1
|
Zhou X, Song H, Pan F, Yuan C, Jia L, Wu B, Fan H, Ma Z. The dual M protein systems have diverse biological characteristics, but both contribute to M18-type Group A Streptococcus pathogenicity. Microbes Infect 2023:105209. [PMID: 37597608 DOI: 10.1016/j.micinf.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
M protein is a key surface virulence factor in Group A Streptococcus (GAS), Group C Streptococcus (GCS), and other streptococcal species. GAS encodes M protein using the emm gene, while GCS employs the szm (or sem) gene. In M18-type GAS, dual M protein systems exist, comprising both GAS and GCS M proteins (encoded separately by emm18 and spa18). The spa18 gene in M18-type GAS shares a conserved region highly similar to GCS's szm gene. Our study reveals that spa18 exhibits higher transcription levels than emm18 in M18-type GAS strains. The dual M protein systems defective mutant (Δemm18Δspa18) displays a smooth surface, whereas wild-type and single M protein gene mutants remain rough. M18 and SPA18 proteins possess distinct characteristics, showing varied binding properties and cytotoxicity effects on macrophages (THP-1) and keratinocytes (HaCaT). Both emm18 and spa18 genes contribute to the skin pathogenicity of M18-type GAS. Transcriptome analysis suggests the potential involvement of the mga gene in spa18 transcription regulation, while SpyM18_2047 appears to be specific to spa18 regulation. In summary, this research offers a crucial understanding of the biological characteristics of dual M protein systems in M18-type GAS, highlighting their contributions to virulence and transcriptional regulation.
Collapse
Affiliation(s)
- Xiaorui Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Haoshuai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Fei Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Lu Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Bing Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
2
|
Pan F, Zhu M, Liang Y, Yuan C, Zhang Y, Wang Y, Fan H, Waldor MK, Ma Z. Membrane vesicle delivery of a streptococcal M protein disrupts the blood-brain barrier by inducing autophagic endothelial cell death. Proc Natl Acad Sci U S A 2023; 120:e2219435120. [PMID: 37276410 PMCID: PMC10268326 DOI: 10.1073/pnas.2219435120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.
Collapse
Affiliation(s)
- Fei Pan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Mingli Zhu
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Ying Liang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Chen Yuan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yu Zhang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yuchang Wang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Hongjie Fan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| | - Matthew K. Waldor
- HHMI, Boston, MA02115
- Brigham and Women’s HospitalDivision of Infectious Diseases, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Zhe Ma
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| |
Collapse
|
3
|
Protection Efficacy of Monoclonal Antibodies Targeting Different Regions of Specific SzM Protein from Swine-Isolated Streptococcus equi ssp. zooepidemicus Strains. Microbiol Spectr 2022; 10:e0174222. [PMID: 36255327 PMCID: PMC9769693 DOI: 10.1128/spectrum.01742-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) has a wide host spectrum, including humans and domestic animals. The SEZ-caused swine streptococcicosis outbreak has occurred in several countries, and the swine-isolated strains usually have specific S. zooepidemicus M-like (szm) gene types. In this study, we found that the production of this specific szm gene (SzM protein) was an effective vaccine candidate. It could provide better protection with a 7-day interval immune procedure than the traditional vaccine strain ST171 and attenuate the strain ΔsezV against swine-isolated hypervirulent SEZ infections. According to this outcome, we developed monoclonal antibodies (McAbs) targeting the variable and conserved regions of this SzM protein, respectively. These McAbs all belong to the IgG1 isotype with a κ type light chain and have opsonophagocytic activity rather than agglutination or complement activation functions. We estimated the protection efficiency of the McAbs with 3 different passive immunotherapy programs. The anti-conserved region McAb can provide effective protection against swine-isolated SEZ infections with only the inconvenient immunotherapy program. It also partially works in preventing infection by other SEZ strains. In contrast, the anti-variable region McAb is only adapted to protect the host against a specific szm type SEZ strain isolated from pigs, but it is flexible for different immunotherapy programs. These data provide further information to guide the development of derived, genetically engineered McAbs that have potential applications in protecting hosts against swine-isolated, hypervirulent SEZ infections in the future. IMPORTANCE The swine-isolated SEZ, with its specific szm gene sequence, has impacted the pig feeding industry in China and North America and has led to serious economic loss. Though the SzM protein of SEZ has been proven to be an effective vaccine in preventing infection, most previous studies focused on horse-isolated strains, which have different szm gene types compared to swine-isolated strains. In this study, we developed the McAbs targeting the conserved and variable regions of this SzM protein from the swine-isolated hypervirulent strains and evaluated their protection efficiency. Our research provided information for the development of chimeric McAbs or other genetically engineered McAbs that have potential applications in protecting pigs against hypervirulent SEZ infections in the future.
Collapse
|
4
|
Li G, Zong X, Cheng Y, Xu J, Deng J, Huang Y, Ma C, Fu Q. miR-223-3p contributes to suppressing NLRP3 inflammasome activation in Streptococcus equi ssp. zooepidemicus infection. Vet Microbiol 2022; 269:109430. [PMID: 35427992 DOI: 10.1016/j.vetmic.2022.109430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 11/20/2022]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is an essential pathogen in a range of species, causing a worldwide variety of diseases, such as meningitis, endocarditis, and septicaemia. Studies have shown that microRNAs (miRNAs), which regulate target genes at the post-transcriptional level, play an important regulatory role in the organism. In this study, the infection of J774A.1 murine macrophages with SEZ up-regulated NLRP3 inflammasome and downstream pathways accompanied by miR-223-3p down-regulation. Through computational prediction and experimental confirmation, we have shown that miR-223-3p directly targets the NLRP3 mRNA. Consequently, overexpression of miR-223-3p suppressed NLRP3 inflammasome activation and downstream pathways in response to SEZ infection. The miR-223-3p inhibitor exhibited the opposite effect, causing hyperactivation of NLRP3 inflammation activation and downstream pathways. Additionally, we further demonstrated that miRNA-223-3p inhibited the secretion of IL-1β and IL-18 by regulating the NLRP3/caspase-1 pathway. Furthermore, intravenous administration of miR-223-3p significantly decreased inflammation in mice in response to SEZ. In conclusion, our results demonstrated that miR-223-3p contributes to suppressing the NLRP3 inflammasome activation in SEZ infection, contributing novel evidence to identify a therapeutic target for treating SEZ.
Collapse
Affiliation(s)
- Guochao Li
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Xueqing Zong
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Yun Cheng
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jianqi Xu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Jingfei Deng
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China
| | - Chunquan Ma
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong 528225, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong 528225, China.
| |
Collapse
|
5
|
BifA Triggers Phosphorylation of Ezrin to Benefit Streptococcus equi subsp. zooepidemicus Survival from Neutrophils Killing. Biomedicines 2022; 10:biomedicines10050932. [PMID: 35625669 PMCID: PMC9138245 DOI: 10.3390/biomedicines10050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) ATCC35246 can invade the brain and cause severe neutrophils infiltration in brain tissue. This microorganism can survive and reproduce to an extremely high CFU burden (108–109/organ) under stressful neutrophils infiltration circumstances. The aim of this research is to explore the mechanism of the SEZ hypervirulent strain with its specific bifA gene which avoids being eliminated by neutrophils in the brain. We isolated the primary mouse neutrophils to treat SEZ WT and bifA gene defective (ΔBif) strains. The ΔBif strain had a weakened function of defending against neutrophils killing in vitro. The interaction between BifA and ezrin proteins in neutrophils were identified by co-IP and immunoblot. In neutrophils, the BifA interacts with ezrin and triggers the phosphorylation of ezrin at its Thr567 site in a PKC-dependent manner, then the excessive elevation of phosphorylated-ezrin recruits Dbl and activates Rac1. Since the Rac1 is closely relevant to several critical cellular functions, its abnormal activation will lead to neutrophils dysfunction and benefit to SEZ survival from neutrophils killing. Our findings reveal a novel consequence of BifA and ERM family protein (for ezrin, radixin, moesin) interaction, which happens between BifA and ezrin in neutrophils and contributes to SEZ survival in the brain. BifA should be considered as a potential target for drug development to prevent SEZ infection.
Collapse
|
6
|
Bai Q, Ma J, Zhang Z, Zhong X, Pan Z, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. YSIRK-G/S-directed translocation is required for Streptococcus suis to deliver diverse cell wall anchoring effectors contributing to bacterial pathogenicity. Virulence 2021; 11:1539-1556. [PMID: 33138686 PMCID: PMC7644249 DOI: 10.1080/21505594.2020.1838740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Streptococcus suis serotype 2 (SS2) is a significant zoonotic pathogen that is responsible for various swine diseases, even causing cytokine storms of Streptococcal toxic shock-like syndromes amongst human. Cell wall anchoring proteins with a C-terminal LPxTG are considered to play vital roles during SS2 infection; however, their exporting mechanism across cytoplasmic membranes has remained vague. This study found that YSIRK-G/S was involved in the exportation of LPxTG-anchoring virulence factors MRP and SspA in virulent SS2 strain ZY05719. The whole-genome analysis indicated that diverse LPxTG proteins fused with an N-terminal YSIRK-G/S motif are encoded in strain ZY05719. Two novel LPxTG proteins SspB and YzpA were verified to be exported via a putative transport system that was dependent on the YSIRK-G/S directed translocation, and portrayed vital functions during the infection of SS2 strain ZY05719. Instead of exhibiting an inactivation of C5a peptidase in SspB, another LPxTG protein with an N-terminal YSIRK-G/S motif from Streptococcus agalactiae was depicted to cleave the C5a component of the host complement. The consequent domain-architecture retrieval determined more than 10,000 SspB/YzpA like proteins that are extensively distributed in the Gram-positive bacteria, and most of them harbor diverse glycosyl hydrolase or peptidase domains within their middle regions, thus presenting their capability to interact with host cells. The said findings provide compelling evidence that LPxTG proteins with an N-terminal YSIRK-G/S motif are polymorphic effectors secreted by Gram-positive bacteria, which can be further proposed to define as cell wall anchoring effectors in a new subset.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture , Nanjing, China.,Department of pathogenic diagnosis, OIE Reference Lab for Swine Streptococcosis , Nanjing, China
| |
Collapse
|
7
|
Cohen ND, Cywes-Bentley C, Kahn SM, Bordin AI, Bray JM, Wehmeyer SG, Pier GB. Vaccination of yearling horses against poly-N-acetyl glucosamine fails to protect against infection with Streptococcus equi subspecies equi. PLoS One 2020; 15:e0240479. [PMID: 33057397 PMCID: PMC7561144 DOI: 10.1371/journal.pone.0240479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/27/2020] [Indexed: 12/04/2022] Open
Abstract
Strangles is a common disease of horses with worldwide distribution caused by the bacterium Streptococcus equi subspecies equi (SEE). Although vaccines against strangles are available commercially, these products have limitations in safety and efficacy. The microbial surface antigen β 1→6 poly-N-acetylglucosamine (PNAG) is expressed by SEE. Here we show that intramuscular (IM) injection alone or a combination of IM plus intranasal (IN) immunization generated antibodies to PNAG that functioned to deposit complement and mediate opsonophagocytic killing of SEE ex vivo. However, immunization strategies targeting PNAG either by either IM only injection or a combination of IM and IN immunizations failed to protect yearling horses against infection following contact with infected horses in an experimental setting. We speculate that a protective vaccine against strangles will require additional components, such as those targeting SEE enzymes that degrade or inactivate equine IgG.
Collapse
Affiliation(s)
- Noah D. Cohen
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
- * E-mail: (NDC); (GBP)
| | - Colette Cywes-Bentley
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
| | - Susanne M. Kahn
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Angela I. Bordin
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Jocelyne M. Bray
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - S. Garrett Wehmeyer
- Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Gerald B. Pier
- Harvard Medical School, Brigham & Women’s Hospital, Boston, MA, United States of America
- * E-mail: (NDC); (GBP)
| |
Collapse
|