1
|
Janović A, Maldener I, Menzel C, Parrett GA, Risser DD. The role of FraI in cell-cell communication and differentiation in the hormogonia-forming cyanobacterium Nostoc punctiforme. mSphere 2024; 9:e0051024. [PMID: 39037261 PMCID: PMC11351039 DOI: 10.1128/msphere.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Multicellular cyanobacteria, like Nostoc punctiforme, rely on septal junctions for cell-cell communication, which is crucial for coordinating various physiological processes including differentiation of N2-fixing heterocysts, spore-like akinetes, and hormogonia-short, motile filaments important for dispersal. In this study, we functionally characterize a protein, encoded by gene Npun_F4142, which in a random mutagenesis approach, initially showed a motility-related function. The reconstructed Npun_F4142 knockout mutant exhibits further distinct phenotypic traits, including altered hormogonia formation with significant reduced motility, inability to differentiate heterocysts and filament fragmentation. For that reason, we named the protein FraI (fragmentation phenotype). The mutant displays severely impaired cell-cell communication, due to almost complete absence of the nanopore array in the septal cell wall, which is an essential part of the septal junctions. Despite lack of communication, hormogonia in the ΔfraI mutant maintain motility and phototactic behavior, even though less pronounced than the wild type (WT). This suggests an alternative mechanism for coordinated movement beyond septal junctions. Our study underscores the significance of FraI in nanopore formation and cell differentiation, and provides additional evidence for the importance of septal junction formation and communication in various differentiation traits of cyanobacteria. The findings contribute to a deeper understanding of the regulatory networks governing multicellular cyanobacterial behavior, with implications for broader insights into microbial multicellularity. IMPORTANCE The filament-forming cyanobacterium Nostoc punctiforme serves as a valuable model for studying cell differentiation, including the formation of nitrogen-fixing heterocysts and hormogonia. Hormogonia filaments play a crucial role in dispersal and plant colonization, providing a nitrogen source through atmospheric nitrogen fixation, thus holding promise for fertilizer-free agriculture. The coordination among the hormogonia cells enabling uniform movement toward the positive signal remains poorly understood. This study investigates the role of septal junction-mediated communication in hormogonia differentiation and motility, by studying a ΔfraI mutant with significantly impaired communication. Surprisingly, impaired communication does not abolish synchronized filament movement, suggesting an alternative coordination mechanism. These findings deepen our understanding of cyanobacterial biology and have broader implications for multicellular behavior in prokaryotes.
Collapse
Affiliation(s)
- Ana Janović
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Claudia Menzel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Gabriel A. Parrett
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| | - Douglas D. Risser
- Department of Biology, University of Colorado, Colorado Springs, Colorado, USA
| |
Collapse
|
2
|
Velázquez-Suárez C, Springstein BL, Nieves-Morión M, Helbig AO, Kieninger AK, Maldener I, Nürnberg DJ, Stucken K, Luque I, Dagan T, Herrero A. SepT, a novel protein specific to multicellular cyanobacteria, influences peptidoglycan growth and septal nanopore formation in Anabaena sp. PCC 7120. mBio 2023; 14:e0098323. [PMID: 37650636 PMCID: PMC10653889 DOI: 10.1128/mbio.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.
Collapse
Affiliation(s)
| | | | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Ann-Katrin Kieninger
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics and Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena, Chile
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Nieves-Morión M, Camargo S, Bardi S, Ruiz MT, Flores E, Foster RA. Heterologous expression of genes from a cyanobacterial endosymbiont highlights substrate exchanges with its diatom host. PNAS NEXUS 2023; 2:pgad194. [PMID: 37383020 PMCID: PMC10299089 DOI: 10.1093/pnasnexus/pgad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
A few genera of diatoms are widespread and thrive in low-nutrient waters of the open ocean due to their close association with N2-fixing, filamentous heterocyst-forming cyanobacteria. In one of these symbioses, the symbiont, Richelia euintracellularis, has penetrated the cell envelope of the host, Hemiaulus hauckii, and lives inside the host cytoplasm. How the partners interact, including how the symbiont sustains high rates of N2 fixation, is unstudied. Since R. euintracellularis has evaded isolation, heterologous expression of genes in model laboratory organisms was performed to identify the function of proteins from the endosymbiont. Gene complementation of a cyanobacterial invertase mutant and expression of the protein in Escherichia coli showed that R. euintracellularis HH01 possesses a neutral invertase that splits sucrose producing glucose and fructose. Several solute-binding proteins (SBPs) of ABC transporters encoded in the genome of R. euintracellularis HH01 were expressed in E. coli, and their substrates were characterized. The selected SBPs directly linked the host as the source of several substrates, e.g. sugars (sucrose and galactose), amino acids (glutamate and phenylalanine), and a polyamine (spermidine), to support the cyanobacterial symbiont. Finally, transcripts of genes encoding the invertase and SBPs were consistently detected in wild populations of H. hauckii collected from multiple stations and depths in the western tropical North Atlantic. Our results support the idea that the diatom host provides the endosymbiotic cyanobacterium with organic carbon to fuel N2 fixation. This knowledge is key to understanding the physiology of the globally significant H. hauckii-R. euintracellularis symbiosis.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sergio Camargo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | - Sepehr Bardi
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE-106 91, Sweden
| | - María Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville E-41092, Spain
| | | | | |
Collapse
|
4
|
Kieninger AK, Tokarz P, Janović A, Pilhofer M, Weiss GL, Maldener I. SepN is a septal junction component required for gated cell-cell communication in the filamentous cyanobacterium Nostoc. Nat Commun 2022; 13:7486. [PMID: 36470860 PMCID: PMC9722847 DOI: 10.1038/s41467-022-34946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/11/2022] [Indexed: 12/09/2022] Open
Abstract
Multicellular organisms require controlled intercellular communication for their survival. Strains of the filamentous cyanobacterium Nostoc regulate cell-cell communication between sister cells via a conformational change in septal junctions. These multi-protein cell junctions consist of a septum spanning tube with a membrane-embedded plug at both ends, and a cap covering the plug on the cytoplasmic side. The identities of septal junction components are unknown, with exception of the protein FraD. Here, we identify and characterize a FraD-interacting protein, SepN, as the second component of septal junctions in Nostoc. We use cryo-electron tomography of cryo-focused ion beam-thinned cyanobacterial filaments to show that septal junctions in a sepN mutant lack a plug module and display an aberrant cap. The sepN mutant exhibits highly reduced cell-cell communication rates, as shown by fluorescence recovery after photobleaching experiments. Furthermore, the mutant is unable to gate molecule exchange through septal junctions and displays reduced filament survival after stress. Our data demonstrate the importance of controlling molecular diffusion between cells to ensure the survival of a multicellular organism.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Piotr Tokarz
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ana Janović
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Gregor L. Weiss
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Iris Maldener
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Changes in Envelope Structure and Cell–Cell Communication during Akinete Differentiation and Germination in Filamentous Cyanobacterium Trichormus variabilis ATCC 29413. Life (Basel) 2022; 12:life12030429. [PMID: 35330180 PMCID: PMC8953462 DOI: 10.3390/life12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Planktonic freshwater filamentous cyanobacterium Trichormus variabilis ATCC 29413 (previously known as Anabaena variabilis) can differentiate heterocysts and akinetes to survive under different stress conditions. Whilst heterocysts enable diazotrophic growth, akinetes are spore-like resting cells that make the survival of the species possible under adverse growth conditions. Under suitable environmental conditions, they germinate to produce new vegetative filaments. Several morphological and physiological changes occur during akinete formation and germination. Here, using scanning electron microscopy (SEM), we found that the mature akinetes had a wrinkled envelope, and the surface of the envelope smoothened as the cell size increased during germination. Thereupon, the akinete envelope ruptured to release the short emerging filament. Focused ion beam–scanning electron microscopy (FIB/SEM) tomography of immature akinetes revealed the presence of cytoplasmic granules, presumably consisting of cyanophycin or glycogen. In addition, the akinete envelope architecture of different layers, the exopolysaccharide and glycolipid layers, could be visualized. We found that this multilayered envelope helped to withstand osmotic stress and to maintain the structural integrity. Furthermore, by fluorescence recovery after photobleaching (FRAP) measurements, using the fluorescent tracer calcein, we found that intercellular communication decreased during akinete formation as compared with the vegetative cells. In contrast, freshly germinating filaments restored cell communication.
Collapse
|
6
|
Single-Cell Measurements of Fixation and Intercellular Exchange of C and N in the Filaments of the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. mBio 2021; 12:e0131421. [PMID: 34399619 PMCID: PMC8406292 DOI: 10.1128/mbio.01314-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Under diazotrophic conditions, the model filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 develops a metabolic strategy based on the physical separation of the processes of oxygenic photosynthesis, in vegetative cells, and N2 fixation, in heterocysts. This strategy requires the exchange of carbon and nitrogen metabolites and their distribution along the filaments, which takes place through molecular diffusion via septal junctions involving FraCD proteins. Here, Anabaena was incubated in a time course (up to 20 h) with [13C]bicarbonate and 15N2 and analyzed by secondary ion mass spectrometry imaging (SIMS) (large-geometry SIMS [LG-SIMS] and NanoSIMS) to quantify C and N assimilation and distribution in the filaments. The 13C/12C and 15N/14N ratios measured in wild-type filaments showed a general increase with time. The enrichment was relatively homogeneous in vegetative cells along individual filaments, while it was reduced in heterocysts. Heterocysts, however, accumulated recently fixed N at their poles, in which the cyanophycin plug [multi-l-arginyl-poly(l-aspartic acid)] is located. In contrast to the rather homogeneous label found along stretches of vegetative cells, 13C/12C and 15N/14N ratios were significantly different between filaments both at the same and different time points, showing high variability in metabolic states. A fraC fraD mutant did not fix N2, and the 13C/12C ratio was homogeneous along the filament, including the heterocyst in contrast to the wild type. Our results show the consumption of reduced C in the heterocysts associated with the fixation and export of fixed N and present an unpredicted heterogeneity of cellular metabolic activity in different filaments of an Anabaena culture under controlled conditions.
Collapse
|
7
|
Heterocyst Septa Contain Large Nanopores That Are Influenced by the Fra Proteins in the Filamentous Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2021; 203:e0008121. [PMID: 33846119 DOI: 10.1128/jb.00081-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multicellular heterocyst-forming cyanobacteria, such as Anabaena, grow as chains of cells forming filaments that, under diazotrophic conditions, contain two cell types: vegetative cells that perform oxygenic photosynthesis and N2-fixing heterocysts. Along the filament, the intercellular septa contain a thick peptidoglycan layer that forms septal disks. Proteinaceous septal junctions connect the cells in the filament traversing the septal disks through nanopores. The fraCDE operon encodes proteins needed to make long filaments in Anabaena. FraC and FraD, located at the intercellular septa, are involved in the formation of septal junctions. Using a superfolder-green fluorescent protein (GFP) fusion, we found in this study that FraE is mainly localized to the poles of the heterocysts, consistent with the requirement of FraE for constriction of the heterocyst poles to form the "heterocyst neck." A fraE insertional mutant was impaired by 22% to 38% in transfer of fluorescent calcein from vegetative cells to heterocysts. Septal disks were inspected in murein sacculi from heterocyst-enriched preparations. Unexpectedly, the diameter of the nanopores in heterocyst septa was about 1.5- to 2-fold larger than in vegetative cell septa. The number of these nanopores was 76% and 6% of the wild-type number in fraE and fraC fraD mutants, respectively. Our results show that FraE is mainly involved in heterocyst maturation, whereas FraC and FraD are needed for the formation of the large nanopores of heterocyst septa, as they are for vegetative cell nanopores. Additionally, arrays of small pores conceivably involved in polysaccharide export were observed close to the septal disks in the heterocyst murein sacculus preparations. IMPORTANCE Intercellular communication, an essential attribute of multicellularity, is required for diazotrophic growth in heterocyst-forming cyanobacteria such as Anabaena, in which the cells are connected by proteinaceous septal junctions that are structural analogs of metazoan connexons. The septal junctions allow molecular intercellular diffusion traversing the septal peptidoglycan through nanopores. In Anabaena the fraCDE operon encodes septal proteins involved in intercellular communication. FraC and FraD are components of the septal junctions along the filament, whereas here we show that FraE is mainly present at the heterocyst poles. We found that the intercellular septa in murein sacculi from heterocysts contain nanopores that are larger than those in vegetative cells, establishing a previously unknown difference between heterocyst and vegetative cell septa in Anabaena.
Collapse
|
8
|
Kieninger AK, Maldener I. Cell-cell communication through septal junctions in filamentous cyanobacteria. Curr Opin Microbiol 2021; 61:35-41. [PMID: 33676334 DOI: 10.1016/j.mib.2021.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
Septal junctions are cell-cell connections that mediate intercellular communication in filamentous cyanobacteria. The septal peptidoglycan is perforated by dozens of 20 nm-wide nanopores, through which these proteinaceous structures traverse, physically connecting adjacent cells. On each cytoplasmic side, every septal junction contains a flexible cap structure that closes the connection in a reversible manner upon stress. This gating mechanism reminds of the gap junctions from metazoans and represents a primordial control system for cell-cell communication. In this review, we summarize the knowledge about formation of the nanopore array as the framework for incorporation of cell-cell connecting septal junctions. Furthermore, the architecture of septal junctions, proteins involved in septal junction constitution and regulation of intercellular communication will be addressed.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine, Organismic Interactions, Eberhard Karls University, Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Abstract
Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. In filamentous heterocyst-forming (N2-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of Anabaena sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%). A single filament could have communicating and noncommunicating cells. These observations indicate that all (or most of) the septal junctions in a cell can be coordinately regulated and are coherent with the need for intercellular communication, especially under diazotrophic conditions. Consistently, intercellular exchange was observed to increase in response to N deprivation and to decrease rapidly in response to the presence of ammonium in the medium or to nitrate assimilation. Proteins involved in the formation of septal junctions have been identified in Anabaena and include SepJ, FraC, and FraD. Here, we reevaluated rates of intercellular transfer of calcein and the number of nanopores in mutants lacking these proteins and found a strong positive correlation between the two parameters only in cultures induced for nitrogen fixation. Thus, whereas the presence of a substantial number of noncommunicating cells appears to impair the correlation, data obtained in diazotrophic cultures support the idea that the nanopores are the structures that hold the septal junctions. IMPORTANCE Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. The cells in the cyanobacterial filaments are joined by proteinaceous septal junctions that mediate molecular diffusion. The septal junctions traverse the septal peptidoglycan, which bears holes termed nanopores. Our results show that the septal junctions can be coordinately regulated in a cell and emphasize the relationship between septal junctions and nanopores to build intercellular communication structures, which are essential for the multicellular behavior of heterocyst-forming cyanobacteria.
Collapse
|
10
|
Urrejola C, von Dassow P, van den Engh G, Salas L, Mullineaux CW, Vicuña R, Sánchez-Baracaldo P. Loss of Filamentous Multicellularity in Cyanobacteria: the Extremophile Gloeocapsopsis sp. Strain UTEX B3054 Retained Multicellular Features at the Genomic and Behavioral Levels. J Bacteriol 2020; 202:e00514-19. [PMID: 32253342 PMCID: PMC7253616 DOI: 10.1128/jb.00514-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Multicellularity in Cyanobacteria played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago. Evolutionary studies have indicated that some unicellular cyanobacteria emerged from multicellular ancestors, yet little is known about how the emergence of new unicellular morphotypes from multicellular ancestors occurred. Our results give new insights into the evolutionary reversion from which the Gloeocapsopsis lineage emerged. Flow cytometry and microscopy results revealed morphological plasticity involving the patterned formation of multicellular morphotypes sensitive to environmental stimuli. Genomic analyses unveiled the presence of multicellularity-associated genes in its genome. Calcein-fluorescence recovery after photobleaching (FRAP) experiments confirmed that Gloeocapsopsis sp. strain UTEX B3054 carries out cell-to-cell communication in multicellular morphotypes but at slower time scales than filamentous cyanobacteria. Although traditionally classified as unicellular, our results suggest that Gloeocapsopsis displays facultative multicellularity, a condition that may have conferred ecological advantages for thriving as an extremophile for more than 1.6 billion years.IMPORTANCECyanobacteria are among the few prokaryotes that evolved multicellularity. The early emergence of multicellularity in Cyanobacteria (2.5 billion years ago) entails that some unicellular cyanobacteria reverted from multicellular ancestors. We tested this evolutionary hypothesis by studying the unicellular strain Gloeocapsopsis sp. UTEX B3054 using flow cytometry, genomics, and cell-to-cell communication experiments. We demonstrate the existence of a well-defined patterned organization of cells in clusters during growth, which might change triggered by environmental stimuli. Moreover, we found genomic signatures of multicellularity in the Gloeocapsopsis genome, giving new insights into the evolutionary history of a cyanobacterial lineage that has thrived in extreme environments since the early Earth. The potential benefits in terms of resource acquisition and the ecological relevance of this transient behavior are discussed.
Collapse
Affiliation(s)
- Catalina Urrejola
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Peter von Dassow
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto Milenio de Oceanografía, Concepción, Chile
- UMI3614 Evolutionary Biology and Ecology of Algae, CNRS-UPMC Sorbonne Universités, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | | | - Loreto Salas
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Rafael Vicuña
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
11
|
Chivasa S, Goodman HL. Stress-adaptive gene discovery by exploiting collective decision-making of decentralized plant response systems. THE NEW PHYTOLOGIST 2020; 225:2307-2313. [PMID: 31625607 DOI: 10.1111/nph.16273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Despite having a network of cytoplasmic interconnections (plasmodesmata) facilitating rapid exchange of metabolites and signal molecules, plant cells use the extracellular matrix as an alternative route for cell-cell communication. The need for extracellular signalling in plasmodesmata-networked tissues is baffling. A hypothesis is proposed that this phenomenon defines the plant extracellular matrix as a 'democratic space' for collective decision-making in a decentralized system, similar to quorum-sensing in bacteria. Extracellular communication enables signal integration and coordination across several cell layers through ligand-activated plasma membrane receptors. Recent results from drought stress-adaptive responses and light-mediated signalling in cell death activation show operational utility of this decision-making process. Opportunities are discussed for new innovations in drought gene discovery using platforms targeting the extracellular matrix.
Collapse
Affiliation(s)
- Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|
12
|
Springstein BL, Arévalo S, Helbig AO, Herrero A, Stucken K, Flores E, Dagan T. A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome. Mol Microbiol 2020; 113:1140-1154. [DOI: 10.1111/mmi.14483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Andreas O. Helbig
- AG Proteomics & Bioanalytics Institute for Experimental Medicine Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Karina Stucken
- Department of Food Engineering Universidad de La Serena La Serena Chile
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC and Universidad de Sevilla Seville Spain
| | - Tal Dagan
- Institute of General Microbiology Christian‐Albrechts‐Universität zu Kiel Kiel Germany
| |
Collapse
|
13
|
The Integrity of the Cell Wall and Its Remodeling during Heterocyst Differentiation Are Regulated by Phylogenetically Conserved Small RNA Yfr1 in Nostoc sp. Strain PCC 7120. mBio 2020; 11:mBio.02599-19. [PMID: 31964726 PMCID: PMC6974561 DOI: 10.1128/mbio.02599-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial small RNAs (sRNAs) are important players affecting the regulation of essentially every aspect of bacterial physiology. The cell wall is a highly dynamic structure that protects bacteria from their fluctuating environment. Cell envelope remodeling is particularly critical for bacteria that undergo differentiation processes, such as spore formation or differentiation of heterocysts. Heterocyst development involves the deposition of additional layers of glycolipids and polysaccharides outside the outer membrane. Here, we show that a cyanobacterial phylogenetically conserved small regulatory RNA, Yfr1, coordinates the expression of proteins involved in cell wall-related processes, including peptidoglycan metabolism and transport of different molecules, as well as expression of several proteins involved in heterocyst differentiation. Yfr1 is a strictly conserved small RNA in cyanobacteria. A bioinformatic prediction to identify possible interactions of Yfr1 with mRNAs was carried out by using the sequences of Yfr1 from several heterocyst-forming strains, including Nostoc sp. strain PCC 7120. The results of the prediction were enriched in genes encoding outer membrane proteins and enzymes related to peptidoglycan biosynthesis and turnover. Heterologous expression assays with Escherichia coli demonstrated direct interactions of Yfr1 with mRNAs of 11 of the candidate genes. The expression of 10 of them (alr2458, alr4550, murC, all4829, all2158, mraY, alr2269, alr0834, conR, patN) was repressed by interaction with Yfr1, whereas the expression of amiC2, encoding an amidase, was increased. The interactions between Yfr1 and the 11 mRNAs were confirmed by site-directed mutagenesis of Yfr1. Furthermore, a Nostoc strain with reduced levels of Yfr1 had larger amounts of mraY and murC mRNAs, supporting a role for Yfr1 in the regulation of those genes. Nostoc strains with either reduced or increased expression of Yfr1 showed anomalies in cell wall completion and were more sensitive to vancomycin than the wild-type strain. Furthermore, growth in the absence of combined nitrogen, which involves the differentiation of heterocysts, was compromised in the strain overexpressing Yfr1, and filaments were broken at the connections between vegetative cells and heterocysts. These results indicate that Yfr1 is an important regulator of cell wall homeostasis and correct cell wall remodeling during heterocyst differentiation.
Collapse
|
14
|
Weiss GL, Kieninger AK, Maldener I, Forchhammer K, Pilhofer M. Structure and Function of a Bacterial Gap Junction Analog. Cell 2019; 178:374-384.e15. [PMID: 31299201 PMCID: PMC6630896 DOI: 10.1016/j.cell.2019.05.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
Multicellular lifestyle requires cell-cell connections. In multicellular cyanobacteria, septal junctions enable molecular exchange between sister cells and are required for cellular differentiation. The structure of septal junctions is poorly understood, and it is unknown whether they are capable of controlling intercellular communication. Here, we resolved the in situ architecture of septal junctions by electron cryotomography of cryo-focused ion beam-milled cyanobacterial filaments. Septal junctions consisted of a tube traversing the septal peptidoglycan. Each tube end comprised a FraD-containing plug, which was covered by a cytoplasmic cap. Fluorescence recovery after photobleaching showed that intercellular communication was blocked upon stress. Gating was accompanied by a reversible conformational change of the septal junction cap. We provide the mechanistic framework for a cell junction that predates eukaryotic gap junctions by a billion years. The conservation of a gated dynamic mechanism across different domains of life emphasizes the importance of controlling molecular exchange in multicellular organisms.
Collapse
Affiliation(s)
- Gregor L Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ann-Katrin Kieninger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland.
| |
Collapse
|
15
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
16
|
Stebegg R, Schmetterer G, Rompel A. Transport of organic substances through the cytoplasmic membrane of cyanobacteria. PHYTOCHEMISTRY 2019; 157:206-218. [PMID: 30447471 DOI: 10.1016/j.phytochem.2018.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are mainly known to incorporate inorganic molecules like carbon dioxide and ammonia from the environment into organic material within the cell. Nevertheless cyanobacteria do import and export organic substances through the cytoplasmic membrane and these processes are essential for all cyanobacteria. In addition understanding the mechanisms of transport of organic molecules through the cytoplasmic membrane might become very important. Genetically modified strains of cyanobacteria could serve as producers and exporters of commercially important substances. In this review we attempt to present all data of transport of organic molecules through the cytoplasmic membrane of cyanobacteria that are currently available with the transported molecules ordered according to their chemical classes.
Collapse
Affiliation(s)
- Ronald Stebegg
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Georg Schmetterer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien, Austria(1).
| |
Collapse
|
17
|
Flores E, Nieves-Morión M, Mullineaux CW. Cyanobacterial Septal Junctions: Properties and Regulation. Life (Basel) 2018; 9:E1. [PMID: 30577420 PMCID: PMC6463045 DOI: 10.3390/life9010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 02/05/2023] Open
Abstract
Heterocyst-forming cyanobacteria are multicellular organisms that grow as chains of cells (filaments or trichomes) in which the cells exchange regulators and nutrients. In this article, we review the morphological, physiological and genetic data that have led to our current understanding of intercellular communication in these organisms. Intercellular molecular exchange appears to take place by simple diffusion through proteinaceous structures, known as septal junctions, which connect the adjacent cells in the filament and traverse the septal peptidoglycan through perforations known as nanopores. Proteins that are necessary to produce, and that may be components of, the septal junctions-SepJ, FraC and FraD-have been identified in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 model. Additionally, several proteins that are necessary to produce a normal number of nanopores and functional septal junctions have been identified, including AmiC-type amidases, peptidoglycan-binding proteins and some membrane transporters. Available reports and reevaluation of intercellular molecular transfer data for some mutants of Anabaena suggest that the septal junctions can be regulated, likely by a mechanism of gating.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain.
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Américo Vespucio 49, 41092 Seville, Spain.
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
18
|
Ramos-León F, Arévalo S, Mariscal V, Flores E. Specific mutations in the permease domain of septal protein SepJ differentially affect functions related to multicellularity in the filamentous cyanobacterium Anabaena. MICROBIAL CELL 2018; 5:555-565. [PMID: 30533420 PMCID: PMC6282017 DOI: 10.15698/mic2018.12.661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Filamentous, heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two interdependent cell types that exchange nutrients and regulators. Vegetative cells provide heterocysts with reduced carbon, and heterocysts provide vegetative cells with fixed nitrogen. Additionally, heterocyst differentiation from vegetative cells is regulated by inhibitors of differentiation produced by prospective heterocysts and heterocysts. Proteinaceous structures known as septal junctions join the cells in the filament. The SepJ protein is involved in formation of septal junctions in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. SepJ bears extra-membrane and membrane (permease) domains and is located at the cell poles in the intercellular septa of the filament. Here we created Anabaena mutants that produce SepJ proteins altered in the permease domain. Some of these mutant SepJ proteins did not provide functions needed for Anabaena to form long filaments and (in some cases) differentiate heterocysts, identifying amino acids and amino acid stretches that are important for the structure or function of the protein. Some other mutant SepJ proteins fulfilled filamentation and heterocyst differentiation functions but failed to provide normal communication function assessed via the intercellular transfer of the fluorescent marker calcein. These mutant SepJ proteins bore mutations in amino acids located at the cytoplasmic face of the permease, which could affect access of the fluorescent marker to the septal junctions. Overall, the data are consistent with the idea that SepJ carries out multiple roles in the multicellular function of the Anabaena filament.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|
19
|
Herrero A, Flores E. Genetic responses to carbon and nitrogen availability in Anabaena. Environ Microbiol 2018; 21:1-17. [PMID: 30066380 DOI: 10.1111/1462-2920.14370] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/27/2022]
Abstract
Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092, Seville, Spain
| |
Collapse
|
20
|
Bornikoel J, Staiger J, Madlung J, Forchhammer K, Maldener I. LytM factor Alr3353 affects filament morphology and cell-cell communication in the multicellular cyanobacteriumAnabaenasp. PCC 7120. Mol Microbiol 2018; 108:187-203. [DOI: 10.1111/mmi.13929] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Julia Staiger
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Johannes Madlung
- Proteome Center Tübingen; University of Tübingen, Auf der Morgenstelle 15; 72076 Tübingen Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions; University of Tübingen, Auf der Morgenstelle 28; 72076 Tübingen Germany
| |
Collapse
|
21
|
Nieves-Morión M, Flores E. Multiple ABC glucoside transporters mediate sugar-stimulated growth in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:40-48. [PMID: 29159995 DOI: 10.1111/1758-2229.12603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria are generally capable of photoautotrophic growth and are widely distributed on Earth. The model filamentous, heterocyst-forming strain Anabaena sp. PCC 7120 has long been considered as a strict photoautotroph but is now known to be able to assimilate fructose. We have previously described two components of ABC glucoside uptake transporters from Anabaena that are involved in uptake of the sucrose analog esculin: GlsC [a nucleotide-binding domain subunit (NBD)] and GlsP [a transmembrane component (TMD)]. Here, we created Anabaena mutants of genes encoding three further ABC transporter components needed for esculin uptake: GlsD (NBD), GlsQ (TMD) and GlsR (periplasmic substrate-binding protein). Phototrophic growth of Anabaena was significantly stimulated by sucrose, fructose and glucose. Whereas the glsC and glsD mutants were drastically hampered in sucrose-stimulated growth, the different gls mutants were generally impaired in sugar-dependent growth. Our results suggest the participation of Gls and other ABC transporters encoded in the Anabaena genome in sugar-stimulated growth. Additionally, Gls transporter components influence the function of septal junctions in the Anabaena filament. We suggest that mixotrophic growth is important in cyanobacterial physiology and may be relevant for the wide success of these organisms in diverse environments.
Collapse
Affiliation(s)
- Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, 41092, Seville, Spain
| |
Collapse
|
22
|
Bornikoel J, Carrión A, Fan Q, Flores E, Forchhammer K, Mariscal V, Mullineaux CW, Perez R, Silber N, Wolk CP, Maldener I. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120. Front Cell Infect Microbiol 2017; 7:386. [PMID: 28929086 PMCID: PMC5591844 DOI: 10.3389/fcimb.2017.00386] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023] Open
Abstract
Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.
Collapse
Affiliation(s)
- Jan Bornikoel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Alejandro Carrión
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Qing Fan
- Department of Microbiology-Immunology, Feinberg School of Medicine of Northwestern UniversityChicago, IL, United States
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de SevillaSeville, Spain
| | - Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of LondonLondon, United Kingdom
| | - Rebeca Perez
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - Nadine Silber
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| | - C Peter Wolk
- MSU-DOE Plant Research Laboratory and Department of Plant Biology, Michigan State UniversityEast Lansing, MI, United States
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of TübingenTübingen, Germany
| |
Collapse
|
23
|
Ramos-León F, Mariscal V, Battchikova N, Aro EM, Flores E. Septal protein SepJ from the heterocyst-forming cyanobacterium Anabaena forms multimers and interacts with peptidoglycan. FEBS Open Bio 2017; 7:1515-1526. [PMID: 28979840 PMCID: PMC5623728 DOI: 10.1002/2211-5463.12280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 12/30/2022] Open
Abstract
Heterocyst‐forming cyanobacteria grow as filaments that can be hundreds of cells long. Proteinaceous septal junctions provide cell–cell binding and communication functions in the filament. In Anabaena sp. strain PCC 7120, the SepJ protein is important for the formation of septal junctions. SepJ consists of integral membrane and extramembrane sections – the latter including linker and coiled‐coil domains. SepJ (predicted MW, 81.3 kDa) solubilized from Anabaena membranes was found in complexes of about 296–334 kDa, suggesting that SepJ forms multimeric complexes. We constructed an Anabaena strain producing a double‐tagged SepJ protein (SepJ‐GFP‐His10) and isolated the tagged protein by a two‐step affinity chromatography procedure. Analysis of the purified protein preparation provided no indication of the presence of specific SepJ partners, but suggested that SepJ is processed to remove an N‐terminal fragment. Additionally, pull‐down experiments showed that His6‐tagged versions of SepJ and of the SepJ coiled‐coil domain interact with Anabaena peptidoglycan (PG). Our results indicate that SepJ forms multimers, that it interacts with PG, and that the coiled‐coil domain is involved in this interaction. These observations support the idea that SepJ is a component of the septal junctions that join the cells in the Anabaena filament.
Collapse
Affiliation(s)
- Félix Ramos-León
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC Universidad de Sevilla Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC Universidad de Sevilla Spain
| | - Natalia Battchikova
- Laboratory of Molecular Plant Biology Department of Biochemistry University of Turku Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology Department of Biochemistry University of Turku Finland
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC Universidad de Sevilla Spain
| |
Collapse
|
24
|
Antonaru LA, Nürnberg DJ. Role of PatS and cell type on the heterocyst spacing pattern in a filamentous branching cyanobacterium. FEMS Microbiol Lett 2017; 364:3983256. [PMID: 28859320 PMCID: PMC5812504 DOI: 10.1093/femsle/fnx154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Cell differentiation is one of the marks of multicellular organisms. Terminally specialised nitrogen-fixing cells, termed heterocysts, evolved in filamentous cyanobacteria more than 2 Gya. The development of their spacing pattern has been thoroughly investigated in model organisms such as Anabaena sp. PCC 7120. This paper focuses on the more complex, branching cyanobacterium Mastigocladus laminosus (Stigonematales). Contrary to what has been previously published, a heterocyst spacing pattern is present in M. laminosus but it varies with the age of the culture and the morphology of the cells. Heterocysts in young, narrow trichomes were more widely spaced (∼14.8 cells) than those in old, wide trichomes (∼9.4 cells). Biochemical and transgenic experiments reveal that the heterocyst spacing pattern is affected by the heterocyst inhibitor PatS. Addition of the pentapeptide RGSGR (PatS-5) to the growth medium and overexpression of patS from Anabaena sp. PCC 7120 in M. laminosus resulted in the loss of heterocyst differentiation under nitrogen deprivation. Bioinformatics investigations indicated that putative PatS sequences within cyanobacteria are highly diverse, and fall into two main clades. Both are present in most branching cyanobacteria. Despite its more complex, branching phenotype, M. laminosus appears to use a PatS-based pathway for heterocyst differentiation, a property shared by Anabaena/Nostoc.
Collapse
|
25
|
|
26
|
Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2017; 199:JB.00876-16. [PMID: 28096449 DOI: 10.1128/jb.00876-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022] Open
Abstract
When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions.IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2 These organisms grow as filaments that fix these gases specifically in vegetative cells and heterocysts, respectively. For the filaments to grow, these types of cells exchange nutrients, including sucrose, which serves as a source of reducing power and of carbon skeletons for the heterocysts. Movement of sucrose between cells in the filament takes place through septal junctions and has been traced with a fluorescent sucrose analog, esculin, that can be taken up by the cells. Here, we identified α-glucoside transporters of Anabaena that mediate uptake of esculin and, notably, influence septal structure and the function of septal junctions.
Collapse
|