1
|
Berne C, Zappa S, Brun YV. eDNA-stimulated cell dispersion from Caulobacter crescentus biofilms upon oxygen limitation is dependent on a toxin-antitoxin system. eLife 2023; 12:e80808. [PMID: 36475544 PMCID: PMC9851616 DOI: 10.7554/elife.80808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
In their natural environment, most bacteria preferentially live as complex surface-attached multicellular colonies called biofilms. Biofilms begin with a few cells adhering to a surface, where they multiply to form a mature colony. When conditions deteriorate, cells can leave the biofilm. This dispersion is thought to be an important process that modifies the overall biofilm architecture and that promotes colonization of new environments. In Caulobacter crescentus biofilms, extracellular DNA (eDNA) is released upon cell death and prevents newborn cells from joining the established biofilm. Thus, eDNA promotes the dispersal of newborn cells and the subsequent colonization of new environments. These observations suggest that eDNA is a cue for sensing detrimental environmental conditions in the biofilm. Here, we show that the toxin-antitoxin system (TAS) ParDE4 stimulates cell death in areas of a biofilm with decreased O2 availability. In conditions where O2 availability is low, eDNA concentration is correlated with cell death. Cell dispersal away from biofilms is decreased when parDE4 is deleted, probably due to the lower local eDNA concentration. Expression of parDE4 is positively regulated by O2 and the expression of this operon is decreased in biofilms where O2 availability is low. Thus, a programmed cell death mechanism using an O2-regulated TAS stimulates dispersal away from areas of a biofilm with decreased O2 availability and favors colonization of a new, more hospitable environment.
Collapse
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Sébastien Zappa
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de MontréalMontréalCanada
| |
Collapse
|
2
|
Rodriguez-Rodriguez BA, Ciabattoni GO, Valero-Jimenez AM, Crosse KM, Schinlever AR, Galvan JJR, Duerr R, Yeung ST, McGrath ME, Loomis C, Khanna KM, Desvignes L, Frieman MF, Ortigoza MB, Dittmann M. A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.04.510658. [PMID: 36238716 PMCID: PMC9558433 DOI: 10.1101/2022.10.04.510658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Small animal models have been a challenge for the study of SARS-CoV-2 transmission, with most investigators using golden hamsters or ferrets 1,2 . Mice have the advantages of low cost, wide availability, less regulatory and husbandry challenges, and the existence of a versatile reagent and genetic toolbox. However, adult mice do not transmit SARS-CoV-2 3 . Here we establish a model based on neonatal mice that allows for transmission of clinical SARS-CoV-2 isolates. We characterize tropism, respiratory tract replication and transmission of ancestral WA-1 compared to variants alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2) and omicron (B.1.1.529). We identify inter-variant differences in timing and magnitude of infectious particle shedding from index mice, both of which shape transmission to contact mice. Furthermore, we characterize two recombinant SARS-CoV-2 lacking either the ORF6 or ORF8 host antagonists. The removal of ORF8 shifts viral replication towards the lower respiratory tract, resulting in significantly delayed and reduced transmission. Our results demonstrate the potential of our neonatal mouse model to characterize viral and host determinants of SARS-CoV-2 transmission, while revealing for the first time a role for an accessory protein this context.
Collapse
|
3
|
HfaE Is a Component of the Holdfast Anchor Complex That Tethers the Holdfast Adhesin to the Cell Envelope. J Bacteriol 2022; 204:e0027322. [PMID: 36165621 PMCID: PMC9664946 DOI: 10.1128/jb.00273-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bacteria use adhesins to colonize different surfaces and form biofilms. The species of the Caulobacterales order use a polar adhesin called holdfast, composed of polysaccharides, proteins, and DNA, to irreversibly adhere to surfaces. In Caulobacter crescentus, a freshwater Caulobacterales species, the holdfast is anchored at the cell pole via the holdfast anchor (Hfa) proteins HfaA, HfaB, and HfaD. HfaA and HfaD colocalize with holdfast and are thought to form amyloid-like fibers that anchor holdfast to the cell envelope. HfaB, a lipoprotein, is required for the translocation of HfaA and HfaD to the cell surface. Deletion of the anchor proteins leads to a severe defect in adherence resulting from holdfast not being properly attached to the cell and shed into the medium. This phenotype is greater in a ΔhfaB mutant than in a ΔhfaA ΔhfaD double mutant, suggesting that HfaB has other functions besides the translocation of HfaA and HfaD. Here, we identify an additional HfaB-dependent holdfast anchoring protein, HfaE, which is predicted to be a secreted protein. HfaE is highly conserved among Caulobacterales species, with no predicted function. In planktonic culture, hfaE mutants produce holdfasts and rosettes similar to those produced by the wild type. However, holdfasts from hfaE mutants bind to the surface but are unable to anchor cells, similarly to other anchor mutants. We showed that fluorescently tagged HfaE colocalizes with holdfast and that HfaE forms an SDS-resistant high-molecular-weight species consistent with amyloid fiber formation. We propose that HfaE is a novel holdfast anchor protein and that HfaE functions to link holdfast material to the cell envelope. IMPORTANCE For surface attachment and biofilm formation, bacteria produce adhesins that are composed of polysaccharides, proteins, and DNA. Species of the Caulobacterales produce a specialized polar adhesin, holdfast, which is required for permanent attachment to surfaces. In this study, we evaluate the role of a newly identified holdfast anchor protein, HfaE, in holdfast anchoring to the cell surface in two different members of the Caulobacterales with drastically different environments. We show that HfaE plays an important role in adhesion and biofilm formation in the Caulobacterales. Our results provide insights into bacterial adhesins and how they interact with the cell envelope and surfaces.
Collapse
|
4
|
Onyeziri MC, Hardy GG, Natarajan R, Xu J, Reynolds IP, Kim J, Merritt PM, Danhorn T, Hibbing ME, Weisberg AJ, Chang JH, Fuqua C. Dual adhesive unipolar polysaccharides synthesized by overlapping biosynthetic pathways in Agrobacterium tumefaciens. Mol Microbiol 2022; 117:1023-1047. [PMID: 35191101 PMCID: PMC9149101 DOI: 10.1111/mmi.14887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
Agrobacterium tumefaciens is a member of the Alphaproteobacteria that pathogenises plants and associates with biotic and abiotic surfaces via a single cellular pole. A. tumefaciens produces the unipolar polysaccharide (UPP) at the site of surface contact. UPP production is normally surface-contact inducible, but elevated levels of the second messenger cyclic diguanylate monophosphate (cdGMP) bypass this requirement. Multiple lines of evidence suggest that the UPP has a central polysaccharide component. Using an A. tumefaciens derivative with elevated cdGMP and mutationally disabled for other dispensable polysaccharides, a series of related genetic screens have identified a large number of genes involved in UPP biosynthesis, most of which are Wzx-Wzy-type polysaccharide biosynthetic components. Extensive analyses of UPP production in these mutants have revealed that the UPP is composed of two genetically, chemically, and spatially discrete forms of polysaccharide, and that each requires a specific Wzy-type polymerase. Other important biosynthetic, processing, and regulatory functions for UPP production are also revealed, some of which are common to both polysaccharides, and a subset of which are specific to each type. Many of the UPP genes identified are conserved among diverse rhizobia, whereas others are more lineage specific.
Collapse
Affiliation(s)
| | - Gail G. Hardy
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ramya Natarajan
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jing Xu
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Ian P. Reynolds
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jinwoo Kim
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Peter M. Merritt
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Thomas Danhorn
- Department of Biology, Indiana University, Bloomington, IN 47405
| | | | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
5
|
Chepkwony NK, Brun YV. A polysaccharide deacetylase enhances bacterial adhesion in high-ionic-strength environments. iScience 2021; 24:103071. [PMID: 34568792 PMCID: PMC8449245 DOI: 10.1016/j.isci.2021.103071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Differences in ionic strength, pH, temperature, shear forces, and other environmental factors impact adhesion, and organisms have evolved various strategies to optimize their adhesins for their specific environmental conditions. Many species of Alphaproteobacteria, including members of the order Caulobacterales, use a polar adhesin, called holdfast, for surface attachment and subsequent biofilm formation in both freshwater and marine environments. Hirschia baltica, a marine member of Caulobacterales, produces a holdfast adhesin that tolerates a drastically higher ionic strength than the holdfast produced by its freshwater relative, Caulobacter crescentus. In this work, we show that the holdfast polysaccharide deacetylase HfsH plays an important role in adherence in high-ionic-strength environments. We show that increasing expression of HfsH improves holdfast binding in high-ionic-strength environments. We conclude that HfsH plays a role in modulating holdfast binding at high ionic strength and hypothesize that this modulation occurs through varied deacetylation of holdfast polysaccharides.
Collapse
Affiliation(s)
- Nelson K. Chepkwony
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Yves V. Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Han W, Zhou B, Yang K, Xiong X, Luan S, Wang Y, Xu Z, Lei P, Luo Z, Gao J, Zhan Y, Chen G, Liang L, Wang R, Li S, Xu H. Biofilm-inspired adhesive and antibacterial hydrogel with tough tissue integration performance for sealing hemostasis and wound healing. Bioact Mater 2020; 5:768-778. [PMID: 32637741 PMCID: PMC7317234 DOI: 10.1016/j.bioactmat.2020.05.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023] Open
Abstract
Uncontrolled bleeding and infection can cause significant increases in mortalities. Hydrogel sealants have attracted extensive attention for their ability to control bleeding. However, because interfacial water is a formidable barrier to strong surface bonding, a challenge remains in finding a product that offers robust tissue adhesion combined with anti-infection properties. Inspired by the strong adhesive mechanism of biofilm and mussels, we report a novel dual bionic adhesive hydrogel (DBAH) based on chitosan grafted with methacrylate (CS-MA), dopamine (DA), and N-hydroxymethyl acrylamide (NMA) via a facile radical polymerization process. CS-MA and DA were simultaneously included in the adhesive polymer for imitating the two key adhesive components: polysaccharide intercellular adhesin (PIA) of staphylococci biofilm and 3,4-dihydroxy-l-phenylalanine (Dopa) of mussel foot protein, respectively. DBAH presented strong adhesion at 34 kPa even upon three cycles of full immersion in water and was able to withstand up to 168 mm Hg blood pressure, which is significantly higher than the 60-160 mm Hg measured in most clinical settings. Most importantly, these hydrogels presented outstanding hemostatic capability under wet and dynamic in vivo movements while displaying excellent antibacterial properties and biocompatibility. Therefore, DBAH represents a promising class of biomaterials for high-efficiency hemostasis and wound healing.
Collapse
Affiliation(s)
- Wei Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Bo Zhou
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Avenue, Hefei, 230022, Anhui, PR China
| | - Kai Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Xin Xiong
- Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Yijing Zhan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Guopu Chen
- Department of Comparative Medicine, Jinling Hospital, No. 305 Zhongshan East Road, Nanjing, 210002, PR China
| | - Lei Liang
- Department of Comparative Medicine, Jinling Hospital, No. 305 Zhongshan East Road, Nanjing, 210002, PR China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
7
|
Nyarko A, Singla S, Barton HA, Dhinojwala A. Spectroscopic Identification of Peptide Chemistry in the Caulobacter crescentus Holdfast. Biochemistry 2020; 59:3508-3516. [PMID: 32844640 DOI: 10.1021/acs.biochem.0c00625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterium Caulobacter crescentus is known to attach irreversibly to underwater surfaces by utilizing an adhesive structure called the holdfast, which exhibits the greatest known adhesive strength of any organism. The very small size of the holdfast (∼400 nm wide and ∼40 nm high) has made direct chemical analysis difficult, and its structure remains poorly understood. In this study, we employ spectroscopic techniques, including attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy, to probe holdfast chemistry. The data indicate the presence of a peptide signal within the holdfast polymer. By comparing the ATR-IR spectrum of the holdfast to peptidoglycan spectra from other bacterial species, we demonstrate the similarity of the holdfast chemistry to that of peptidoglycan, suggesting peptide cross-linking may play a role in holdfast architecture. To probe the molecular groups at the interface, surface-sensitive sum frequency generation spectroscopy was used to show that aromatic and hydroxyl groups related to this protein content at the adhesive interface could be playing a crucial role in adhesion. On the basis of these results, we propose a model of the holdfast architecture with similarities to the peptide cross-linking observed in the peptidoglycan polymer of the bacterial cell wall. These results not only provide information about the development of adhesives that could be based on holdfast chemical architecture but also reveal a potentially yet unexplored biosynthetic pathway in holdfast synthesis that has not yet been revealed by genetic approaches, thereby opening up a potentially new avenue of research in holdfast synthesis.
Collapse
Affiliation(s)
- Alex Nyarko
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Saranshu Singla
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Hazel A Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
8
|
Ananchenko B, Belozerov V, Byvalov A, Konyshev I, Korzhavina A, Dudina L. Evaluation of intermolecular forces between lipopolysaccharides and monoclonal antibodies using atomic force microscopy. Int J Biol Macromol 2020; 156:841-850. [PMID: 32305368 DOI: 10.1016/j.ijbiomac.2020.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/20/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022]
Abstract
Understanding of interactions between a bacterium and an immune or non-immune host organism at the cellular and subcellular level is important in order to improve new and existing immunobiological tools for the treatment of bacterial infections (including pseudotuberculosis). The aim of this work was to quantify the interaction force between Yersinia pseudotuberculosis and monoclonal antibodies (mAbs) in the model system "lipopolysaccharide (LPS) - mAbs" by atomic force microscopy (AFM). Our research findings provided the methodical approaches to force measurements between an AFM probe, which was functionalized with Y. pseudotuberculosis LPS, and mica coated by different mAbs. Based on the criteria for force estimation there was shown a greater binding force in the system "LPS - complementary mAbs" than in the system "LPS - heterologous mAbs". In both cases binding force increase followed by increase a contact time between the functionalized AFM probe and mica from 1 to 5 s. It has been shown that single bonds between LPS and complementary mAbs molecules also included a clearly defined non-specific component along with immunochemically specific one. The evidence suggests a significant proportion of applied force exerted to unfolding of high-molecular aggregates whose length may attain many hundreds of nanometers.
Collapse
Affiliation(s)
| | - Vladislav Belozerov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | - Andrey Byvalov
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation.
| | - Ilya Konyshev
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| | | | - Lyubov Dudina
- The Institute of Physiology of the Коmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic 167982, Russian Federation; Vyatka State University, Kirov 610000, Russian Federation
| |
Collapse
|
9
|
Comparative Analysis of Ionic Strength Tolerance between Freshwater and Marine Caulobacterales Adhesins. J Bacteriol 2019; 201:JB.00061-19. [PMID: 30858293 DOI: 10.1128/jb.00061-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces. Therefore, marine bacteria must have developed adhesins with different compositions and structures than those of their freshwater counterparts to adapt to their natural environment. The dimorphic alphaproteobacterium Hirschia baltica is a marine budding bacterium in the clade Caulobacterales H. baltica uses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk, for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized in Caulobacter crescentus, a freshwater member of the Caulobacterales, and little is known about holdfast compositions and properties in marine Caulobacterales Here, we use H. baltica as a model to characterize holdfast properties in marine Caulobacterales We show that freshwater and marine Caulobacterales use similar genes in holdfast biogenesis and that these genes are highly conserved among the species in the two genera. We determine that H. baltica produces a larger holdfast than C. crescentus and that the holdfasts have different chemical compositions, as they contain N-acetylglucosamine and galactose monosaccharide residues and proteins but lack DNA. Finally, we show that H. baltica holdfasts tolerate higher ionic strength than those of C. crescentus We conclude that marine Caulobacterales holdfasts have physicochemical properties that maximize binding in high-ionic-strength environments.IMPORTANCE Most bacteria spend a large part of their life spans attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, and therefore, they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacterium C. crescentus and a relative, the marine bacterium H. baltica We show that H. baltica holdfasts have a different morphology and chemical composition and tolerate high ionic strength. Our results show that the H. baltica holdfast is an excellent model to study the effect of ionic strength on adhesion and provides insights into the physicochemical properties required for adhesion in the marine environment.
Collapse
|
10
|
Sulkowski NI, Hardy GG, Brun YV, Bharat TAM. A Multiprotein Complex Anchors Adhesive Holdfast at the Outer Membrane of Caulobacter crescentus. J Bacteriol 2019; 201:e00112-19. [PMID: 31061167 PMCID: PMC6707917 DOI: 10.1128/jb.00112-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/26/2019] [Indexed: 01/11/2023] Open
Abstract
Adhesion allows microbes to colonize surfaces and is the first stage in biofilm formation. Stable attachment of the freshwater alphaproteobacterium Caulobacter crescentus to surfaces requires an adhesive polysaccharide called holdfast, which is synthesized at a specific cell pole and ultimately found at the tip of cylindrical extensions of the cell envelope called stalks. Secretion and anchoring of holdfast to the cell surface are governed by proteins HfsDAB and HfaABD, respectively. The arrangement and organization of these proteins with respect to each other and the cell envelope, and the mechanism by which the holdfast is anchored on cells, are unknown. In this study, we have imaged a series of C. crescentus mutants using electron cryotomography, revealing the architecture and arrangement of the molecular machinery involved in holdfast anchoring in cells. We found that the holdfast is anchored to cells by a defined complex made up of the HfaABD proteins and that the HfsDAB secretion proteins are essential for proper assembly and localization of the HfaABD anchor. Subtomogram averaging of cell stalk tips showed that the HfaABD complex spans the outer membrane. The anchor protein HfaB is the major component of the anchor complex located on the periplasmic side of the outer membrane, while HfaA and HfaD are located on the cell surface. HfaB is the critical component of the complex, without which no HfaABD complex was observed in cells. These results allow us to propose a working model of holdfast anchoring, laying the groundwork for further structural and cell biological investigations.IMPORTANCE Adhesion and biofilm formation are fundamental processes that accompany bacterial colonization of surfaces, which are of critical importance in many infections. Caulobacter crescentus biofilm formation proceeds via irreversible adhesion mediated by a polar polysaccharide called holdfast. Mechanistic and structural details of how the holdfast is secreted and anchored on cells are still lacking. Here, we have assigned the location and described the arrangement of the holdfast anchor complex. This work increases our knowledge of the relatively underexplored field of polysaccharide-mediated adhesion by identifying structural elements that anchor polysaccharides to the cell envelope, which is important in a variety of bacterial species.
Collapse
Affiliation(s)
- Nina I Sulkowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Central Oxford Structural and Molecular Imaging Centre, Oxford, United Kingdom
| | - Gail G Hardy
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Central Oxford Structural and Molecular Imaging Centre, Oxford, United Kingdom
| |
Collapse
|
11
|
Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface. J Bacteriol 2019; 201:JB.00064-19. [PMID: 31010900 DOI: 10.1128/jb.00064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023] Open
Abstract
In aquatic environments, Caulobacter spp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features of Caulobacter crescentus colonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface, C. crescentus initially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trap C. crescentus cells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required for C. crescentus to partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment.IMPORTANCE In aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enables Caulobacter crescentus to partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved in Caulobacter spp. and other members of the diverse class Alphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems.
Collapse
|
12
|
The Two Chemotaxis Clusters in Caulobacter crescentus Play Different Roles in Chemotaxis and Biofilm Regulation. J Bacteriol 2019; 201:JB.00071-19. [PMID: 31109992 DOI: 10.1128/jb.00071-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
The holdfast polysaccharide adhesin is crucial for irreversible cell adhesion and biofilm formation in Caulobacter crescentus Holdfast production is tightly controlled via developmental regulators, as well as via environmental and physical signals. Here, we identify a novel mode of regulation of holdfast synthesis that involves chemotaxis proteins. We characterized the two identified chemotaxis clusters of C. crescentus and showed that only the previously characterized major cluster is involved in the chemotactic response toward different carbon sources. However, both chemotaxis clusters encoded in the C. crescentus genome play a role in biofilm formation and holdfast production by regulating the expression of hfiA, the gene encoding the holdfast inhibitor HfiA. We show that CheA and CheB proteins act in an antagonistic manner, as follows: while the two CheA proteins negatively regulate hfiA expression, the CheB proteins are positive regulators, thus providing a modulation of holdfast synthesis and surface attachment.IMPORTANCE Chemosensory systems constitute major signal transduction pathways in bacteria. These systems are involved in chemotaxis and other cell responses to environment conditions, such as the production of adhesins to enable irreversible adhesion to a surface and surface colonization. The C. crescentus genome encodes two complete chemotaxis clusters. Here, we characterized the second novel chemotaxis-like cluster. While only the major chemotaxis cluster is involved in chemotaxis, both chemotaxis systems modulate C. crescentus adhesion by controlling expression of the holdfast synthesis inhibitor HfiA. Here, we identify a new level in holdfast regulation, providing new insights into the control of adhesin production that leads to the formation of biofilms in response to the environment.
Collapse
|
13
|
Composition of the Holdfast Polysaccharide from Caulobacter crescentus. J Bacteriol 2019; 201:JB.00276-19. [PMID: 31209074 DOI: 10.1128/jb.00276-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Surface colonization is central to the lifestyles of many bacteria. Exploiting surface niches requires sophisticated systems for sensing and attaching to solid materials. Caulobacter crescentus synthesizes a polysaccharide-based adhesin known as the holdfast at one of its cell poles, which enables tight attachment to exogenous surfaces. The genes required for holdfast biosynthesis have been analyzed in detail, but difficulties in isolating analytical quantities of the adhesin have limited efforts to characterize its chemical structure. In this report, we describe a method to extract the holdfast from C. crescentus cultures and present a survey of its carbohydrate content. Glucose, 3-O-methylglucose, mannose, N-acetylglucosamine, and xylose were detected in our extracts. Our results provide evidence that the holdfast contains a 1,4-linked backbone of glucose, mannose, N-acetylglucosamine, and xylose that is decorated with branches at the C-6 positions of glucose and mannose. By defining the monosaccharide components in the polysaccharide, our work establishes a framework for characterizing enzymes in the holdfast pathway and provides a broader understanding of how polysaccharide adhesins are built.IMPORTANCE To colonize solid substrates, bacteria often deploy dedicated adhesins that facilitate attachment to surfaces. Caulobacter crescentus initiates surface colonization by secreting a carbohydrate-based adhesin called the holdfast. Because little is known about the chemical makeup of the holdfast, the pathway for its biosynthesis and the physical basis for its unique adhesive properties are poorly understood. This study outlines a method to extract the C. crescentus holdfast and describes the monosaccharide components contained within the adhesive matrix. The composition analysis adds to our understanding of the chemical basis for holdfast attachment and provides missing information needed to characterize enzymes in the biosynthetic pathway.
Collapse
|
14
|
Gordon VD, Wang L. Bacterial mechanosensing: the force will be with you, always. J Cell Sci 2019; 132:132/7/jcs227694. [PMID: 30944157 DOI: 10.1242/jcs.227694] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Whether bacteria are in the planktonic state, free-swimming or free-floating in liquid, or in the biofilm state, sessile on surfaces, they are always subject to mechanical forces. The long, successful evolutionary history of bacteria implies that they are capable of adapting to varied mechanical forces, and probably even actively respond to mechanical cues in their changing environments. However, the sensing of mechanical cues by bacteria, or bacterial mechanosensing, has been under-investigated. This leaves the mechanisms underlying how bacteria perceive and respond to mechanical cues largely unknown. In this Review, we first examine the surface-associated behavior of bacteria, outline the clear evidence for bacterial mechanosensing and summarize the role of flagella, type-IV pili, and envelope proteins as potential mechanosensors, before presenting indirect evidence for mechanosensing in bacteria. The general themes underlying bacterial mechanosensing that we highlight here may provide a framework for future research.
Collapse
Affiliation(s)
- Vernita D Gordon
- Department of Physics and Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Liyun Wang
- Department of Physics and Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
15
|
A Genome-Wide Analysis of Adhesion in Caulobacter crescentus Identifies New Regulatory and Biosynthetic Components for Holdfast Assembly. mBio 2019; 10:mBio.02273-18. [PMID: 30755507 PMCID: PMC6372794 DOI: 10.1128/mbio.02273-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to their intimate physical interactions with the environment, surface polysaccharides are critical determinants of fitness for bacteria. Caulobacter crescentus produces a specialized structure at one of its cell poles called the holdfast that enables attachment to surfaces. Previous studies have shown that the holdfast is composed of carbohydrate-based material and identified a number of genes required for holdfast development. However, incomplete information about its chemical structure, biosynthetic genes, and regulatory principles has limited progress in understanding the mechanism of holdfast synthesis. We leveraged the adhesive properties of the holdfast to perform a saturating screen for genes affecting attachment to cheesecloth over a multiday time course. Using similarities in the temporal profiles of mutants in a transposon library, we defined discrete clusters of genes with related effects on cheesecloth colonization. Holdfast synthesis, flagellar motility, type IV pilus assembly, and smooth lipopolysaccharide (SLPS) production represented key classes of adhesion determinants. Examining these clusters in detail allowed us to predict and experimentally define the functions of multiple uncharacterized genes in both the holdfast and SLPS pathways. In addition, we showed that the pilus and the flagellum control holdfast synthesis separately by modulating the holdfast inhibitor hfiA. This report defines a set of genes contributing to adhesion that includes newly discovered genes required for holdfast biosynthesis and attachment. Our data provide evidence that the holdfast contains a complex polysaccharide with at least four monosaccharides in the repeating unit and underscore the central role of cell polarity in mediating attachment of C. crescentus to surfaces.IMPORTANCE Bacteria routinely encounter biotic and abiotic materials in their surrounding environments, and they often enlist specific behavioral programs to colonize these materials. Adhesion is an early step in colonizing a surface. Caulobacter crescentus produces a structure called the holdfast which allows this organism to attach to and colonize surfaces. To understand how the holdfast is produced, we performed a genome-wide search for genes that contribute to adhesion by selecting for mutants that could not attach to cheesecloth. We discovered complex interactions between genes that mediate surface contact and genes that contribute to holdfast development. Our genetic selection identified what likely represents a comprehensive set of genes required to generate a holdfast, laying the groundwork for a detailed characterization of the enzymes that build this specialized adhesin.
Collapse
|
16
|
Ultee E, Ramijan K, Dame RT, Briegel A, Claessen D. Stress-induced adaptive morphogenesis in bacteria. Adv Microb Physiol 2019; 74:97-141. [PMID: 31126537 DOI: 10.1016/bs.ampbs.2019.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.
Collapse
Affiliation(s)
- Eveline Ultee
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Karina Ramijan
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Remus T Dame
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands; Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CE Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
17
|
Berne C, Ellison CK, Agarwal R, Severin GB, Fiebig A, Morton RI, Waters CM, Brun YV. Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA. Mol Microbiol 2018; 110:219-238. [PMID: 30079982 DOI: 10.1111/mmi.14099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/23/2022]
Abstract
To permanently attach to surfaces, Caulobacter crescentusproduces a strong adhesive, the holdfast. The timing of holdfast synthesis is developmentally regulated by cell cycle cues. When C. crescentusis grown in a complex medium, holdfast synthesis can also be stimulated by surface sensing, in which swarmer cells rapidly synthesize holdfast in direct response to surface contact. In contrast to growth in complex medium, here we show that when cells are grown in a defined medium, surface contact does not trigger holdfast synthesis. Moreover, we show that in a defined medium, flagellum synthesis and regulation of holdfast production are linked. In these conditions, mutants lacking a flagellum attach to surfaces over time more efficiently than either wild-type strains or strains harboring a paralyzed flagellum. Enhanced adhesion in mutants lacking flagellar components is due to premature holdfast synthesis during the cell cycle and is regulated by the holdfast synthesis inhibitor HfiA. hfiA transcription is reduced in flagellar mutants and this reduction is modulated by the diguanylate cyclase developmental regulator PleD. We also show that, in contrast to previous predictions, flagella are not necessarily required for C. crescentus surface sensing in the absence of flow, and that arrest of flagellar rotation does not stimulate holdfast synthesis. Rather, our data support a model in which flagellum assembly feeds back to control holdfast synthesis via HfiA expression in a c-di-GMP-dependent manner under defined nutrient conditions.
Collapse
Affiliation(s)
- Cécile Berne
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Courtney K Ellison
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Radhika Agarwal
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Geoffrey B Severin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Robert I Morton
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Yves V Brun
- Department of Biology, Indiana University, 1001 E. 3rd Street, Bloomington, IN, 47405, USA
| |
Collapse
|
18
|
Berne C, Ellison CK, Ducret A, Brun YV. Bacterial adhesion at the single-cell level. Nat Rev Microbiol 2018; 16:616-627. [DOI: 10.1038/s41579-018-0057-5] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|