya 468-8502, Japan;
| | - Hideki Kondo
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Plant-Microbe Interactions Group, Institute of Plant Science and Resources (IPSR), Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| |
Collapse
|
2
|
Urayama SI, Zhao YJ, Kuroki M, Chiba Y, Ninomiya A, Hagiwara D. Greetings from virologists to mycologists: A review outlining viruses that live in fungi. MYCOSCIENCE 2024; 65:1-11. [PMID: 39239117 PMCID: PMC11371549 DOI: 10.47371/mycosci.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 09/07/2024]
Abstract
Viruses are genetic elements that parasitize self-replicating cells. Therefore, organisms parasitized by viruses are not limited to animals and plants but also include microorganisms. Among these, viruses that parasitize fungi are known as mycoviruses. Mycoviruses with an RNA genome persistently replicate inside fungal cells and coevolve with their host cells, similar to a cellular organelle. Within host cells, mycoviruses can modulate various fungal characteristics and activities, including pathogenicity and the production of enzymes and secondary metabolites. In this review, we provide an overview of the mycovirus research field as introduction to fungal researchers. Recognition of all genetic elements in fungi aids towards better understanding and control of fungi, and makes fungi a significant model system for studying microorganisms containing multiple genetic elements.
Collapse
Affiliation(s)
- Syun-Ichi Urayama
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yan-Jie Zhao
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
| | - Misa Kuroki
- c Department of Biotechnology, Laboratory of Brewing Microbiology (donated by Kikkoman), The University of Tokyo
| | - Yuto Chiba
- d School of Agriculture, Meiji University
| | - Akihiro Ninomiya
- e Graduate School of Agricultural and Life Sciences, Laboratory of Aquatic Natural Products Chemistry, The University of Tokyo
| | - Daisuke Hagiwara
- a Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba
- b Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| |
Collapse
|
3
|
Li S, Ma Z, Zhang X, Cai Y, Han C, Wu X. Sixteen Novel Mycoviruses Containing Positive Single-Stranded RNA, Double-Stranded RNA, and Negative Single-Stranded RNA Genomes Co-Infect a Single Strain of Rhizoctonia zeae. J Fungi (Basel) 2023; 10:30. [PMID: 38248940 PMCID: PMC10817634 DOI: 10.3390/jof10010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
In the present study, sixteen novel RNA mycoviruses co-infecting a single strain of Rhizoctonia zeae (strain D40) were identified and molecularly characterized using metatranscriptome sequencing combined with a method for rapid amplification of cDNA ends. The fungal strain was isolated from diseased seedlings of sugar beet with damping-off symptoms. Based on genome analysis and phylogenetic analysis of amino acid sequences of RNA-dependent RNA polymerase, the sixteen mycoviruses associated with strain D40 contained three genome types with nine distinct lineages, including positive single-stranded RNA (Hypoviridae, Yadokariviridae, Botourmiaviridae, and Gammaflexiviridae), double-stranded RNA (Phlegiviridae, Megabirnaviridae, Megatotiviridae, and Yadonushiviridae), and negative single-stranded RNA (Tulasviridae), suggesting a complex composition of a mycoviral community in this single strain of R. zeae (strain D40). Full genome sequences of six novel mycoviruses and the nearly full-length sequences of the remaining ten novel mycoviruses were obtained. Furthermore, seven of these sixteen mycoviruses were confirmed to assemble virus particles present in the R. zeae strain D40. To the best of our knowledge, this is the first detailed study of mycoviruses infecting R. zeae.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuehong Wu
- College of Plant Protection, China Agricultural University, Haidian District, Beijing 100193, China; (S.L.); (Z.M.); (X.Z.); (Y.C.); (C.H.)
| |
Collapse
|
4
|
Sato Y, Suzuki N. Continued mycovirus discovery expanding our understanding of virus lifestyles, symptom expression, and host defense. Curr Opin Microbiol 2023; 75:102337. [PMID: 37343415 DOI: 10.1016/j.mib.2023.102337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
High-throughput sequencing technologies have greatly expanded the RNA virome in general and have led to an exponential increase in new fungal viruses, also known as mycoviruses. Mycoviruses are omnipresent in fungi and usually induce symptomless infections. Some mycoviruses infecting fungi pathogenic to plants, insects, and mammals are known to modify host virulence positively and negatively and attract particular interests. In addition, fungal viruses continue to provide intriguing research materials and themes that lead to discoveries of peculiar viruses as infectious entities and insights into virus evolution and diversity. In this review, we outline the diversity and neolifestyle of recently discovered fungal RNA viruses, and phenotypic alterations induced by them. Furthermore, we discuss recent advances in research regarding the fungal antiviral defense and viral counterdefense, which are closely associated with host phenotype alterations. We hope that this article will enhance understanding of the interesting and growing fungal virology field.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chu-ou, Kurashiki, Okayama 710-0046, Japan.
| |
Collapse
|
5
|
Andika IB, Tian M, Bian R, Cao X, Luo M, Kondo H, Sun L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Annu Rev Virol 2023; 10:119-138. [PMID: 37406341 DOI: 10.1146/annurev-virology-111821-122539] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The large genetic and structural divergences between plants and fungi may hinder the transmission of viruses between these two kingdoms to some extent. However, recent accumulating evidence from virus phylogenetic analyses and the discovery of naturally occurring virus cross-infection suggest the occurrence of past and current transmissions of viruses between plants and plant-associated fungi. Moreover, artificial virus inoculation experiments showed that diverse plant viruses can multiply in fungi and vice versa. Thus, virus cross-infection between plants and fungi may play an important role in the spread, emergence, and evolution of both plant and fungal viruses and facilitate the interaction between them. In this review, we summarize current knowledge related to cross-kingdom virus infection in plants and fungi and further discuss the relevance of this new virological topic in the context of understanding virus spread and transmission in nature as well as developing control strategies for crop plant diseases.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Ming Luo
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
6
|
Sato Y, Hisano S, Suzuki N. Exploration of the yadokari/yadonushi nature of YkV3 and RnMBV3 in the original host and a model filamentous fungus. Virus Res 2023; 334:199155. [PMID: 37356581 PMCID: PMC10410583 DOI: 10.1016/j.virusres.2023.199155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
The yadokari/yadonushi nature is a recently discovered virus lifestyle; "yadokari" refers to the ability of capsidless positive-sense (+) RNA viruses (yadokariviruses) to utilize the capsids of phylogenetically distant double-stranded RNA (dsRNA) viruses possibly as the replication site, while "yadonushi" refers to the ability of dsRNA viruses to provide capsids to yadokariviruses. This virus-virus interaction, however, has been only studied with limited pathosystems. Here, we established a new study model with a capsidless (+)RNA yadokarivirus YkV3 (family Yadokariviridae) and its capsid donor RnMBV3 (family Megabirnaviridae) in the original host fungus Rosellinia necatrix and a model filamentous fungal host Cryphonectria parasitica. YkV3 has a simple genome structure with one open reading frame of 4305 nucleotides encoding a single polyprotein with an RNA-dependent RNA polymerase and a 2A-like self-cleavage peptide domain. Reverse genetics of YkV3 in R. necatrix showed that YkV3 tolerates a nucleotide substitution in the extreme 5'-terminus. The insertion of two termination codons immediately downstream of the 2A-like cleavage site abolished YkV3 viability, suggesting the importance of the C-terminal portion of the polyprotein of unknown function. Transfection of RnMBV3 and YkV3 into an RNA silencing-deficient mutant Δdcl2 of C. parasitica showed the replication competency of both viruses. Comparison between the wild-type and Δdcl2 strains of C. parasitica in virus accumulation suggested that RnMBV3 and YkV3 are susceptible to RNA silencing in C. parasitica. Taken together, we have established a platform to further explore the yadokari/yadonushi nature using genetically manipulable host fungal and virus strains.
Collapse
Affiliation(s)
- Yukiyo Sato
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sakae Hisano
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
7
|
Ayllón MA, Vainio EJ. Mycoviruses as a part of the global virome: Diversity, evolutionary links and lifestyle. Adv Virus Res 2023; 115:1-86. [PMID: 37173063 DOI: 10.1016/bs.aivir.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Knowledge of mycovirus diversity, evolution, horizontal gene transfer and shared ancestry with viruses infecting distantly related hosts, such as plants and arthropods, has increased vastly during the last few years due to advances in the high throughput sequencing methodologies. This also has enabled the discovery of novel mycoviruses with previously unknown genome types, mainly new positive and negative single-stranded RNA mycoviruses ((+) ssRNA and (-) ssRNA) and single-stranded DNA mycoviruses (ssDNA), and has increased our knowledge of double-stranded RNA mycoviruses (dsRNA), which in the past were thought to be the most common viruses infecting fungi. Fungi and oomycetes (Stramenopila) share similar lifestyles and also have similar viromes. Hypothesis about the origin and cross-kingdom transmission events of viruses have been raised and are supported by phylogenetic analysis and by the discovery of natural exchange of viruses between different hosts during virus-fungus coinfection in planta. In this review we make a compilation of the current information on the genome organization, diversity and taxonomy of mycoviruses, discussing their possible origins. Our focus is in recent findings suggesting the expansion of the host range of many viral taxa previously considered to be exclusively fungal, but we also address factors affecting virus transmissibility and coexistence in single fungal or oomycete isolates, as well as the development of synthetic mycoviruses and their use in investigating mycovirus replication cycles and pathogenicity.
Collapse
Affiliation(s)
- María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain; Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Eeva J Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
8
|
Sato Y, Das S, Velasco L, Turina M, Osaki H, Kotta-Loizou I, Coutts RHA, Kondo H, Sabanadzovic S, Suzuki N. ICTV Virus Taxonomy Profile: Yadokariviridae 2023. J Gen Virol 2023; 104. [PMID: 36748548 DOI: 10.1099/jgv.0.001826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The family Yadokariviridae, with the genera Alphayadokarivirus and Betayadokarivirus, includes capsidless non-segmented positive-sense (+) RNA viruses that hijack capsids from phylogenetically distant double-stranded RNA viruses. Yadokarivirids likely replicate inside the hijacked heterocapsids using their own RNA-directed RNA polymerase, mimicking dsRNA viruses despite their phylogenetic placement in a (+) RNA virus lineage. Yadokarivirids can have negative or positive impacts on their host fungi, through interactions with the capsid donor dsRNA viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Yadokariviridae, which is available at ictv.global/report/yadokariviridae.
Collapse
Affiliation(s)
- Yukiyo Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Present address: Institute for Plant Sciences, University of Cologne, Cologne 50674, Germany
| | - Subha Das
- Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo Velasco
- Instituto Andaluz de Investigación y Formación Agraria, Centro de Málaga, Almería, 290140 Malaga, Spain
| | - Massimo Turina
- Institute for Sustainable Plant Protection-CNR, Torino 10135, Italy
| | - Hideki Osaki
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba 305-8666, Japan
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robert H A Coutts
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Sead Sabanadzovic
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi, MS 39762, USA
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|