1
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII-secreted LXG toxin mediates interbacterial competition and colonization of the murine female genital tract. mBio 2024; 15:e0208824. [PMID: 39189749 PMCID: PMC11481500 DOI: 10.1128/mbio.02088-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia, and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has the potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Bacillota and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of intracellular expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.IMPORTANCECompetition between neighboring, non-kin bacteria is essential for microbial niche establishment in mucosal environments. Gram-positive bacteria encoding T7SSb have been shown to engage in competition through the export of LXG-motif-containing toxins, but these have not been characterized in group B Streptococcus (GBS), an opportunistic colonizer of the polymicrobial female genital tract. Here, we show a role for GBS T7SS in competition with mucosal pathobiont Enterococcus faecalis, both in vitro and in vivo. We further find that a GBS LXG protein contributing to this antagonism is exported by the T7SS and is intracellularly toxic to other bacteria; therefore, we have named this protein group B streptococcal LXG Toxin A (BltA). Finally, we show that BltA and its associated chaperones promote persistence within female genital tract tissues, in vivo. These data reveal previously unrecognized mechanisms by which GBS may compete with other mucosal opportunistic pathogens to persist within the female genital tract.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, Colorado, USA
| |
Collapse
|
2
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
3
|
Ighem Chi S, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative genome analyses of Staphylococcus aureus from platelet concentrates reveal rearrangements involving loss of type VII secretion genes. Access Microbiol 2024; 6:000820.v4. [PMID: 39697362 PMCID: PMC11652724 DOI: 10.1099/acmi.0.000820.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/02/2024] [Indexed: 12/20/2024] Open
Abstract
Staphylococcus aureus has been involved in transfusion-transmitted fatalities associated with platelet concentrates (PCs) due to its heightened pathogenicity enhanced by genome-encoded virulence and antibiotic resistance genes. This may be facilitated by mobile genetic elements (MGEs) that can cause rearrangements. Several factors contribute to S. aureus virulence, including the type VII secretion system (T7SS), composed of six core genes conserved across S. aureus strains. In this study, we conducted comparative genome analyses of five S. aureus isolates from PCs (CI/BAC/25/13 /W, PS/BAC/169/17 /W and PS/BAC/317/16 /W were detected during PCs screening with the BACT/ALERT automated culture system, and ATR-20003 and CBS2016-05 were missed during screening and caused septic transfusion reactions). Multiple alignments of the genomes revealed evidence of rearrangements involving phage Sa3int in PS/BAC/169/17 /W and PS/BAC/317/16 /W. While the former had undergone translocation of its immune evasion cluster (IEC), the latter had lost part of the phage, leaving behind the IEC. This observation highlights S. aureus genome plasticity. Unexpectedly, strain CBS2016-05 was found to encode a pseudo-type VII secretion system (T7SS) that had lost five of the conserved core genes (esxA, esaA, essA, esaB and essB) and contained a 5' truncated essC. Since these genes are essential for the function of the T7SS protein transport machinery, which plays a key role in S. aureus virulence, CBS2016-05 probably compensates by recruiting other export mechanisms and/or alternative virulence factors, such as neu-tralizing immunity proteins. This study unravels genome rearrangements in S. aureus isolated from PCs and reports the first S. aureus isolate lacking conserved T7SS core genes.
Collapse
Affiliation(s)
- Sylvia Ighem Chi
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Listeriosis Reference Centre, Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
4
|
Yang Y, Scott AA, Kneuper H, Alcock F, Palmer T. High-throughput functional analysis provides novel insight into type VII secretion in Staphylococcus aureus. Open Biol 2024; 14:240060. [PMID: 39139050 PMCID: PMC11322744 DOI: 10.1098/rsob.240060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Successful colonization by the opportunistic pathogen Staphylococcus aureus depends on its ability to interact with other microorganisms. Staphylococcus aureus strains harbour a T7b subtype of type VII secretion system (T7SSb), a protein secretion system found in a wide variety of Bacillota, which functions in bacterial antagonism and virulence. Assessment of T7SSb activity in S. aureus has been hampered by low secretion activity under laboratory conditions and the lack of a sensitive assay to measure secretion. Here, we have utilized NanoLuc binary technology to develop a simple assay to monitor protein secretion via detection of bioluminescence. Fusion of the 11 amino acid NanoLuc fragment to the conserved substrate EsxA permits its extracellular detection upon supplementation with the large NanoLuc fragment and luciferase substrate. Following miniaturization of the assay to 384-well format, we use high-throughput analysis to demonstrate that T7SSb-dependent protein secretion differs across strains and growth temperature. We further show that the same assay can be used to monitor secretion of the surface-associated toxin substrate TspA. Using this approach, we identify three conserved accessory proteins required to mediate TspA secretion. Co-purification experiments confirm that all three proteins form a complex with TspA.
Collapse
Affiliation(s)
- Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Aaron A. Scott
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Holger Kneuper
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Felicity Alcock
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, UK
| |
Collapse
|
5
|
Job AM, Doran KS, Spencer BL. A group B streptococcal type VII secreted LXG toxin mediates interbacterial competition and colonization of the female genital tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598350. [PMID: 38915665 PMCID: PMC11195062 DOI: 10.1101/2024.06.10.598350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the vagina but can opportunistically ascend to the uterus and be transmitted vertically during pregnancy, resulting in neonatal pneumonia, bacteremia and meningitis. GBS is a leading etiologic agent of neonatal infection and understanding the mechanisms by which GBS persists within the polymicrobial female genital mucosa has potential to mitigate subsequent transmission and disease. Type VIIb secretion systems (T7SSb) are encoded by Firmicutes and often mediate interbacterial competition using LXG toxins that contain conserved N-termini important for secretion and variable C-terminal toxin domains that confer diverse biochemical activities. Our recent work characterized a role for the GBS T7SSb in vaginal colonization and ascending infection but the mechanisms by which the T7SSb promotes GBS persistence in this polymicrobial niche remain unknown. Herein, we investigate the GBS T7SS in interbacterial competition and GBS niche establishment in the female genital tract. We demonstrate GBS T7SS-dependent inhibition of mucosal pathobiont Enterococcus faecalis both in vitro using predator-prey assays and in vivo in the murine genital tract and found that a GBS LXG protein encoded within the T7SS locus (herein named group B streptococcal LXG Toxin A) that contributes to these phenotypes. We identify BltA as a T7SS substrate that is toxic to E. coli and S. aureus upon induction of expression along with associated chaperones. Finally, we show that BltA and its chaperones contribute to GBS vaginal colonization. Altogether, these data reveal a role for a novel T7b-secreted toxin in GBS mucosal persistence and competition.
Collapse
Affiliation(s)
- Alyx M. Job
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
6
|
Garrett SR, Higginson AB, Palmer T. Multiple variants of the type VII secretion system in Gram-positive bacteria. MICROLIFE 2024; 5:uqae013. [PMID: 38957458 PMCID: PMC11217815 DOI: 10.1093/femsml/uqae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Type VII secretion systems (T7SS) are found in bacteria across the Bacillota and Actinomycetota phyla and have been well described in Staphylococcus aureus, Bacillus subtilis, and pathogenic mycobacteria. The T7SS from Actinomycetota and Bacillota share two common components, a membrane-bound EccC/EssC ATPase and EsxA, a small helical hairpin protein of the WXG100 family. However, they also have additional phylum-specific components, and as a result they are termed the T7SSa (Actinomycetota) and T7SSb (Bacillota), respectively. Here, we identify additional organizations of the T7SS across these two phyla and describe eight additional T7SS subtypes, which we have named T7SSc-T7SSj. T7SSd is found exclusively in Actinomycetota including the Olselnella and Bifodobacterium genus, whereas the other seven are found only in Bacillota. All of the novel subtypes contain the canonical ATPase (TsxC) and the WXG100-family protein (TsxA). Most of them also contain a small ubiquitin-related protein, TsxB, related to the T7SSb EsaB/YukD component. Protein kinases, phosphatases, and forkhead-associated (FHA) proteins are often encoded in the novel T7SS gene clusters. Candidate substrates of these novel T7SS subtypes include LXG-domain and RHS proteins. Predicted substrates are frequently encoded alongside genes for additional small WXG100-related proteins that we speculate serve as cosecretion partners. Collectively our findings reveal unexpected diversity in the T7SS in Gram-positive bacteria.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Andrew B Higginson
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
7
|
Cossart P, Hacker J, Holden DH, Normark S, Vogel J. Meeting report 'Microbiology 2023: from single cell to microbiome and host', an international interacademy conference in Würzburg. MICROLIFE 2024; 5:uqae008. [PMID: 38665235 PMCID: PMC11044969 DOI: 10.1093/femsml/uqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.
Collapse
Affiliation(s)
| | - Jörg Hacker
- German National Academy of Science Leopoldina, Jägerberg 1, D-06108 Halle, Germany
| | - David H Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Flowers Building, South Kensington Campus, Exhibition Road, Imperial College London, London SW7 2AZ, United Kingdom
| | - Staffan Normark
- Karolinska Institute, Tumor-och-cellbiologi, C1 Microbial Pathogenesis, 17177 Stockholm, Sweden
| | - Jörg Vogel
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str2/Gebaude D15; É. D-97080 Würzburg, Germany
| |
Collapse
|
8
|
Garrett SR, Palmer T. The role of proteinaceous toxins secreted by Staphylococcus aureus in interbacterial competition. FEMS MICROBES 2024; 5:xtae006. [PMID: 38495077 PMCID: PMC10941976 DOI: 10.1093/femsmc/xtae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Staphylococcus aureus is highly adapted to colonization of the mammalian host. In humans the primary site of colonization is the epithelium of the nasal cavity. A major barrier to colonization is the resident microbiota, which have mechanisms to exclude S. aureus. As such, S. aureus has evolved mechanisms to compete with other bacteria, one of which is through secretion of proteinaceous toxins. S. aureus strains collectively produce a number of well-characterized Class I, II, and IV bacteriocins as well as several bacteriocin-like substances, about which less is known. These bacteriocins have potent antibacterial activity against several Gram-positive organisms, with some also active against Gram-negative species. S. aureus bacteriocins characterized to date are sporadically produced, and often encoded on plasmids. More recently the type VII secretion system (T7SS) of S. aureus has also been shown to play a role in interbacterial competition. The T7SS is encoded by all S. aureus isolates and so may represent a more widespread mechanism of competition used by this species. T7SS antagonism is mediated by the secretion of large protein toxins, three of which have been characterized to date: a nuclease toxin, EsaD; a membrane depolarizing toxin, TspA; and a phospholipase toxin, TslA. Further study is required to decipher the role that these different types of secreted toxins play in interbacterial competition and colonization of the host.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
9
|
Klein TA, Shah PY, Gkragkopoulou P, Grebenc DW, Kim Y, Whitney JC. Structure of a tripartite protein complex that targets toxins to the type VII secretion system. Proc Natl Acad Sci U S A 2024; 121:e2312455121. [PMID: 38194450 PMCID: PMC10801868 DOI: 10.1073/pnas.2312455121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.
Collapse
Affiliation(s)
- Timothy A. Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Prakhar Y. Shah
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Polyniki Gkragkopoulou
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Dirk W. Grebenc
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - John C. Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
10
|
Garrett SR, Mietrach N, Deme J, Bitzer A, Yang Y, Ulhuq FR, Kretschmer D, Heilbronner S, Smith TK, Lea SM, Palmer T. A type VII-secreted lipase toxin with reverse domain arrangement. Nat Commun 2023; 14:8438. [PMID: 38114483 PMCID: PMC10730906 DOI: 10.1038/s41467-023-44221-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
The type VII protein secretion system (T7SS) is found in many Gram-positive bacteria and in pathogenic mycobacteria. All T7SS substrate proteins described to date share a common helical domain architecture at the N-terminus that typically interacts with other helical partner proteins, forming a composite signal sequence for targeting to the T7SS. The C-terminal domains are functionally diverse and in Gram-positive bacteria such as Staphylococcus aureus often specify toxic anti-bacterial activity. Here we describe the first example of a class of T7 substrate, TslA, that has a reverse domain organisation. TslA is widely found across Bacillota including Staphylococcus, Enterococcus and Listeria. We show that the S. aureus TslA N-terminal domain is a phospholipase A with anti-staphylococcal activity that is neutralised by the immunity lipoprotein TilA. Two small helical partner proteins, TlaA1 and TlaA2 are essential for T7-dependent secretion of TslA and at least one of these interacts with the TslA C-terminal domain to form a helical stack. Cryo-EM analysis of purified TslA complexes indicate that they share structural similarity with canonical T7 substrates. Our findings suggest that the T7SS has the capacity to recognise a secretion signal present at either end of a substrate.
Collapse
Affiliation(s)
- Stephen R Garrett
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Nicole Mietrach
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Justin Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Alina Bitzer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Yaping Yang
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fatima R Ulhuq
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Dorothee Kretschmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, United Kingdom
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Tracy Palmer
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
11
|
Boardman ER, Palmer T, Alcock F. Interbacterial competition mediated by the type VIIb secretion system. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001420. [PMID: 38116759 PMCID: PMC10765036 DOI: 10.1099/mic.0.001420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Successful occupancy of a given niche requires the colonising bacteria to interact extensively with the biotic and abiotic environment, including other resident microbes. Bacteria have evolved a range of protein secretion machines for this purpose with eleven such systems identified to date. The type VIIb secretion system (T7SSb) is utilised by Bacillota to secrete a range of protein substrates, including antibacterial toxins targeting closely related strains, and the system as a whole has been implicated in a range of activities such as iron acquisition, intercellular signalling, host colonisation and virulence. This review covers the components and secretion mechanism of the T7SSb, the substrates of these systems and their roles in Gram-positive bacteria, with a focus on interbacterial competition.
Collapse
Affiliation(s)
- Eleanor R. Boardman
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Felicity Alcock
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|