1
|
Maldonado-Pava J, Tapia-Perdomo V, Estupinan-Cardenas L, Puentes-Cala E, Castillo-Villamizar GA. Exploring the biotechnological potential of novel soil-derived Klebsiella sp. and Chryseobacterium sp. strains using phytate as sole carbon source. Front Bioeng Biotechnol 2024; 12:1426208. [PMID: 38962663 PMCID: PMC11219571 DOI: 10.3389/fbioe.2024.1426208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Phosphorus (P) is essential for biological systems, playing a pivotal role in energy metabolism and forming crucial structural components of DNA and RNA. Yet its bioavailable forms are scarce. Phytate, a major form of stored phosphorus in cereals and soils, is poorly bioavailable due to its complex structure. Phytases, enzymes that hydrolyze phytate to release useable phosphorus, are vital in overcoming this limitation and have significant biotechnological applications. This study employed novel method to isolate and characterize bacterial strains capable of metabolizing phytate as the sole carbon and phosphorus source from the Andes mountains soils. Ten strains from the genera Klebsiella and Chryseobacterium were isolated, with Chryseobacterium sp. CP-77 and Klebsiella pneumoniae CP-84 showing specific activities of 3.5 ± 0.4 nkat/mg and 40.8 ± 5 nkat/mg, respectively. Genomic sequencing revealed significant genetic diversity, suggesting CP-77 may represent a novel Chryseobacterium species. A fosmid library screening identified several phytase genes, including a 3-phytase in CP-77 and a glucose 1-phosphatase and 3-phytase in CP-84. Phylogenetic analysis confirmed the novelty of these enzymes. These findings highlight the potential of phytase-producing bacteria in sustainable agriculture by enhancing phosphorus bioavailability, reducing reliance on synthetic fertilizers, and contributing to environmental management. This study expands our biotechnological toolkit for microbial phosphorus management and underscores the importance of exploring poorly characterized environments for novel microbial functions. The integration of direct cultivation with metagenomic screening offers robust approaches for discovering microbial biocatalysts, promoting sustainable agricultural practices, and advancing environmental conservation.
Collapse
|
2
|
Scott BM, Koh K, Rix GD. Structural and functional profile of phytases across the domains of life. Curr Res Struct Biol 2024; 7:100139. [PMID: 38562944 PMCID: PMC10982552 DOI: 10.1016/j.crstbi.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Phytase enzymes are a crucial component of the natural phosphorus cycle, as they help make phosphate bioavailable by releasing it from phytate, the primary reservoir of organic phosphorus in grain and soil. Phytases also comprise a significant segment of the agricultural enzyme market, used primarily as an animal feed additive. At least four structurally and mechanistically distinct classes of phytases have evolved in bacteria and eukaryotes, and the natural diversity of each class is explored here using advances in protein structure prediction and functional annotation. This graphical review aims to provide a succinct description of the major classes of phytase enzymes across phyla, including their structures, conserved motifs, and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin M. Scott
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Kevin Koh
- Global Institute for Food Security, University of Saskatchewan, 421 Downey Road, S7N 4L8, Saskatoon, Saskatchewan, Canada
| | - Gregory D. Rix
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, NR4 7UH, Norwich, UK
| |
Collapse
|
3
|
Torres P, Altier N, Beyhaut E, Fresia P, Garaycochea S, Abreo E. Phenotypic, genomic and in planta characterization of Bacillus sensu lato for their phosphorus biofertilization and plant growth promotion features in soybean. Microbiol Res 2024; 280:127566. [PMID: 38100951 DOI: 10.1016/j.micres.2023.127566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Bacillus sensu lato were screened for their capacity to mineralize organic phosphorus (P) and promote plant growth, improving nitrogen (N) and P nutrition of soybean. Isolates were identified through Type Strain Genome Server (TYGS) and Average Nucleotide Identity (ANI). ILBB95, ILBB510 and ILBB592 were identified as Priestia megaterium, ILBB139 as Bacillus wiedmannii, ILBB44 as a member of a sister clade of B. pumilus, ILBB15 as Peribacillus butanolivorans and ILBB64 as Lysinibacillus sp. These strains were evaluated for their capacity to mineralize sodium phytate as organic P and solubilize inorganic P in liquid medium. These assays ranked ILBB15 and ILBB64 with the highest orthophosphate production from phytate. Rhizocompetence and plant growth promotion traits were evaluated in vitro and in silico. Finally, plant bioassays were conducted to assess the effect of the co-inoculation with rhizobial inoculants on nodulation, N and P nutrition. These bioassays showed that B. pumilus, ILBB44 and P. megaterium ILBB95 increased P-uptake in plants on the poor substrate of sand:vermiculite and also on a more fertile mix. Priestia megaterium ILBB592 increased nodulation and N content in plants on the sand:vermiculite:peat mixture. Peribacillus butanolivorans ILBB15 reduced plant growth and nutrition on both substrates. Genomes of ILBB95 and ILBB592 were characterized by genes related with plant growth and biofertilization, whereas ILBB15 was differentiated by genes related to bioremediation. Priestia megaterium ILBB592 is considered as nodule-enhancing rhizobacteria and together with ILBB95, can be envisaged as prospective PGPR with the capacity to exert positive effects on N and P nutrition of soybean plants.
Collapse
Affiliation(s)
- Pablo Torres
- Bioinsumos, Área de Recursos Naturales, Producción y Ambiente, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay
| | - Nora Altier
- Bioinsumos, Área de Recursos Naturales, Producción y Ambiente, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay
| | - Elena Beyhaut
- Bioinsumos, Área de Recursos Naturales, Producción y Ambiente, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay
| | - Pablo Fresia
- Unidad Mixta Pasteur+INIA, Institut Pasteur de Montevideo, Uruguay
| | - Silvia Garaycochea
- Bioinsumos, Área de Recursos Naturales, Producción y Ambiente, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay; Área Mejoramiento Genético y Biotecnología Vegetal, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay
| | - Eduardo Abreo
- Bioinsumos, Área de Recursos Naturales, Producción y Ambiente, Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Uruguay.
| |
Collapse
|
4
|
Abstract
The vast majority of the Earth's biological diversity are hidden in uncultured and yet uncharacterized microbial genomes. The construction of metagenomic libraries is one cultivation-independent molecular approach to assess this unexplored genetic reservoir. High numbers of novel biocatalysts have been identified by function-based or sequence-based screening of metagenomic libraries derived from various environments. Here, we describe detailed protocols for the construction of metagenomic small-insert and large-insert libraries in plasmids and fosmids, respectively, from environmental DNA.
Collapse
Affiliation(s)
- Carola Simon
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Castillo Villamizar GA, Nacke H, Daniel R. Functional Metagenomics Approach for the Discovery of Novel Genes Encoding Phosphatase Activity. Methods Mol Biol 2023; 2555:103-114. [PMID: 36306081 DOI: 10.1007/978-1-0716-2795-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphate release from inorganic and organic phosphorus compounds can be enzymatically mediated. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation, and diagnostic analysis. Here, we describe a functional metagenomics approach enabling rapid identification of genes encoding these enzymes. The target genes are detected based on small- and large-insert metagenomic libraries derived from diverse environments. This approach has the potential to unveil entirely new phosphatase families or subfamilies and members of known enzyme classes that hydrolyze phosphomonoester bonds such as phytases. Additionally, we provide a strategy for efficient heterologous expression of phosphatase genes.
Collapse
Affiliation(s)
- Genis A Castillo Villamizar
- Corporación para la investigación de la corrosión (CIC), Santander, Piedecuesta, Colombia
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Heiko Nacke
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany.
| |
Collapse
|
6
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
7
|
Ali MJ. Functional metagenomic profile of the lacrimal sac microbial communities in primary acquired nasolacrimal duct obstruction: The Lacriome paper 2. Eur J Ophthalmol 2021; 32:2059-2066. [PMID: 34816752 DOI: 10.1177/11206721211064015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To study the functional metagenomic profile of the microbes isolated from the lacrimal sac of patients with primary acquired nasolacrimal duct obstruction. METHODS A prospective study was performed on 10 consecutive lacrimal sac samples obtained for the metagenomic analysis from patients with primary acquired nasolacrimal duct obstruction ( who underwent endoscopic dacryocystorhinostomy at a tertiary care Dacryology service. The samples were collected intraoperatively soon after a full-length lacrimal sac marsupialization and immediately transported on ice to the laboratory. Following DNA extraction and library preparation, a whole shotgun metagenome sequencing was performed on the Illumina NOVASEQ 6000TM platform. The downstream processing and bioinformatics of the samples were performed using multiple software packaged in SqueezeMetaTM pipeline and functional analysis using the MG-RASTTM pipeline. RESULTS The microbial gene mapping and protein prediction demonstrated proteins with known functions to range from 66.41% to 84.03% across the samples. The functional category distribution of Kyoto Encyclopedia of Genes and Genomes ortholog (level 1 data) showed metabolism to be the most commonly involved function followed by environmental information processes, genetic information processes and cellular processes. The functional subsystem profiling demonstrated genes associated with carbohydrate, protein and RNA metabolism, Amino acids and their derivatives, cofactors and prosthetic groups and factors involved in cell structure regulation and cell cycle control. CONCLUSION This is the first functional metagenomic profile of the lacrimal sac microbiota from patients with primary acquired nasolacrimal duct obstruction. Functional analysis has provided newer insights into the ecosystem dynamics and strategies of microbial communities inhabiting the lacrimal sac. Further Lacriome studies may provide clues for better understanding of the disease etiopathogenesis.
Collapse
Affiliation(s)
- Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, 28592L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
8
|
Phytate and Microbial Suspension Amendments Increased Soybean Growth and Shifted Microbial Community Structure. Microorganisms 2021; 9:microorganisms9091803. [PMID: 34576699 PMCID: PMC8471086 DOI: 10.3390/microorganisms9091803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 12/22/2022] Open
Abstract
Phytate represents an organic pool of phosphorus in soil that requires hydrolysis by phytase enzymes produced by microorganisms prior to its bioavailability by plants. We tested the ability of a microbial suspension made from an old growth maple forest's undisturbed soil to mineralize phytate in a greenhouse trial on soybean plants inoculated or non-inoculated with the suspension. MiSeq Amplicon sequencing targeting bacterial 16S rRNA gene and fungal ITS was performed to assess microbial community changes following treatments. Our results showed that soybean nodulation and shoot dry weight biomass increased when phytate was applied to the nutrient-poor substrate mixture. Bacterial and fungal diversities of the root and rhizosphere biotopes were relatively resilient following inoculation by microbial suspension; however, bacterial community structure was significantly influenced. Interestingly, four arbuscular mycorrhizal fungi (AMF) were identified as indicator species, including Glomus sp., Claroideoglomus etunicatum, Funneliformis mosseae and an unidentified AMF taxon. We also observed that an ericoid mycorrhizal taxon Sebacina sp. and three Trichoderma spp. were among indicator species. Non-pathogenic Planctobacteria members highly dominated the bacterial community as core and hub taxa for over 80% of all bacterial datasets in root and rhizosphere biotopes. Overall, our study documented that inoculation with a microbial suspension and phytate amendment improved soybean plant growth.
Collapse
|
9
|
Zhang Y, Ding L, Yan Z, Zhou D, Jiang J, Qiu J, Xin Z. Identification and Characterization of a Novel Carboxylesterase Belonging to Family VIII with Promiscuous Acyltransferase Activity Toward Cyanidin-3-O-Glucoside from a Soil Metagenomic Library. Appl Biochem Biotechnol 2021; 195:2432-2450. [PMID: 34255285 DOI: 10.1007/s12010-021-03614-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
An alkaline esterase, designated as EstXT1, was identified through functional screening from a metagenomic library. Sequence analysis revealed that EstXT1 belonged to the family VIII carboxylesterases and contained a characteristic conserved S-x-x-K motif and a deduced catalytic triad Ser56-Lys59-Tyr165. EstXT1 exhibited the strongest activity toward methyl ferulate at pH 8.0 and temperature 55°C and retained over 80% of its original activity after incubation in the pH range of 7.0-10.6 buffers. Biochemical characterization of the recombinant enzyme showed that it was activated by Zn2+ and Co2+ metal ion, while inhibited by Cu2+ and CTAB. EstXT1 exhibited significant promiscuous acyltransferase activity preferred to the acylation of benzyl alcohol acceptor using short-chain pNP-esters (C2-C8) as acyl-donors. A structure-function analysis indicated that a WAG motif is essential to acyltransferase activity. This is the first report example that WAG motif plays a pivotal role in acyltransferase activity in family VIII carboxylesterases beside WGG motif. Further experiment indicated that EstXT1 successfully acylated cyanidin-3-O-glucoside in aqueous solution. The results from the current investigation provided new insights for the family VIII carboxylesterase and lay a foundation for the potential applications of EstXT1 in food and biotechnology fields.
Collapse
Affiliation(s)
- Yueqi Zhang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Liping Ding
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhenzhen Yan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dandan Zhou
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junwei Jiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
10
|
Willms IM, Grote M, Kocatürk M, Singhoff L, Kraft AA, Bolz SH, Nacke H. Novel Soil-Derived Beta-Lactam, Chloramphenicol, Fosfomycin and Trimethoprim Resistance Genes Revealed by Functional Metagenomics. Antibiotics (Basel) 2021; 10:antibiotics10040378. [PMID: 33916668 PMCID: PMC8066302 DOI: 10.3390/antibiotics10040378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance genes (ARGs) in soil are considered to represent one of the largest environmental resistomes on our planet. As these genes can potentially be disseminated among microorganisms via horizontal gene transfer (HGT) and in some cases are acquired by clinical pathogens, knowledge about their diversity, mobility and encoded resistance spectra gained increasing public attention. This knowledge offers opportunities with respect to improved risk prediction and development of strategies to tackle antibiotic resistance, and might help to direct the design of novel antibiotics, before further resistances reach hospital settings or the animal sector. Here, metagenomic libraries, which comprise genes of cultivated microorganisms, but, importantly, also those carried by the uncultured microbial majority, were screened for novel ARGs from forest and grassland soils. We detected three new beta-lactam, a so far unknown chloramphenicol, a novel fosfomycin, as well as three previously undiscovered trimethoprim resistance genes. These ARGs were derived from phylogenetically diverse soil bacteria and predicted to encode antibiotic inactivation, antibiotic efflux, or alternative variants of target enzymes. Moreover, deduced gene products show a minimum identity of ~21% to reference database entries and confer high-level resistance. This highlights the vast potential of functional metagenomics for the discovery of novel ARGs from soil ecosystems.
Collapse
|
11
|
Wan W, Liu S, Li X, Xing Y, Chen W, Huang Q. Bridging Rare and Abundant Bacteria with Ecosystem Multifunctionality in Salinized Agricultural Soils: from Community Diversity to Environmental Adaptation. mSystems 2021; 6:e01221-20. [PMID: 33785569 PMCID: PMC8547000 DOI: 10.1128/msystems.01221-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/03/2021] [Indexed: 01/09/2023] Open
Abstract
Bacterial diversity and ecosystem multifunctionality (EMF) vary along environmental gradients. However, little is known about interconnections between EMF and taxonomic and phylogenetic diversities of rare and abundant bacteria. Using MiSeq sequencing and multiple statistical analyses, we evaluated the maintenance of taxonomic and phylogenetic diversities of rare and abundant bacteria and their contributions to EMF in salinized agricultural soils (0.09 to 19.91 dS/m). Rare bacteria exhibited closer phylogenetic clustering and broader environmental breadths than abundant ones, while abundant bacteria showed higher functional redundancies and stronger phylogenetic signals of ecological preferences than rare ones. Variable selection (86.7%) dominated rare bacterial community assembly, and dispersal limitation (54.7%) and variable selection (24.5%) determined abundant bacterial community assembly. Salinity played a decisive role in mediating the balance between stochastic and deterministic processes and showed significant effects on functions and diversities of both rare and abundant bacteria. Rare bacterial taxonomic α-diversity and abundant bacterial phylogenetic α-diversity contributed significantly to EMF, while abundant bacterial taxonomic α-diversity and rare bacterial phylogenetic α-diversity did not. Additionally, abundant rather than rare bacterial community function had a significant effect on soil EMF. These findings extend our knowledge of environmental adaptation of rare and abundant bacteria and highlight different contributions of taxonomic and phylogenetic α-diversities of rare and abundant bacteria to soil EMF.IMPORTANCE Soil salinization is a worldwide environmental problem and threatens plant productivity and microbial diversity. Understanding the generation and maintenance of microbial diversity is essential to estimate soil tillage potential via investigating ecosystem multifunctionality. Our sequence-based data showed differences in environmental adaptations of rare and abundant bacteria at taxonomic and phylogenetic levels, which led to different contributions of taxonomic and phylogenetic α-diversities of rare and abundant bacteria to soil EMF. Studying the diversity of rare and abundant bacteria and their contributions to EMF in salinized soils is critical for guiding soil restoration.
Collapse
Affiliation(s)
- Wenjie Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Song Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Yonghui Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Taş N, de Jong AE, Li Y, Trubl G, Xue Y, Dove NC. Metagenomic tools in microbial ecology research. Curr Opin Biotechnol 2021; 67:184-191. [PMID: 33592536 DOI: 10.1016/j.copbio.2021.01.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/05/2023]
Abstract
Ability to directly sequence DNA from the environment permanently changed microbial ecology. Here, we review the new insights to microbial life gleaned from the applications of metagenomics, as well as the extensive set of analytical tools that facilitate exploration of diversity and function of complex microbial communities. While metagenomics is shaping our understanding of microbial functions in ecosystems via gene-centric and genome-centric methods, annotating functions, metagenome assembly and binning in heterogeneous samples remains challenging. Development of new analysis and sequencing platforms generating high-throughput long-read sequences and functional screening opportunities will aid in harnessing metagenomes to increase our understanding of microbial taxonomy, function, ecology, and evolution in the environment.
Collapse
Affiliation(s)
- Neslihan Taş
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anniek Ee de Jong
- Deltares, Daltonlaan 600, 3584 BK Utrecht, The Netherlands; Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yaoming Li
- School of Grassland Science, Beijing Forest University, Beijing, 100083, China; Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai, 200241, China
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Yaxin Xue
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, N-5008, Norway
| | - Nicholas C Dove
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
13
|
Abstract
Shotgun metagenomic sequencing has revolutionized our ability to detect and characterize the diversity and function of complex microbial communities. In this review, we highlight the benefits of using metagenomics as well as the breadth of conclusions that can be made using currently available analytical tools, such as greater resolution of species and strains across phyla and functional content, while highlighting challenges of metagenomic data analysis. Major challenges remain in annotating function, given the dearth of functional databases for environmental bacteria compared to model organisms, and the technical difficulties of metagenome assembly and phasing in heterogeneous environmental samples. In the future, improvements and innovation in technology and methodology will lead to lowered costs. Data integration using multiple technological platforms will lead to a better understanding of how to harness metagenomes. Subsequently, we will be able not only to characterize complex microbiomes but also to manipulate communities to achieve prosperous outcomes for health, agriculture, and environmental sustainability.
Collapse
Affiliation(s)
- Felicia N New
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
14
|
Kamble A, Singh H. Different Methods of Soil DNA Extraction. Bio Protoc 2020. [DOI: 10.21769/bioprotoc.3521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
15
|
Herrmann KR, Ruff AJ, Infanzón B, Schwaneberg U. Engineered phytases for emerging biotechnological applications beyond animal feeding. Appl Microbiol Biotechnol 2019; 103:6435-6448. [DOI: 10.1007/s00253-019-09962-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
|
16
|
Castillo Villamizar GA, Funkner K, Nacke H, Foerster K, Daniel R. Functional Metagenomics Reveals a New Catalytic Domain, the Metallo-β-Lactamase Superfamily Domain, Associated with Phytase Activity. mSphere 2019; 4:e00167-19. [PMID: 31217298 PMCID: PMC6584368 DOI: 10.1128/msphere.00167-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022] Open
Abstract
Inositol-6-phosphate, also known as phytic acid, is a phosphorus source that plays several important roles in the phosphorus cycle and in cell metabolism. The known characterized enzymes responsible for its degradation, the phytases, are mostly derived from cultured individual microorganisms. The catalytic signatures of phytases are restricted to the molecular domains of four protein superfamilies: histidine phosphatases, protein tyrosine phosphatases, the purple acid phosphatases and the β-propeller phosphatases. During function-based screening of previously generated forest soil metagenomic libraries for Escherichia coli clones conferring phytase activity, two positive clones harboring the plasmids pLP05 and pLP12 were detected. Analysis of the insert sequences revealed the absence of classic phosphatase/phytase signatures of the proteins deduced from the putative genes, but the genes mblp01 (pLP05) and mblp02 (pLP12) encoded putative metallo-β-lactamases (MBLs). Several MBL representatives are promiscuous proteins with phosphoesterase activity, but phytase activity was previously not reported. Both mblp01 and mblp02 were subcloned, expressed, and analyzed. Mblp01 and Mblp02 are members of the lactamase B2 family. Protein modeling showed that the closest structural homologue of both proteins was ZipD of E. coli Mblp01 and Mblp02 showed activity toward the majority of the tested phosphorylated substrates, including phytate. The maximal enzyme activities were recorded for Mblp01 at 50°C under acidic conditions and for Mblp02 at 35°C and a neutral pH. In the presence of Cu2+ or SDS, the activities of Mblp01 and Mblp02 were strongly inhibited. Analyses of the minimal inhibitory concentrations of several β-lactam antibiotics revealed that recombinant E. coli cells carrying mblp01 or mblp02 showed reduced sensitivity toward β-lactam antibiotics.IMPORTANCE Phytic acid is a phosphorus storage molecule in many plant tissues, a source of phosphorus alternative to phosphate rocks, but it can also be a problematic antinutrient. In comparison to other phosphorus sources, phytic acid exhibits reduced bioavailability. Additionally, it influences functions of secondary messengers and acts as antioxidant in tumor growth prevention. The enzymatic capability to process phytate has been reported for a limited number of protein families. This might be due to the almost exclusive use of proteins derived from individual microorganisms to analyze phytase activity. With such a restriction, the study of the complexity and diversity of the phytases remains incomplete. By using metagenome-derived samples, this study demonstrates the existence of phytase activity in one of the most promiscuous superfamilies, the metallo-β-lactamases. Our results increase the general knowledge on phytase diversity in environmental samples and could provide new avenues for the study and engineering of new biocatalysts.
Collapse
Affiliation(s)
- Genis Andrés Castillo Villamizar
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Línea Tecnológica Biocorrosión, Corporación para la Investigación de la Corrosión C.I.C., Piedecuesta, Santander, Colombia
| | - Katrina Funkner
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Heiko Nacke
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Karolin Foerster
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Characteristics of the First Protein Tyrosine Phosphatase with Phytase Activity from a Soil Metagenome. Genes (Basel) 2019; 10:genes10020101. [PMID: 30700057 PMCID: PMC6409689 DOI: 10.3390/genes10020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 11/30/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) fulfil multiple key regulatory functions. Within the group of PTPs, the atypical lipid phosphatases (ALPs) are known for their role as virulence factors associated with human pathogens. Another group of PTPs, which is capable of using inositol-hexakisphosphate (InsP6) as substrate, are known as phytases. Phytases play major roles in the environmental phosphorus cycle, biotechnology, and pathogenesis. So far, all functionally characterized PTPs, including ALPs and PTP-phytases, have been derived exclusively from isolated microorganisms. In this study, screening of a soil-derived metagenomic library resulted in identification of a gene (pho16B), encoding a PTP, which shares structural characteristics with the ALPs. In addition, the characterization of the gene product (Pho16B) revealed the capability of the protein to use InsP6 as substrate, and the potential of soil as a source of phytases with so far unknown characteristics. Thus, Pho16B represents the first functional environmentally derived PTP-phytase. The enzyme has a molecular mass of 38 kDa. The enzyme is promiscuous, showing highest activity and affinity toward naphthyl phosphate (Km 0.966 mM). Pho16B contains the HCXXGKDR[TA]G submotif of PTP-ALPs, and it is structurally related to PtpB of Mycobacterium tuberculosis. This study demonstrates the presence and functionality of an environmental gene codifying a PTP-phytase homologous to enzymes closely associated to bacterial pathogenicity.
Collapse
|