1
|
Egan MS, de Macedo R, Zackular JP. Metals in the gut: microbial strategies to overcome nutritional immunity in the intestinal tract. Metallomics 2024; 16:mfae052. [PMID: 39577845 DOI: 10.1093/mtomcs/mfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Trace metals are indispensable nutritional factors for all living organisms. During host-pathogen interactions, they serve as crucial resources that dictate infection outcomes. Accordingly, the host uses a defense strategy known as nutritional immunity, which relies on coordinated metal chelation to mitigate bacterial advances. In response, pathogens employ complex strategies to secure these resources at sites of infection. In the gastrointestinal (GI) tract, the microbiota must also acquire metals for survival, making metals a central line of competition in this complex ecosystem. In this minireview, we outline how bacteria secure iron, zinc, and manganese from the host with a focus on the GI tract. We also reflect on how host dietary changes impact disease outcomes and discuss therapeutic opportunities to target bacterial metal uptake systems. Ultimately, we find that recent discoveries on the dynamics of transition metals at the host-pathogen-microbiota interface have reshaped our understanding of enteric infections and provided insights into virulence strategies, microbial cooperation, and antibacterial strategies.
Collapse
Affiliation(s)
- Marisa S Egan
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Raquel de Macedo
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP 01224-001, Brazil
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. Sci Rep 2024; 14:26574. [PMID: 39496766 PMCID: PMC11535028 DOI: 10.1038/s41598-024-77556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, GA, Augusta, USA
| | - Emil Paluch
- Department of Microbiology Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
3
|
Korkus J, Sałata P, Thompson SA, Paluch E, Bania J, Wałecka-Zacharska E. The role of cydB gene in the biofilm formation by Campylobacter jejuni. RESEARCH SQUARE 2024:rs.3.rs-4342718. [PMID: 39315276 PMCID: PMC11419190 DOI: 10.21203/rs.3.rs-4342718/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Campylobacter jejuni is a major cause of food- and water-borne bacterial infections in humans. A key factor helping bacteria to survive adverse environmental conditions is biofilm formation ability. Nonetheless, the molecular basis underlying biofilm formation by C. jejuni remains poorly understood. Around thirty genes involved in the regulation and dynamics of C. jejuni biofilm formation have been described so far. We applied random transposon mutagenesis to identify new biofilm-associated genes in C. jejuni strain 81-176. Of 1350 mutants, twenty-four had a decreased ability to produce biofilm compared to the wild-type strain. Some mutants contained insertions in genes previously reported to affect the biofilm formation process. The majority of identified genes encoded hypothetical proteins. In the library of EZ-Tn5 insertion mutants, we found the cydB gene associated with respiration that was not previously linked with biofilm formation in Campylobacter. To study the involvement of the cydB gene in biofilm formation, we constructed a non-marked deletion cydB mutant together with a complemented mutant. We found that the cydB deletion-mutant formed a weaker biofilm of loosely organized structure and lower volume than the parent strain. In the present study, we demonstrated the role of the cydB gene in biofilm formation by C. jejuni.
Collapse
Affiliation(s)
- Jakub Korkus
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Patrycja Sałata
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Stuart A. Thompson
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia Augusta University, Augusta, GA USA
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
4
|
Sung K, Gao Y, Yu LR, Chon J, Hiett KL, Line JE, Kweon O, Park M, Khan SA. Phenotypic, genotypic and proteomic variations between poor and robust colonizing Campylobacter jejuni strains. Microb Pathog 2024; 193:106766. [PMID: 38942248 DOI: 10.1016/j.micpath.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
Campylobacter jejuni is one of the major causes of bacterial gastrointestinal disease in humans worldwide. This foodborne pathogen colonizes the intestinal tracts of chickens, and consumption of chicken and poultry products is identified as a common route of transmission. We analyzed two C. jejuni strains after oral challenge with 105 CFU/ml of C. jejuni per chick; one strain was a robust colonizer (A74/C) and the other a poor colonizer (A74/O). We also found extensive phenotypic differences in growth rate, biofilm production, and in vitro adherence, invasion, intracellular survival, and transcytosis. Strains A74/C and A74/O were genotypically similar with respect to their whole genome alignment, core genome, and ribosomal MLST, MLST, flaA, porA, and PFGE typing. The global proteomes of the two congenic strains were quantitatively analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and 618 and 453 proteins were identified from A74/C and A74/O isolates, respectively. Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that carbon metabolism and motility proteins were distinctively overexpressed in strain A74/C. The robust colonizer also exhibited a unique proteome profile characterized by significantly increased expression of proteins linked to adhesion, invasion, chemotaxis, energy, protein synthesis, heat shock proteins, iron regulation, two-component regulatory systems, and multidrug efflux pump. Our study underlines phenotypic, genotypic, and proteomic variations of the poor and robust colonizing C. jejuni strains, suggesting that several factors may contribute to mediating the different colonization potentials of the isogenic isolates.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA.
| | - Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, 72079, USA
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae, South Korea
| | - Kelli L Hiett
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US FDA, Laurel, MD, 20708, USA
| | - J Eric Line
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture (USDA), Athens, GA, 30605, USA
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| | - Saeed A Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration (US FDA), Jefferson, AR, 72079, USA
| |
Collapse
|
5
|
König F, Svensson SL, Sharma CM. Interplay of two small RNAs fine-tunes hierarchical flagella gene expression in Campylobacter jejuni. Nat Commun 2024; 15:5240. [PMID: 38897989 PMCID: PMC11187230 DOI: 10.1038/s41467-024-48986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Like for many bacteria, flagella are crucial for Campylobacter jejuni motility and virulence. Biogenesis of the flagellar machinery requires hierarchical transcription of early, middle (RpoN-dependent), and late (FliA-dependent) genes. However, little is known about post-transcriptional regulation of flagellar biogenesis by small RNAs (sRNAs). Here, we characterized two sRNAs with opposing effects on C. jejuni filament assembly and motility. We demonstrate that CJnc230 sRNA (FlmE), encoded downstream of the flagellar hook protein, is processed from the RpoN-dependent flgE mRNA by RNase III, RNase Y, and PNPase. We identify mRNAs encoding a flagella-interaction regulator and the anti-sigma factor FlgM as direct targets of CJnc230 repression. CJnc230 overexpression upregulates late genes, including the flagellin flaA, culminating in longer flagella and increased motility. In contrast, overexpression of the FliA-dependent sRNA CJnc170 (FlmR) reduces flagellar length and motility. Overall, our study demonstrates how the interplay of two sRNAs post-transcriptionally fine-tunes flagellar biogenesis through balancing of the hierarchically-expressed components.
Collapse
Affiliation(s)
- Fabian König
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
| | - Sarah L Svensson
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cynthia M Sharma
- University of Würzburg, Institute of Molecular Infection Biology, Department of Molecular Infection Biology II, 97080, Würzburg, Germany.
| |
Collapse
|
6
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. Proc Natl Acad Sci U S A 2024; 121:e2316540120. [PMID: 38170751 PMCID: PMC10786315 DOI: 10.1073/pnas.2316540120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using 6-wk-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni, ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within 2 to 3 d of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP, which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter (lctP) led to identification of a putative thiol-based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides better insights into the pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- Ritam Sinha
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Rhiannon M. LeVeque
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN37996
| | - Shramana Chatterjee
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Nejc Stopnisek
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| | - Matti Kuipel
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI48824
| | | | - Victor J. DiRita
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
7
|
Sinha R, LeVeque RM, Callahan SM, Chatterjee S, Stopnisek N, Kuipel M, Johnson JG, DiRita VJ. Gut metabolite L-lactate supports Campylobacter jejuni population expansion during acute infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560557. [PMID: 37873437 PMCID: PMC10592923 DOI: 10.1101/2023.10.02.560557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How the microaerobic pathogen Campylobacter jejuni establishes its niche and expands in the gut lumen during infection is poorly understood. Using six-week-old ferrets as a natural disease model, we examined this aspect of C. jejuni pathogenicity. Unlike mice, which require significant genetic or physiological manipulation to become colonized with C. jejuni , ferrets are readily infected without the need to disarm the immune system or alter the gut microbiota. Disease after C. jejuni infection in ferrets reflects closely how human C. jejuni infection proceeds. Rapid growth of C. jejuni and associated intestinal inflammation was observed within two-three days of infection. We observed pathophysiological changes that were noted by cryptic hyperplasia through the induction of tissue repair systems, accumulation of undifferentiated amplifying cells on the colon surface, and instability of HIF-1α in colonocytes, which indicated increased epithelial oxygenation. Metabolomic analysis demonstrated that lactate levels in colon content were elevated in infected animals. A C. jejuni mutant lacking lctP , which encodes an L-lactate transporter, was significantly decreased for colonization during infection. Lactate also influences adhesion and invasion by C. jejuni to a colon carcinoma cell line (HCT116). The oxygenation required for expression of lactate transporter ( lctP ) led to discovery of a putative thiol based redox switch regulator (LctR) that may repress lctP transcription under anaerobic conditions. Our work provides new insights into the pathogenicity of C. jejuni . Significance There is a gap in knowledge about the mechanisms by which C. jejuni populations expand during infection. Using an animal model which accurately reflects human infection without the need to alter the host microbiome or the immune system prior to infection, we explored pathophysiological alterations of the gut after C. jejuni infection. Our study identified the gut metabolite L-lactate as playing an important role as a growth substrate for C. jejuni during acute infection. We identified a DNA binding protein, LctR, that binds to the lctP promoter and may repress lctP expression, resulting in decreased lactate transport under low oxygen levels. This work provides new insights about C. jejuni pathogenicity.
Collapse
|
8
|
Callahan SM, Hancock TJ, Doster RS, Parker CB, Wakim ME, Gaddy JA, Johnson JG. A secreted sirtuin from Campylobacter jejuni contributes to neutrophil activation and intestinal inflammation during infection. SCIENCE ADVANCES 2023; 9:eade2693. [PMID: 37566649 PMCID: PMC10421069 DOI: 10.1126/sciadv.ade2693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 07/13/2023] [Indexed: 08/13/2023]
Abstract
Histone modifications control numerous processes in eukaryotes, including inflammation. Some bacterial pathogens alter the activity or expression of host-derived factors, including sirtuins, to modify histones and induce responses that promote infection. In this study, we identified a deacetylase encoded by Campylobacter jejuni which has sirtuin activities and contributes to activation of human neutrophils by the pathogen. This sirtuin is secreted from the bacterium into neutrophils, where it associates with and deacetylates host histones to promote neutrophil activation and extracellular trap production. Using the murine model of campylobacteriosis, we found that a mutant of this bacterial sirtuin efficiently colonized the gastrointestinal tract but was unable to induce cytokine production, gastrointestinal inflammation, and tissue pathology. In conclusion, these results suggest that secreted bacterial sirtuins represent a previously unreported class of bacterial effector and that bacterial-mediated modification of host histones is responsible for the inflammation and pathology that occurs during campylobacteriosis.
Collapse
Affiliation(s)
- Sean M. Callahan
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
- Department of Medicine, University of Tennessee Medical Center, Knoxville, TN 37930, USA
| | - Ryan S. Doster
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Caroline B. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mary E. Wakim
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jennifer A. Gaddy
- Division of Infectious Diseases, Department of Medicine Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremiah G. Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
9
|
Zamarreño Beas J, Videira MAM, Karavaeva V, Lourenço FM, Almeida MR, Sousa F, Saraiva LM. In Campylobacter jejuni, a new type of chaperone receives heme from ferrochelatase. Front Genet 2023; 14:1199357. [PMID: 37415606 PMCID: PMC10320005 DOI: 10.3389/fgene.2023.1199357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Intracellular heme formation and trafficking are fundamental processes in living organisms. Bacteria and archaea utilize three biogenesis pathways to produce iron protoporphyrin IX (heme b) that diverge after the formation of the common intermediate uroporphyrinogen III (uro'gen III). In this study, we identify and provide a detailed characterization of the enzymes involved in the transformation of uro'gen III into heme in Campylobacter jejuni, demonstrating that this bacterium utilizes the protoporphyrin-dependent (PPD) pathway. In general, limited knowledge exists regarding the mechanisms by which heme b reaches its target proteins after this final step. Specifically, the chaperones necessary for trafficking heme to prevent the cytotoxic effects associated with free heme remain largely unidentified. In C. jejuni, we identified a protein named CgdH2 that binds heme with a dissociation constant of 4.9 ± 1.0 µM, and this binding is impaired upon mutation of residues histidine 45 and 133. We demonstrate that C. jejuni CgdH2 establishes protein-protein interactions with ferrochelatase, suggesting its role in facilitating heme transfer from ferrochelatase to CgdH2. Furthermore, phylogenetic analysis reveals that C. jejuni CgdH2 is evolutionarily distinct from the currently known chaperones. Therefore, CgdH2 is the first protein identified as an acceptor of intracellularly formed heme, expanding our knowledge of the mechanisms underlying heme trafficking within bacterial cells.
Collapse
Affiliation(s)
- Jordi Zamarreño Beas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marco A. M. Videira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Val Karavaeva
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Frederico M. Lourenço
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda R. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipa Sousa
- Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
10
|
Callahan SM, Johnson JG. Transposon-Based Identification of Factors That Promote Campylobacter jejuni Nuclease Activity. Curr Protoc 2021; 1:e293. [PMID: 34875141 DOI: 10.1002/cpz1.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleases are ubiquitous in pathogens and allow bacteria to acquire nucleotide nutrients, take up foreign DNA, induce tissue damage, degrade neutrophil extracellular traps, and modulate the host inflammatory response. Furthermore, nucleases can modulate numerous bacterial virulence factors, promoting bacterial growth and disease. To understand how bacteria can produce nucleases, an unbiased approach is needed to identify these systems. Campylobacter jejuni is the leading cause of bacterial-derived gastroenteritis and utilizes numerous systems to damage host DNA. Therefore, it is imperative to identify C. jejuni nucleases to understand the molecular mechanism of both infection and pathology. Detailed protocols for a transposon insertion sequencing-based DNase agar screen, a quantitative PCR nuclease screen, and PCR transposon insertion confirmation are included in this article. © 2021 Wiley Periodicals LLC. Basic Protocol 1: DNase agar colony screen of Campylobacter jejuni transposon insertion sequencing library isolates Basic Protocol 2: Quantitative PCR nuclease screen of transposon insertion sequencing library isolates Basic Protocol 3: PCR transposon insertion confirmation.
Collapse
Affiliation(s)
- Sean M Callahan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
11
|
Transcription of Cystathionine β-Lyase (MetC) Is Repressed by HeuR in Campylobacter jejuni, and Methionine Biosynthesis Facilitates Colonocyte Invasion. J Bacteriol 2021; 203:e0016421. [PMID: 34001558 DOI: 10.1128/jb.00164-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A previously identified transcriptional regulator in Campylobacter jejuni, termed HeuR, was found to positively regulate heme utilization. Additionally, transcriptomic work demonstrated that the putative operons CJJ81176_1390 to CJJ81176_1394 (CJJ81176_1390-1394) and CJJ81176_1214-1217 were upregulated in a HeuR mutant, suggesting that HeuR negatively regulates expression of these genes. Because genes within these clusters include a cystathionine β-lyase (metC) and a methionine synthase (metE), it appeared HeuR negatively regulates C. jejuni methionine biosynthesis. To address this, we confirmed mutation of HeuR reproducibly results in metC overexpression under nutrient-replete conditions but did not affect expression of metE, while metC expression in the wild type increased to heuR mutant levels during iron limitation. We subsequently determined that both gene clusters are operonic and demonstrated the direct interaction of HeuR with the predicted promoter regions of these operons. Using DNase footprinting assays, we were able to show that HeuR specifically binds within the predicted -35 region of the CJJ81176_1390-1394 operon. As predicted based on transcriptional results, the HeuR mutant was able to grow and remain viable in a defined medium with and without methionine, but we identified significant impacts on growth and viability in metC and metE mutants. Additionally, we observed decreased adherence, invasion, and persistence of metC and metE mutants when incubated with human colonocytes, while the heuR mutant exhibited increased invasion. Taken together, these results suggest that HeuR regulates methionine biosynthesis in an iron-responsive manner and that the ability to produce methionine is an important factor for adhering to and invading the gastrointestinal tract of a susceptible host. IMPORTANCE As the leading cause of bacterium-derived gastroenteritis worldwide, Campylobacter jejuni has a significant impact on human health. Investigating colonization factors that allow C. jejuni to successfully infect a host furthers our understanding of genes and regulatory elements necessary for virulence. In this study, we have begun to characterize the role of the transcriptional regulatory protein, HeuR, on methionine biosynthesis in C. jejuni. When the ability to synthesize methionine is impaired, detrimental impacts on growth and viability are observed during growth in limited media lacking methionine and/or iron. Additionally, mutations in the methionine biosynthetic pathway result in decreased adhesion, invasion, and intracellular survival of C. jejuni when incubated with human colonocytes, indicating the importance of regulating methionine biosynthesis.
Collapse
|
12
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
13
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Phosphate Transporter PstSCAB of Campylobacter jejuni Is a Critical Determinant of Lactate-Dependent Growth and Colonization in Chickens. J Bacteriol 2020; 202:JB.00716-19. [PMID: 31932316 DOI: 10.1128/jb.00716-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni causes acute gastroenteritis worldwide and is transmitted primarily through poultry, in which it is often a commensal member of the intestinal microbiota. Previous transcriptome sequencing (RNA-Seq) experiment showed that transcripts from an operon encoding a high-affinity phosphate transporter (PstSCAB) of C. jejuni were among the most abundant when the bacterium was grown in chickens. Elevated levels of the pstSCAB mRNA were also identified in an RNA-Seq experiment from human infection studies. In this study, we explore the role of PstSCAB in the biology and colonization potential of C. jejuni Our results demonstrate that cells lacking PstSCAB survive poorly in stationary phase, in nutrient-limiting media, and under osmotic conditions reflective of those in the chicken. Polyphosphate levels in the mutant cells were elevated at stationary phase, consistent with alterations in expression of polyphosphate metabolism genes. The mutant strain was highly attenuated for colonization of newly hatched chicks, with levels of bacteria at several orders of magnitude below wild-type levels. Mutant and wild type grew similarly in complex media, but the pstS::kan mutant exhibited a significant growth defect in minimal medium supplemented with l-lactate, postulated as a carbon source in vivo Poor growth in lactate correlated with diminished expression of acetogenesis pathway genes previously demonstrated as important for colonizing chickens. The phosphate transport system is thus essential for diverse aspects of C. jejuni physiology and in vivo fitness and survival.IMPORTANCE Campylobacter jejuni causes millions of human gastrointestinal infections annually, with poultry a major source of infection. Due to the emergence of multidrug resistance in C. jejuni, there is need to identify alternative ways to control this pathogen. Genes encoding the high-affinity phosphate transporter PstSCAB are highly expressed by C. jejuni in chickens and humans. In this study, we address the role of PstSCAB on chicken colonization and other C. jejuni phenotypes. PstSCAB is required for colonization in chicken, metabolism and survival under different stress responses, and during growth on lactate, a potential growth substrate in chickens. Our study highlights that PstSCAB may be an effective target to develop mechanisms for controlling bacterial burden in both chicken and human.
Collapse
|
15
|
Irons J, Sacher JC, Szymanski CM, Downs DM. Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni. Front Microbiol 2019; 10:2058. [PMID: 31555246 PMCID: PMC6742949 DOI: 10.3389/fmicb.2019.02058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni is the leading bacterial cause of acute gastroenteritis worldwide and thus significant to public health. C. jejuni primarily lives in the gastrointestinal tracts of poultry and can contaminate meat during processing. Despite a small genome, the metabolic plasticity of C. jejuni allows proliferation in chicken ceca and mammalian host intestines, and survival in environments with a variety of temperatures, pH, osmotic conditions, and nutrient availabilities. The exact mechanism of C. jejuni infection is unknown, however, virulence requires motility. Our data suggest the C. jejuni RidA homolog, Cj1388, plays a role in flagellar biosynthesis, regulation, structure, and/or function and, as such is expected to influence virulence of the organism. Mutants lacking cj1388 have defects in motility, autoagglutination, and phage infectivity under the conditions tested. Comparison to the RidA paradigm from Salmonella enterica indicates the phenotypes of the C. jejuni cj1388 mutant are likely due to the inhibition of one or more pyridoxal 5'-phosphate-dependent enzymes by the reactive enamine 2-aminoacrylate.
Collapse
Affiliation(s)
- Jessica Irons
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, United States.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
17
|
Kelley BR, Ellis JC, Hyatt D, Jacobson D, Johnson J. Isolation and Whole-Genome Sequencing of Environmental Campylobacter. ACTA ACUST UNITED AC 2018; 51:e64. [PMID: 30369079 DOI: 10.1002/cpmc.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As a leading cause of bacterial-derived gastroenteritis worldwide, Campylobacter has a significant impact on human health. In the developed world, most campylobacteriosis cases are attributed to the consumption of undercooked, contaminated poultry; however, it has been shown that Campylobacter can be transmitted to humans through contaminated water and other types of food, including beef and milk. As such, high-resolution microbial source-tracking is essential for health department officials to determine the source(s) of Campylobacter outbreaks. For these reasons, this protocol provides the techniques needed for isolation of Campylobacter from agricultural and environmental sources, as well as human clinical specimens. Additionally, we describe a simple method for preparing high-quality genomic DNA that can be used for whole-genome sequencing and downstream bioinformatics analyses of Campylobacter genotypes. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| | | | - Doug Hyatt
- Oak Ridge National Laboratory, Oak Ridge, Tennessee.,Bredesen Center, University of Tennessee, Knoxville, Tennessee
| | - Dan Jacobson
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jeremiah Johnson
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
18
|
Campylobacter jejuni transcriptional and genetic adaptation during human infection. Nat Microbiol 2018; 3:494-502. [PMID: 29588538 PMCID: PMC5876760 DOI: 10.1038/s41564-018-0133-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/19/2018] [Indexed: 12/22/2022]
Abstract
Campylobacter jejuni infections are a leading cause bacterial food-borne diarrheal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbor pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found variation in 11 genes is associated with either acute or persistent human infections and include products involved in host cell invasion, bile sensing, and flagella modification, plus additional potential therapeutic targets. Particularly, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we went on to identify its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. Additionally, RNA-sequencing revealed conserved responses during natural host commensalism and human infections. 39 genes were differentially regulated in vivo across hosts, lifestyles, and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.
Collapse
|