1
|
McElheny CL, Iovleva A, Chen N, Woods D, Pradhan A, Sonnabend JL, Matunis AR, Raabe NJ, Lee JS, Trevejo-Nuñez G, Van Tyne D, Doi Y. Prevalence and features of hypervirulent Klebsiella pneumoniae in respiratory specimens at a US hospital system. Infect Immun 2024:e0048624. [PMID: 39660916 DOI: 10.1128/iai.00486-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) strains are considered to be relatively rare in the United States, but cases are increasingly reported. We prospectively and serially collected K. pneumoniae clinical isolates identified in respiratory specimens at a health system in Western Pennsylvania between 2020 and 2022. A total of 273 K. pneumoniae isolates from 216 unique patients were analyzed for markers of hypervirulence by both string test for a hypermucoid phenotype and multiplex PCR to detect isolates carrying cardinal virulence genes rmpA, rmpA2, iutA, and iro. Of the 273 isolates, 13 (4.8%) tested positive by string test including 11 nonduplicate K. pneumoniae isolates, and two of these (0.7%) were positive by PCR for virulence genes rmpA, rmpA2, iutA, and iro. The latter two putative hvKp strains, belonging to sequence types ST23-K1 and ST86-SLV-K2, possessed pLVPK-like plasmids, and were collected from community-associated infections in individuals without known travel histories. Both putative hvKp strains and two additional string test-positive strains were resistant to killing by human serum. The hvKp strains caused significant pneumonia in mice infected by oropharyngeal aspiration, with significantly higher weight loss and increased bacterial burden in the lungs of mice infected with the KL1 (ST23) strain compared to the KL2 (ST86-SLV) strain. We also observed decreased survival of mice infected with the KL1 strain compared to the KL2 strain. These findings add to the growing body of evidence suggesting that hvKp strains, once considered endemic to Asia, may now be circulating in North America.IMPORTANCECertain lineages of Klebsiella pneumoniae are increasingly recognized to cause severe community-associated infection, but information on their prevalence in the United States is limited. In a prospective, sequential cohort of 273 K. pneumoniae respiratory isolates, we identified two of them as genetically defined hypervirulent K. pneumoniae. The isolates were from local residents who developed community-onset pneumonia, suggesting that hypervirulent K. pneumoniae may already be present in the community.
Collapse
Affiliation(s)
- Christi L McElheny
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alina Iovleva
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathalie Chen
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dominic Woods
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Akansha Pradhan
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jonah L Sonnabend
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Aidan R Matunis
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nathan J Raabe
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Giraldina Trevejo-Nuñez
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daria Van Tyne
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Departments of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Departments of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Zhao D, Tang M, Ma Z, Hu P, Fu Q, Yao Z, Zhou C, Zhou T, Cao J. Synergy of bacteriophage depolymerase with host immunity rescues sepsis mice infected with hypervirulent Klebsiella pneumoniae of capsule type K2. Virulence 2024; 15:2415945. [PMID: 39429194 PMCID: PMC11497950 DOI: 10.1080/21505594.2024.2415945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
The hypervirulent Klebsiella pneumoniae (hvKp) with K1 and K2 capsular types causes liver abscess, pneumonia, sepsis, and invasive infections with high lethality. The presence of capsular polysaccharide (CPS) resists phagocytic engulfment and contributes to excessive inflammatory responses. Bacteriophage depolymerases can specifically target bacterial CPS, neutralizing its defense. Based on our previous research, we expressed and purified a bacteriophage depolymerase (Dep1979) targeting hvKp with capsule type K2. Interestingly, although Dep1979 lacked direct bactericidal activity in vitro, it exhibited potent antibacterial activity in vivo. Low-dose Dep1979 (0.1 mg/kg) improved the 7-day survival of immunocompetent mice to 100%. Even at 0.01 mg/kg, mice achieved 100% survival at 5 days, although efficacy sharply declined at doses as low as 0.001 mg/kg. Following Dep1979 treatment, reduced expression of inflammatory factors and no apparent tissue damage were observed. However, therapeutic efficacy significantly diminished in immunosuppressed mice. These findings underscore the critical role of Dep1979 in disarming CPS, which synergizes with host immunity to enhance antibacterial activity against hvKp.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qingxia Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Xu L, Li J, Wu W, Wu X, Ren J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024; 15:2439509. [PMID: 39668724 DOI: 10.1080/21505594.2024.2439509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae exhibits strong pathogenicity and can cause severe invasive infections but is historically recognized as antibiotic-susceptible. In recent years, the escalating global prevalence of antibiotic-resistant hypervirulent K. pneumoniae has raised substantial concerns and created an urgent demand for effective treatment options. Capsular polysaccharide (CPS) is one of the main virulence determinants contributing to the hypervirulent phenotype. The structure of CPS varies widely among strains, and both the structure and composition of CPS can influence the virulence of K. pneumoniae. CPS possesses various immune evasion mechanisms that promote the survival of K. pneumoniae, as well as its colonization and dissemination. Given the proven viability of therapies that target the capsule, improving our understanding of the CPS structure is critical to effectively directing treatment strategies. In this review, the structure and typing of CPS are addressed as well as genes related to synthesis and regulation, relationships with virulence, and pathogenic mechanisms. We aim to provide a reference for research on the pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Li Xu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
| | - Jiayang Li
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing Medical University, Nanjing, China
- Research Institute of General Surgery, Jinling Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Liu N, Lou N, Huang J, Chen Z, Li B, Zhang Z, Hong Y, Cao L, Xiao W. Genomic surveillance indicates clonal replacement of hypervirulent Klebsiella pneumoniae ST881 and ST29 lineage strains in vivo. Front Microbiol 2024; 15:1375624. [PMID: 38440138 PMCID: PMC10910047 DOI: 10.3389/fmicb.2024.1375624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 03/06/2024] Open
Abstract
The emergence of hypervirulent Klebsiella pneumoniae (hvKp) poses a significant public health threat, particularly regarding its carriage in the healthy population. However, the genomic epidemiological characteristics and population dynamics of hvKp within a single patient across distinct infection episodes remain largely unknown. This study aimed to investigate the clonal replacement of hvKp K2-ST881 and K54-ST29 lineage strains in a single patient experiencing multiple-site infections during two independent episodes. Two strains, designated EDhvKp-1 and EDhvKp-2, were obtained from blood and cerebrospinal fluid during the first admission, and the strain isolated from blood on the second admission was named EDhvKp-3. Whole-genome sequencing, utilizing both short-read Illumina and long-read Oxford Nanopore platforms, was conducted. In silico multilocus sequence typing (MLST), identification of antimicrobial resistance and virulence genes, and the phylogenetic relationship between our strains and other K. pneumoniae ST881 and ST29 genomes retrieved from the public database were performed. Virulence potentials were assessed through a mouse lethality assay. Our study indicated that the strains were highly susceptible to multiple antimicrobial agents. Plasmid sequence analysis confirmed that both virulence plasmids, pEDhvKp-1 (166,008 bp) and pEDhvKp-3 (210,948 bp), belonged to IncFIB type. Multiple virulence genes, including rmpA, rmpA2, rmpC, rmpD, iroBCDN, iucABCD, and iutA, were identified. EDhvKp-1 and EDhvKp-2 showed the closest relationship to strain 502 (differing by 51 SNPs), while EDhvKp-3 exhibited 69 SNPs differences compared to strain TAKPN-1, which all recovered from Chinese patients in 2020. In the mouse infection experiment, both ST881 EDhvKp-1 and ST29 EDhvKp-3 displayed similar virulence traits, causing 90 and 100% of the mice to die within 72 h after intraperitoneal infection, respectively. Our study expands the spectrum of hvKp lineages and highlights genomic alterations associated with clonal switching between two distinct lineages of hvKP that successively replaced each other in vivo. The development of novel strategies for the surveillance, diagnosis, and treatment of high-risk hvKp is urgently needed.
Collapse
Affiliation(s)
- Ning Liu
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ningjie Lou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Huang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenhao Chen
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Li
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Xiao
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. mBio 2024; 15:e0286723. [PMID: 38231533 PMCID: PMC10865842 DOI: 10.1128/mbio.02867-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g., siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Furthermore, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combinations of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N = 16) or cKp (N = 33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression, the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49), respectively. These findings can be used to inform the identification of hvKp.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all five of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which, in turn, would assist in optimizing patient care.
Collapse
Affiliation(s)
- Thomas A. Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, USA
- The Witebsky Center for Microbial Pathogenesis, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Cassandra L. Alvarado
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Connor J. Davies
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Zachary J. Drayer
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Ulrike Carlino-MacDonald
- Veterans Administration Western New York Healthcare System, University at Buffalo, Buffalo, New York, USA
- Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ting L. Luo
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Melissa J. Martin
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Brendan W. Corey
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kara A. Moser
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J. Kamile Rasheed
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison L. Halpin
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Patrick T. McGann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francois Lebreton
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547231. [PMID: 37961280 PMCID: PMC10634668 DOI: 10.1101/2023.06.30.547231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.
Collapse
|