1
|
Chaves-Sanjuan A, D’Abrosca G, Russo V, van Erp B, Del Cont-Bernard A, Capelli R, Pirone L, Slapakova M, Sgambati D, Fattorusso R, Isernia C, Russo L, Barton I, Roop R, Pedone E, Bolognesi M, Dame R, Pedone P, Nardini M, Malgieri G, Baglivo I. Circular oligomeric particles formed by Ros/MucR family members mediate DNA organization in α-proteobacteria. Nucleic Acids Res 2024; 52:13945-13963. [PMID: 39588759 PMCID: PMC11662661 DOI: 10.1093/nar/gkae1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
The transcriptional regulator MucR from Brucella species controls the expression of many genes, including those involved in virulence, by binding AT-rich DNA regions. MucR and its homologs belong to the Ros/MucR family, whose members occur in α-proteobacteria. MucR is a recent addition to the family of histone-like nucleoid structuring (H-NS) proteins. Indeed, despite the lack of sequence homology, MucR bears many functional similarities with H-NS and H-NS-like proteins, structuring the bacterial genome and acting as global regulators of transcription. Here we present an integrated cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance, modeling and biochemical study shedding light on the functional architecture of MucR from Brucella abortus and its homolog Ml5 from Mesorhizobium loti. We show that MucR and Ml5 fold in a circular quaternary assembly, which allows it to bridge and condense DNA by binding AT-rich sequences. Our results show that Ros/MucR family members are a novel type of H-NS-like proteins and, based on previous studies, provide a model connecting nucleoid structure and transcription regulation in α-proteobacteria.
Collapse
Affiliation(s)
- Antonio Chaves-Sanjuan
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gianluca D’Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71100 Foggia, Italy
| | - Veronica Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Bert van Erp
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | | | - Riccardo Capelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martina Slapakova
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Domenico Sgambati
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Carla Isernia
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Roy Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Greenville, NC 27834, USA
| | - Emilia M Pedone
- Institute of Biostructures and Bioimaging, CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Einsteinweg 55, Leiden 2333CC, The Netherlands
| | - Paolo V Pedone
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
- Fondazione Romeo e Enrica Invernizzi and NOLIMITS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
2
|
Ponndara S, Kortebi M, Boccard F, Bury-Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2024. [PMID: 38922728 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginia S Lioy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Campbell M, Barton IS, Roop RM, Chien P. Comparison of CcrM-dependent methylation in Caulobacter crescentus and Brucella abortus by nanopore sequencing. J Bacteriol 2024; 206:e0008324. [PMID: 38722176 PMCID: PMC11332171 DOI: 10.1128/jb.00083-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024] Open
Abstract
Bacteria rely on DNA methylation for restriction-modification systems and epigenetic control of gene expression. Here, we use direct detection of methylated bases by nanopore sequencing to monitor global DNA methylation in Alphaproteobacteria, where use of this technique has not yet been reported. One representative of this order, Caulobacter crescentus, relies on DNA methylation to control cell cycle progression, but it is unclear whether other members of this order, such as Brucella abortus, depend on the same systems. We addressed these questions by first measuring CcrM-dependent DNA methylation in Caulobacter and showing excellent correlation between nanopore-based detection and previously published results. We then directly measure the impact of Lon-mediated CcrM degradation on the epigenome, verifying that loss of Lon results in pervasive methylation. We also show that the AlkB demethylase has no global impact on DNA methylation during normal growth. Next, we report on the global DNA methylation in B. abortus for the first time and find that CcrM-dependent methylation is reliant on Lon but impacts the two chromosomes differently. Finally, we explore the impact of the MucR transcription factor, known to compete with CcrM methylation, on the Brucella methylome and share the results with a publicly available visualization package. Our work demonstrates the utility of nanopore-based sequencing for epigenome measurements in Alphaproteobacteria and reveals new features of CcrM-dependent methylation in a zoonotic pathogen.IMPORTANCEDNA methylation plays an important role in bacteria, maintaining genome integrity and regulating gene expression. We used nanopore sequencing to directly measure methylated bases in Caulobacter crescentus and Brucella abortus. In Caulobacter, we showed that stabilization of the CcrM methyltransferase upon loss of the Lon protease results in prolific methylation and discovered that the putative methylase AlkB is unlikely to have a global physiological effect. We measured genome-wide methylation in Brucella for the first time, revealing a similar role for CcrM in cell-cycle methylation but a more complex regulation by the Lon protease than in Caulobacter. Finally, we show how the virulence factor MucR impacts DNA methylation patterns in Brucella.
Collapse
Affiliation(s)
- Maxwell Campbell
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Ian Scott Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, South Carolina, USA
| | - R. Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, South Carolina, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Zhai Y, Fang J, Zheng W, Hao M, Chen J, Liu X, Zhang M, Qi L, Zhou D, Liu W, Jin Y, Wang A. A potential virulence factor: Brucella flagellin FliK does not affect the main biological properties but inhibits the inflammatory response in RAW264.7 cells. Int Immunopharmacol 2024; 133:112119. [PMID: 38648715 DOI: 10.1016/j.intimp.2024.112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The bacterial flagellum is an elongated filament that protrudes from the cell and is responsible for bacterial motility. It can also be a pathogen-associated molecular pattern (PAMP) that regulates the host immune response and is involved in bacterial pathogenicity. In contrast to motile bacteria, the Brucella flagellum does not serve a motile purpose. Instead, it plays a role in regulating Brucella virulence and the host's immune response, similar to other non-motile bacteria. The flagellin protein, FliK, plays a key role in assembly of the flagellum and also as a potential virulence factor involved in the regulation of bacterial virulence and pathogenicity. In this study, we generated a Brucella suis S2 flik gene deletion strain and its complemented strain and found that deletion of the flik gene has no significant effect on the main biological properties of Brucella, but significantly enhanced the inflammatory response induced by Brucella infection of RAW264.7 macrophages. Further experiments demonstrated that the FliK protein was able to inhibit LPS-induced cellular inflammatory responses by down-regulating the expression of MyD88 and NF-κB, and by decreasing p65 phosphorylation in the NF-κB pathway; it also inhibited the expression of NLRP3 and caspase-1 in the NLRP3 inflammasome pathway. In conclusion, our study suggests that Brucella FliK may act as a virulence factor involved in the regulation of Brucella pathogenicity and modulation of the host immune response.
Collapse
Affiliation(s)
- Yunyi Zhai
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jiaoyang Fang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Weifang Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mingyue Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Jialu Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - XiaoFang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - MengYu Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Lin Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Dong Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Gao Y, Ma B, Xu Q, Peng Y, Gong H, Guan A, Hua K, Langford PR, Jin H, Luo R. Spatial proximity and gene function: a new dimension in prokaryotic gene association network analysis with 3D-GeneNet. Brief Bioinform 2024; 25:bbae320. [PMID: 38975892 PMCID: PMC11229033 DOI: 10.1093/bib/bbae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the biological functions and processes of genes, particularly those not yet characterized, is crucial for advancing molecular biology and identifying therapeutic targets. The hypothesis guiding this study is that the 3D proximity of genes correlates with their functional interactions and relevance in prokaryotes. We introduced 3D-GeneNet, an innovative software tool that utilizes high-throughput sequencing data from chromosome conformation capture techniques and integrates topological metrics to construct gene association networks. Through a series of comparative analyses focused on spatial versus linear distances, we explored various dimensions such as topological structure, functional enrichment levels, distribution patterns of linear distances among gene pairs, and the area under the receiver operating characteristic curve by utilizing model organism Escherichia coli K-12. Furthermore, 3D-GeneNet was shown to maintain good accuracy compared to multiple algorithms (neighbourhood, co-occurrence, coexpression, and fusion) across multiple bacteria, including E. coli, Brucella abortus, and Vibrio cholerae. In addition, the accuracy of 3D-GeneNet's prediction of long-distance gene interactions was identified by bacterial two-hybrid assays on E. coli K-12 MG1655, where 3D-GeneNet not only increased the accuracy of linear genomic distance tripled but also achieved 60% accuracy by running alone. Finally, it can be concluded that the applicability of 3D-GeneNet will extend to various bacterial forms, including Gram-negative, Gram-positive, single-, and multi-chromosomal bacteria through Hi-C sequencing and analysis. Such findings highlight the broad applicability and significant promise of this method in the realm of gene association network. 3D-GeneNet is freely accessible at https://github.com/gaoyuanccc/3D-GeneNet.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Qianshuai Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Yuna Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Huimin Gong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Aohan Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Kexin Hua
- Swine Genome and Breeding Team, Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| |
Collapse
|
6
|
Campbell M, Barton IS, Roop RM, Chien P. Comparison of CcrM-dependent methylation in Caulobacter crescentus and Brucella abortus by nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583015. [PMID: 38464217 PMCID: PMC10925313 DOI: 10.1101/2024.03.01.583015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Bacteria rely on DNA methylation for restriction-modification systems and epigenetic control of gene expression. Here, we use direct detection of methylated bases by nanopore sequencing to monitor global DNA methylation in Alphaproteobacteria, where use of this technique has not yet been reported. One representative of this order, Caulobacter crescentus, relies on DNA methylation to control cell cycle progression, but it is unclear whether other members of this order, such as Brucella abortus, depend on the same systems. We addressed these questions by first measuring CcrM-dependent DNA methylation in Caulobacter and show excellent correlation between nanopore-based detection and previously published results. We then directly measure the impact of Lon-mediated CcrM degradation on the epigenome, verifying that loss of Lon results in pervasive methylation. We also show that the AlkB demethylase has no global impact on DNA methylation during normal growth. Next, we report on the global DNA methylation in Brucella abortus for the first time and find that CcrM-dependent methylation is reliant on Lon but impacts the two chromosomes differently. Finally, we explore the impact of the MucR transcription factor, known to compete with CcrM methylation, on the Brucella methylome and share the results with a publicly available visualization package. Our work demonstrates the utility of nanopore-based sequencing for epigenome measurements in Alphaproteobacteria and reveals new features of CcrM-dependent methylation in a zoonotic pathogen.
Collapse
Affiliation(s)
- Maxwell Campbell
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA
| | - Ian Scott Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - R. Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|