1
|
Yan ZZ, Hu HW, Xiong C, Peleg AY, Chen QL, Sáez-Sandino T, Maestre F, Delgado-Baquerizo M, Singh BK. Environmental microbiome, human fungal pathogens, and antimicrobial resistance. Trends Microbiol 2025; 33:112-129. [PMID: 39304419 DOI: 10.1016/j.tim.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.
Collapse
Affiliation(s)
- Zhen-Zhen Yan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food, and Ecosystem Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Anton Y Peleg
- Department of Infectious Disease, The Alfred Hospital and Central Clinical School, Monash University, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Australia; Centre to Impact Antimicrobial Resistance, Monash University, Melbourne, Australia
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Fernando Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
2
|
Gong J, Huang J, Liu Y, Zhang Y, Gao Y. Unveiling environmental transmission risks: comparative analysis of azole resistance in Aspergillus fumigatus clinical and environmental isolates from Yunnan, China. Microbiol Spectr 2024; 12:e0159424. [PMID: 39470286 PMCID: PMC11619395 DOI: 10.1128/spectrum.01594-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Azole resistance in Aspergillus fumigatus poses a significant clinical challenge globally. Our previous epidemiological analysis revealed a remarkably high frequency (~80%) of azole-resistant A. fumigatus in Yunnan's greenhouse environments, prompting increased local and regional research for targeted control strategies. In this study, we analyzed 94 clinical A. fumigatus isolates from Yunnan, comparing their susceptibility profiles and genotypic characteristics with environmental strains previously isolated. While the overall frequency of azole resistance in clinical isolates was lower than that in environmental samples, a significant prevalence of cross-resistance, with varying resistance patterns based on minimum inhibitory concentration (MIC) levels was observed, which exceeded rates in other regions of China. Specific mutation combinations in the cyp51A gene were linked to elevated MIC values in clinical and/or environmental samples, while some resistant strains with wild-type cyp51A remain unexplained, indicating a need for further investigation into their resistance mechanisms. The differences in unique genetic elements and the distinct genetic differentiation observed between clinical and environmental isolates can be attributed to Yunnan's unique geomorphology and potential genotype importation from other provinces and abroad. Extensive allele exchanges and sharing contributed to the selection of azole-resistant clinical isolates, suggesting a common environmental origin, and the transmission routes of local drug-resistant strains cannot be excluded. These findings emphasize the imperative for regional and targeted surveillance to monitor resistance trends and guide effective antifungal therapy, and management strategies to mitigate invasive aspergillosis risk in this region.IMPORTANCEAzole resistance in Aspergillus fumigatus is a major global health concern, with particularly high rates (~80%) observed in Yunnan's greenhouse environments. This study compares azole resistance in 94 clinical isolates from Yunnan with environmental strains, revealing lower clinical resistance but significant cross-resistance and distinct resistance patterns. Specific mutations in the cyp51A gene were associated with elevated minimum inhibitory concentration values, though some resistant strains had wild-type cyp51A, highlighting the need for further research. The unique genetic profiles and potential external genotype influences in Yunnan emphasize the need for targeted regional surveillance. Effective monitoring and control strategies are essential to manage and mitigate the risk of invasive aspergillosis.
Collapse
Affiliation(s)
- Jianchuan Gong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Jiarui Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Yongju Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
- College of Life Science, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Chenggong District, Kunming, Yunnan, China
| | - Yuhong Gao
- Department of clinical laboratory, The First People’s Hospital of Yunnan Province, Xishan District, Kunming, Yunnan, China
| |
Collapse
|
3
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
4
|
Pham D, Sivalingam V, Tang HM, Montgomery JM, Chen SCA, Halliday CL. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. J Fungi (Basel) 2024; 10:447. [PMID: 39057332 PMCID: PMC11278267 DOI: 10.3390/jof10070447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Invasive fungal diseases (IFDs) comprise a growing healthcare burden, especially given the expanding population of immunocompromised hosts. Early diagnosis of IFDs is required to optimise therapy with antifungals, especially in the setting of rising rates of antifungal resistance. Molecular techniques including nucleic acid amplification tests and whole genome sequencing have potential to offer utility in overcoming limitations with traditional phenotypic testing. However, standardisation of methodology and interpretations of these assays is an ongoing undertaking. The utility of targeted Aspergillus detection has been well-defined, with progress in investigations into the role of targeted assays for Candida, Pneumocystis, Cryptococcus, the Mucorales and endemic mycoses. Likewise, whilst broad-range polymerase chain reaction assays have been in use for some time, pathology stewardship and optimising diagnostic yield is a continuing exercise. As costs decrease, there is also now increased access and experience with whole genome sequencing, including metagenomic sequencing, which offers unparalleled resolution especially in the investigations of potential outbreaks. However, their role in routine diagnostic use remains uncommon and standardisation of techniques and workflow are required for wider implementation.
Collapse
Affiliation(s)
- David Pham
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Varsha Sivalingam
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Helen M. Tang
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - James M. Montgomery
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (D.P.)
| |
Collapse
|
5
|
Wang C, Miller N, Vines D, Severns PM, Momany M, Brewer MT. Azole resistance mechanisms and population structure of the human pathogen Aspergillus fumigatus on retail plant products. Appl Environ Microbiol 2024; 90:e0205623. [PMID: 38651929 PMCID: PMC11107156 DOI: 10.1128/aem.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprotroph and human-pathogenic fungus that is life-threatening to the immunocompromised. Triazole-resistant A. fumigatus was found in patients without prior treatment with azoles, leading researchers to conclude that resistance had developed in agricultural environments where azoles are used against plant pathogens. Previous studies have documented azole-resistant A. fumigatus across agricultural environments, but few have looked at retail plant products. Our objectives were to determine if azole-resistant A. fumigatus is prevalent in retail plant products produced in the United States (U.S.), as well as to identify the resistance mechanism(s) and population genetic structure of these isolates. Five hundred twenty-five isolates were collected from retail plant products and screened for azole resistance. Twenty-four isolates collected from compost, soil, flower bulbs, and raw peanuts were pan-azole resistant. These isolates had the TR34/L98H, TR46/Y121F/T289A, G448S, and H147Y cyp51A alleles, all known to underly pan-azole resistance, as well as WT alleles, suggesting that non-cyp51A mechanisms contribute to pan-azole resistance in these isolates. Minimum spanning networks showed two lineages containing isolates with TR alleles or the F46Y/M172V/E427K allele, and discriminant analysis of principle components identified three primary clusters. This is consistent with previous studies detecting three clades of A. fumigatus and identifying pan-azole-resistant isolates with TR alleles in a single clade. We found pan-azole resistance in U.S. retail plant products, particularly compost and flower bulbs, which indicates a risk of exposure to these products for susceptible populations and that highly resistant isolates are likely distributed worldwide on these products.IMPORTANCEAspergillus fumigatus has recently been designated as a critical fungal pathogen by the World Health Organization. It is most deadly to people with compromised immune systems, and with the emergence of antifungal resistance to multiple azole drugs, this disease carries a nearly 100% fatality rate without treatment or if isolates are resistant to the drugs used to treat the disease. It is important to determine the relatedness and origins of resistant A. fumigatus isolates in the environment, including plant-based retail products, so that factors promoting the development and propagation of resistant isolates can be identified.
Collapse
Affiliation(s)
- Caroline Wang
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Natalie Miller
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Douglas Vines
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Paul M. Severns
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| | - Michelle Momany
- Fungal Biology Group, Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Marin T. Brewer
- Fungal Biology Group, Plant Pathology Department, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Celia-Sanchez BN, Mangum B, Gómez Londoño LF, Wang C, Shuman B, Brewer MT, Momany M. Pan-azole- and multi-fungicide-resistant Aspergillus fumigatus is widespread in the United States. Appl Environ Microbiol 2024; 90:e0178223. [PMID: 38557086 PMCID: PMC11022549 DOI: 10.1128/aem.01782-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.
Collapse
Affiliation(s)
| | - B. Mangum
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | | | - C. Wang
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - B. Shuman
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - M. T. Brewer
- Department of Plant Pathology, University of Georgia, Athens, Georgia, USA
| | - M. Momany
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
He X, Kusuya Y, Hagiwara D, Toyotome T, Arai T, Bian C, Nagayama M, Shibata S, Watanabe A, Takahashi H. Genomic diversity of the pathogenic fungus Aspergillus fumigatus in Japan reveals the complex genomic basis of azole resistance. Commun Biol 2024; 7:274. [PMID: 38486002 PMCID: PMC10940670 DOI: 10.1038/s42003-024-05902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Aspergillus fumigatus is a pathogenic fungus with a global distribution. The emergence of azole-resistant A. fumigatus (ARAf) other than the TR-mutants is a problem in Japan. Additionally, the genetic diversity of A. fumigatus strains in Japan remains relatively unknown. Here we show the diversity in the A. fumigatus strains isolated in Japan as well as the complexity in the global distribution of the pathogenic strains. First, we analyzed the genome sequences of 171 strains from Japan as well as the antifungal susceptibility of these strains. Next, we conducted a population analysis of 876 strains by combining the available genomic data for strains isolated worldwide, which were grouped in six clusters. Finally, a genome-wide association study identified the genomic loci associated with ARAf strains, but not the TR-mutants. These results highlight the complexity of the genomic mechanism underlying the emergence of ARAf strains other than the TR-mutants.
Collapse
Affiliation(s)
- Xiaohui He
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Yoko Kusuya
- Biological Resource Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, 292-0818, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takahito Toyotome
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inadacho, Obihiro, 080-8555, Japan
| | - Teppei Arai
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Cai Bian
- BGI-Shenzhen, Yantian District, Shenzhen, 518083, China
| | - Masaki Nagayama
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Saho Shibata
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
8
|
Lepak AJ, VanScoy B, Rubino C, Ambrose PG, Andes DR. In vivo pharmacodynamic characterization of a next-generation polyene, SF001, in the invasive pulmonary aspergillosis mouse model. Antimicrob Agents Chemother 2024; 68:e0163123. [PMID: 38319077 PMCID: PMC10916380 DOI: 10.1128/aac.01631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/14/2024] [Indexed: 02/07/2024] Open
Abstract
SF001 is a next-generation polyene antifungal drug in development, designed to have increased specificity to fungal ergosterol, which is absent in humans, and decreased binding to cholesterol. SF001 demonstrates long-acting, potent, broad-spectrum fungicidal activity. The goal of the current study was to determine the pharmacodynamic index and target of SF001 in an immunocompromised mouse model of invasive pulmonary aspergillosis against six Aspergillus fumigatus isolates. Minimum inhibitory concentration (MIC) values ranged from 0.5 to 2.0 mg/L. Plasma and epithelial lining fluid (ELF) pharmacokinetics were performed following single intraperitoneal doses of 1, 4, 16, and 64 mg/kg. Treatment efficacy was assessed with each of the six fungal isolates using daily doses of SF001 ranging from 0.25 to 64 mg/kg/day over a 96-h treatment duration. Efficacy was assessed by A. fumigatus quantitative PCR of conidial equivalents from lung homogenates. Nonlinear regression analysis using the Hill equation demonstrated that the 24-h exposure-response relationships for both plasma and ELF area under the concentration/MIC and Cmax/MIC ratios were strong and relatively similar [coefficient of determination (R2) = 0.74-0.75). Exposure-response relationships included a median plasma 24-h Cmax/MIC target for stasis and 1-log kill endpoint of 0.5 and 0.6, respectively. The present studies demonstrated in vitro and in vivo SF001 potency against A. fumigatus. These results have potential relevance for SF001 clinical dose selection and evaluation of susceptibility breakpoints.
Collapse
Affiliation(s)
- Alexander J. Lepak
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian VanScoy
- Institute for Clinical Pharmacodynamics, Schenectady, New York, USA
| | - Chris Rubino
- Institute for Clinical Pharmacodynamics, Schenectady, New York, USA
| | - Paul G. Ambrose
- Institute for Clinical Pharmacodynamics, Schenectady, New York, USA
| | - David R. Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton Memorial VA Hospital, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 PMCID: PMC10859884 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
10
|
Schürch S, Gindro K, Schnee S, Dubuis PH, Codina JM, Wilhelm M, Riat A, Lamoth F, Sanglard D. Occurrence of Aspergillus fumigatus azole resistance in soils from Switzerland. Med Mycol 2023; 61:myad110. [PMID: 37930839 PMCID: PMC10653585 DOI: 10.1093/mmy/myad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
Aspergillus fumigatus is a fungal species causing diverse diseases in humans. The use of azoles for treatments of A. fumigatus diseases has resulted in azole resistance. Azoles are also widely used in the environment for crop protection, which resulted in azole resistance. Resistance is primarily due to mutations in cyp51A, which encodes the target protein for azoles. Here we addressed the occurrence of azole resistance in soils from a vast part of Switzerland. We aimed to associate the use of azoles in the environment with the occurrence of azole resistance. We targeted sample sites from different agricultural environments as well as sites with no agricultural practice (natural sites and urban sites). Starting from 327 sites, 113 A. fumigatus isolates were recovered (2019-2021), among which 19 were azole-resistant (15 with TR34/L98H and four with TR46/Y121F/T289A resistance mutations in cyp51A). Our results show that azole resistance was not associated with a specific agricultural practice. Azoles could be chemically detected in investigated soils, however, their presence was not associated with the occurrence of azole-resistant isolates. Interestingly, genetic markers of resistance to other fungicides were detected but only in azole-resistant isolates, thus reinforcing the notion that A. fumigatus cross-resistance to fungicides has an environmental origin. In conclusion, this study reveals the spreading of azole resistance in A. fumigatus from the environment in Switzerland. The proximity of agricultural areas to urban centers may facilitate the transmission of resistant strains to at-risk populations. Thus, vigilant surveillance is required to maintain effective treatment options for aspergillosis.
Collapse
Affiliation(s)
- Stéphanie Schürch
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Katia Gindro
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Sylvain Schnee
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Pierre-Henri Dubuis
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Josep Massana Codina
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Matthieu Wilhelm
- Plant Protection Research Division, Mycology Group, Agroscope, 1260 Nyon, Switzerland
| | - Arnaud Riat
- Service of Infectious Diseases and Service of Laboratory Medicine, Geneva University Hospitals and Geneva University, 1205 Geneva, Switzerland
| | - Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
11
|
Marek A, Meijer EFJ, Tartari E, Zakhour J, Chowdhary A, Voss A, Kanj SS, Bal AM. Environmental monitoring for filamentous fungal pathogens in hematopoietic cell transplant units. Med Mycol 2023; 61:myad103. [PMID: 37793805 DOI: 10.1093/mmy/myad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
The incidence of invasive fungal disease (IFD) is on the rise due to increasing numbers of highly immunocompromized patients. Nosocomial IFD remains common despite our better understanding of its risk factors and pathophysiology. High-efficiency particulate air filtration with or without laminar air flow, frequent air exchanges, a positive pressure care environment, and environmental hygiene, amongst other measures, have been shown to reduce the mould burden in the patient environment. Environmental monitoring for moulds in areas where high-risk patients are cared for, such as hematopoietic cell transplant units, has been considered an adjunct to other routine environmental precautions. As a collaborative effort between authors affiliated to the Infection Prevention and Control Working Group and the Fungal Infection Working Group of the International Society of Antimicrobial Chemotherapy (ISAC), we reviewed the English language literature and international guidance to describe the evidence behind the need for environmental monitoring for filamentous fungi as a quality assurance approach with an emphasis on required additional precautions during periods of construction. Many different clinical sampling approaches have been described for air, water, and surface sampling with significant variation in laboratory methodologies between reports. Importantly, there are no agreed-upon thresholds that correlate with an increase in the clinical risk of mould infections. We highlight important areas for future research to assure a safe environment for highly immunocompromized patients.
Collapse
Affiliation(s)
- Aleksandra Marek
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Eelco F J Meijer
- Canisius-Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Ermira Tartari
- Faculty of Health Sciences, University of Malta, Msida, Malta
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Johnny Zakhour
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Abhijit M Bal
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| |
Collapse
|
12
|
Friedman DZP, Schwartz IS. Emerging Diagnostics and Therapeutics for Invasive Fungal Infections. Infect Dis Clin North Am 2023; 37:593-616. [PMID: 37532392 DOI: 10.1016/j.idc.2023.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Recently, there have been significant advances in the diagnosis and management of invasive fungal infections. Compared with traditional fungal diagnostics, molecular assays promise improved sensitivity and specificity, the ability to test a range of samples (including noninvasive samples, ie, blood), the detection of genetic mutations associated with antifungal resistance, and the potential for a faster turnaround time. Antifungals in late-stage clinical development include agents with novel mechanisms of action (olorofim and fosmanogepix) and new members of existing classes with distinct advantages over existing antifungals in toxicity, drug-drug interactions, and dosing convenience (oteseconazole, opelconazole, rezafungin, ibrexafungerp, encochleated amphotericin B).
Collapse
Affiliation(s)
- Daniel Z P Friedman
- Section of Infectious Diseases and Global Health, The University of Chicago, 5841 South Maryland Avenue, MC5065, Chicago, IL 60637, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, 315 Trent Drive, Durham, NC 27705, USA.
| |
Collapse
|
13
|
Lee Y, Robbins N, Cowen LE. Molecular mechanisms governing antifungal drug resistance. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:5. [PMID: 38686214 PMCID: PMC11057204 DOI: 10.1038/s44259-023-00007-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 05/02/2024]
Abstract
Fungal pathogens are a severe public health problem. The leading causative agents of systemic fungal infections include species from the Candida, Cryptococcus, and Aspergillus genera. As opportunistic pathogens, these fungi are generally harmless in healthy hosts; however, they can cause significant morbidity and mortality in immunocompromised patients. Despite the profound impact of pathogenic fungi on global human health, the current antifungal armamentarium is limited to only three major classes of drugs, all of which face complications, including host toxicity, unfavourable pharmacokinetics, or limited spectrum of activity. Further exacerbating this issue is the growing prevalence of antifungal-resistant infections and the emergence of multidrug-resistant pathogens. In this review, we discuss the diverse strategies employed by leading fungal pathogens to evolve antifungal resistance, including drug target alterations, enhanced drug efflux, and induction of cellular stress response pathways. Such mechanisms of resistance occur through diverse genetic alterations, including point mutations, aneuploidy formation, and epigenetic changes given the significant plasticity observed in many fungal genomes. Additionally, we highlight recent literature surrounding the mechanisms governing resistance in emerging multidrug-resistant pathogens including Candida auris and Candida glabrata. Advancing our knowledge of the molecular mechanisms by which fungi adapt to the challenge of antifungal exposure is imperative for designing therapeutic strategies to tackle the emerging threat of antifungal resistance.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1 Canada
| |
Collapse
|
14
|
Khateb A, Gago S, Bromley M, Richardson M, Bowyer P. Aneuploidy Is Associated with Azole Resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0125322. [PMID: 36975834 PMCID: PMC10112202 DOI: 10.1128/aac.01253-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus is on the rise. Nontarget-mediated mechanisms are a common cause of azole resistance in chronic pulmonary aspergillosis (CPA). Here, we investigate resistance mechanisms using whole-genome sequencing. Sixteen azole-resistant A. fumigatus isolates from CPA were sequenced to assess genome rearrangements. Seven out of 16 CPA isolates showed genomic duplications compared to zero out of 18 invasive isolates. Duplication of regions, including cyp51A, increased gene expression. Our results suggest aneuploidy as an azole resistance mechanism in CPA.
Collapse
Affiliation(s)
- Aiah Khateb
- Manchester Fungal Infection Group, Division of Evolution Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, United Kingdom
- Department of Medical Laboratory Technology, Collage of Applied Medical Science, Taibah University, Medina, Saudi Arabia
- Special Infectious Agents Unit BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara Gago
- Manchester Fungal Infection Group, Division of Evolution Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, United Kingdom
| | - Michael Bromley
- Manchester Fungal Infection Group, Division of Evolution Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, United Kingdom
| | - Malcom Richardson
- Manchester Fungal Infection Group, Division of Evolution Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, United Kingdom
- Mycology Reference Centre Manchester, ECMM Centre of Excellence, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Evolution Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Manchester, United Kingdom
| |
Collapse
|
15
|
Korfanty G, Heifetz E, Xu J. Assessing thermal adaptation of a global sample of Aspergillus fumigatus: Implications for climate change effects. Front Public Health 2023; 11:1059238. [PMID: 36875405 PMCID: PMC9978374 DOI: 10.3389/fpubh.2023.1059238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Aspergillus fumigatus is a common environmental mold and a major cause of opportunistic infections in humans. It's distributed among many ecological niches across the globe. A major virulence factor of A. fumigatus is its ability to grow at high temperature. However, at present, little is known about variations among strains in their growth at different temperatures and how their geographic origins may impact such variations. In this study, we analyzed 89 strains from 12 countries (Cameroon, Canada, China, Costa Rica, France, India, Iceland, Ireland, New Zealand, Peru, Saudi Arabia, and USA) representing diverse geographic locations and temperature environments. Each strain was grown at four temperatures and genotyped at nine microsatellite loci. Our analyses revealed a range of growth profiles, with significant variations among strains within individual geographic populations in their growths across the temperatures. No statistically significant association was observed between strain genotypes and their thermal growth profiles. Similarly geographic separation contributed little to differences in thermal adaptations among strains and populations. The combined analyses among genotypes and growth rates at different temperatures in the global sample suggest that most natural populations of A. fumigatus are capable of rapid adaptation to temperature changes. We discuss the implications of our results to the evolution and epidemiology of A. fumigatus under increasing climate change.
Collapse
Affiliation(s)
| | | | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Genetic Diversity of Human Fungal Pathogens. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
17
|
Misas E, Deng JZ, Gold JAW, Gade L, Nunnally NS, Georgacopoulos O, Bentz M, Berkow EL, Litvintseva AP, Chiller TM, Klausner JD, Chow NA. Genomic description of human clinical Aspergillus fumigatus isolates, California, 2020. Med Mycol 2023; 61:7008854. [PMID: 36715156 PMCID: PMC9945844 DOI: 10.1093/mmy/myad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Aspergillus fumigatus, an environmental mold, causes life-threatening infections. Studies on the phylogenetic structure of human clinical A. fumigatus isolates are limited. Here, we performed whole genome sequencing of 24 A. fumigatus isolates collected from 18 patients in U.S. healthcare facilities in California. Single-nucleotide polymorphism (SNP) differences between patient isolates ranged from 187 to 70 829 SNPs. For five patients with multiple isolates, we calculated the within-host diversities. Three patients had a within-host diversity that ranged from 4 to 10 SNPs and two patients ranged from 2 to 16 977 SNPs. Findings revealed highly diverse A. fumigatus strains among patients and two patterns of diversity for isolates that come from the same patient, low and extremely high diversity.
Collapse
Affiliation(s)
- Elizabeth Misas
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - John Z Deng
- David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lalitha Gade
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie S Nunnally
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ourania Georgacopoulos
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Meghan Bentz
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Elizabeth L Berkow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jeffrey D Klausner
- Departments of Population and Public Health Sciences and Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nancy A Chow
- To whom correspondence should be addressed. Nancy A. Chow, PhD, Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA. E-mail:
| |
Collapse
|
18
|
Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat Microbiol 2022; 7:663-674. [PMID: 35469019 PMCID: PMC9064804 DOI: 10.1038/s41564-022-01091-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/23/2022] [Indexed: 02/07/2023]
Abstract
Infections caused by the fungal pathogen Aspergillus fumigatus are increasingly resistant to first-line azole antifungal drugs. However, despite its clinical importance, little is known about how susceptible patients acquire infection from drug-resistant genotypes in the environment. Here, we present a population genomic analysis of 218 A. fumigatus isolates from across the UK and Ireland (comprising 153 clinical isolates from 143 patients and 65 environmental isolates). First, phylogenomic analysis shows strong genetic structuring into two clades (A and B) with little interclade recombination and the majority of environmental azole resistance found within clade A. Second, we show occurrences where azole-resistant isolates of near-identical genotypes were obtained from both environmental and clinical sources, indicating with high confidence the infection of patients with resistant isolates transmitted from the environment. Third, genome-wide scans identified selective sweeps across multiple regions indicating a polygenic basis to the trait in some genetic backgrounds. These signatures of positive selection are seen for loci containing the canonical genes encoding fungicide resistance in the ergosterol biosynthetic pathway, while other regions under selection have no defined function. Lastly, pan-genome analysis identified genes linked to azole resistance and previously unknown resistance mechanisms. Understanding the environmental drivers and genetic basis of evolving fungal drug resistance needs urgent attention, especially in light of increasing numbers of patients with severe viral respiratory tract infections who are susceptible to opportunistic fungal superinfections.
Collapse
|
19
|
Kang SE, Sumabat LG, Melie T, Mangum B, Momany M, Brewer MT. Evidence for the agricultural origin of resistance to multiple antimicrobials in Aspergillus fumigatus, a fungal pathogen of humans. G3 (BETHESDA, MD.) 2022; 12:jkab427. [PMID: 34897421 PMCID: PMC9210323 DOI: 10.1093/g3journal/jkab427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Pathogen resistance to clinical antimicrobial agents is an urgent problem. The fungus Aspergillus fumigatus causes 300,000 life-threatening infections in susceptible humans annually. Azoles, which are widely used in both clinical and agricultural settings, are currently the most effective treatment, but resistance to clinical azoles is emerging worldwide. Here, we report the isolation and analysis of azole-sensitive and azole-resistant A. fumigatus from agricultural environments in the southeastern United States (USA) and show that the USA pan-azole-resistant isolates form a clade with pan-azole-resistant isolates from the United Kingdom, the Netherlands, and India. We show that several pan-azole-resistant isolates from agricultural settings in the USA and India also carry alleles with mutations conferring resistance to agricultural fungicides from the benzimidazole (MBC) and quinone outside inhibitor (QoI) classes. We further show that pan-azole-resistant A. fumigatus isolates from patients in clinical settings in the USA, India, and the Netherlands also carry alleles conferring resistance to MBC and QoI agricultural fungicides. The presence of markers for resistance to agricultural-use fungicides in clinical A. fumigatus isolates is strong evidence for an agricultural origin of pan-azole resistance in patients. The presence of multiple fungicide-resistance alleles in agricultural and clinical isolates further suggests that the unique genetics of the pan-azole-resistant clade enables the evolution and/or persistence of antimicrobial resistance mutations leading to the establishment of multifungicide-resistant isolates.
Collapse
Affiliation(s)
- S Earl Kang
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | - Leilani G Sumabat
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Tina Melie
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Brandon Mangum
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA 30602, USA
| | - Marin T Brewer
- Fungal Biology Group and Plant Pathology Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Picot S, Beugnet F, Leboucher G, Bienvenu AL. Drug resistant parasites and fungi from a one-health perspective: A global concern that needs transdisciplinary stewardship programs. One Health 2021; 14:100368. [PMID: 34957316 PMCID: PMC8692089 DOI: 10.1016/j.onehlt.2021.100368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobials including antibiotics, antiparasitic, and antifungals, are subjected to resistance. In this context, Public Health Organizations called for a One Health approach because antimicrobials used to treat different infectious diseases in animals and plants may be the same than those used in humans. Whereas mechanisms of resistance transmission from animals or environment to humans should be considered differently if related to prokaryotic or eukaryotic pathogens, their impact can be considered as a whole. In that respect, we discussed the use of anti-parasitic in animals including anticoccidials, anthelmintics, and insecticides-acaricides, and the use of azoles in the environment that may both favor the development of drug resistance in humans. In light of the current situation, there is an urgent need for a transdisciplinary approach through anti-parasitic and antifungal stewardship programs in humans, animals, and environment, especially in the era of COVID-19 pandemic that will probably aggravate antimicrobial resistance.
Collapse
Affiliation(s)
- Stephane Picot
- Univ Lyon, Malaria Research Unit, SMITh, ICBMS UMR 5246, Lyon, France.,Institut de Parasitologie et Mycologie Medicale, Hospices Civils de Lyon, Lyon, France
| | | | - Gilles Leboucher
- Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Univ Lyon, Malaria Research Unit, SMITh, ICBMS UMR 5246, Lyon, France.,Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
21
|
Genetic Diversity and Dispersal of Aspergillus fumigatus in Arctic Soils. Genes (Basel) 2021; 13:genes13010019. [PMID: 35052359 PMCID: PMC8774493 DOI: 10.3390/genes13010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Aspergillus fumigatus is a saprophytic mold and an opportunistic pathogen with a broad geographic and ecological distribution. A. fumigatus is the most common etiological agent of aspergillosis, affecting over 8,000,000 individuals worldwide. Due to the rising number of infections and increasing reports of resistance to antifungal therapy, there is an urgent need to understand A. fumigatus populations from local to global levels. However, many geographic locations and ecological niches remain understudied, including soil environments from arctic regions. In this study, we isolated 32 and 52 A. fumigatus strains from soils in Iceland and the Northwest Territories of Canada (NWT), respectively. These isolates were genotyped at nine microsatellite loci and the genotypes were compared with each other and with those in other parts of the world. Though significantly differentiated from each other, our analyses revealed that A. fumigatus populations from Iceland and NWT contained evidence for both clonal and sexual reproductions, and shared many alleles with each other and with those collected from across Europe, Asia, and the Americas. Interestingly, we found one triazole-resistant strain containing the TR34 /L98H mutation in the cyp51A gene from NWT. This strain is closely related to a triazole-resistant genotype broadly distributed in India. Together, our results suggest that the northern soil populations of A. fumigatus are significantly influenced by those from other geographic regions.
Collapse
|
22
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|