1
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. eLife 2024; 12:RP91125. [PMID: 38358918 PMCID: PMC10942596 DOI: 10.7554/elife.91125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alyssa J Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yi He
- Thermo Fisher ScientificSan JoseUnited States
| | - Weijing Liu
- Thermo Fisher ScientificSan JoseUnited States
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
2
|
Hong Y, Hu D, Verderosa AD, Qin J, Totsika M, Reeves PR. Repeat-Unit Elongations To Produce Bacterial Complex Long Polysaccharide Chains, an O-Antigen Perspective. EcoSal Plus 2023; 11:eesp00202022. [PMID: 36622162 PMCID: PMC10729934 DOI: 10.1128/ecosalplus.esp-0020-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 01/10/2023]
Abstract
The O-antigen, a long polysaccharide that constitutes the distal part of the outer membrane-anchored lipopolysaccharide, is one of the critical components in the protective outer membrane of Gram-negative bacteria. Most species produce one of the structurally diverse O-antigens, with nearly all the polysaccharide components having complex structures made by the Wzx/Wzy pathway. This pathway produces repeat-units of mostly 3-8 sugars on the cytosolic face of the cytoplasmic membrane that is translocated by Wzx flippase to the periplasmic face and polymerized by Wzy polymerase to give long-chain polysaccharides. The Wzy polymerase is a highly diverse integral membrane protein typically containing 10-14 transmembrane segments. Biochemical evidence confirmed that Wzy polymerase is the sole driver of polymerization, and recent progress also began to demystify its interacting partner, Wzz, shedding some light to speculate how the proteins may operate together during polysaccharide biogenesis. However, our knowledge of how the highly variable Wzy proteins work as part of the O-antigen processing machinery remains poor. Here, we discuss the progress to the current understanding of repeat-unit polymerization and propose an updated model to explain the formation of additional short chain O-antigen polymers found in the lipopolysaccharide of diverse Gram-negative species and their importance in the biosynthetic process.
Collapse
Affiliation(s)
- Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Dalong Hu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter R. Reeves
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Li J, Xu X, Shi J, Hermoso JA, Sham LT, Luo M. Regulation of the cell division hydrolase RipC by the FtsEX system in Mycobacterium tuberculosis. Nat Commun 2023; 14:7999. [PMID: 38044344 PMCID: PMC10694151 DOI: 10.1038/s41467-023-43770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
The FtsEX complex regulates, directly or via a protein mediator depending on bacterial genera, peptidoglycan degradation for cell division. In mycobacteria and Gram-positive bacteria, the FtsEX system directly activates peptidoglycan-hydrolases by a mechanism that remains unclear. Here we report our investigation of Mycobacterium tuberculosis FtsEX as a non-canonical regulator with high basal ATPase activity. The cryo-EM structures of the FtsEX system alone and in complex with RipC, as well as the ATP-activated state, unveil detailed information on the signal transduction mechanism, leading to the activation of RipC. Our findings indicate that RipC is recognized through a "Match and Fit" mechanism, resulting in an asymmetric rearrangement of the extracellular domains of FtsX and a unique inclined binding mode of RipC. This study provides insights into the molecular mechanisms of FtsEX and RipC regulation in the context of a critical human pathogen, guiding the design of drugs targeting peptidoglycan remodeling.
Collapse
Affiliation(s)
- Jianwei Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jian Shi
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Yu L, Xu X, Chua WZ, Feng H, Ser Z, Shao K, Shi J, Wang Y, Li Z, Sobota RM, Sham LT, Luo M. Structural basis of peptide secretion for Quorum sensing by ComA. Nat Commun 2023; 14:7178. [PMID: 37935699 PMCID: PMC10630487 DOI: 10.1038/s41467-023-42852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Quorum sensing (QS) is a crucial regulatory mechanism controlling bacterial signalling and holds promise for novel therapies against antimicrobial resistance. In Gram-positive bacteria, such as Streptococcus pneumoniae, ComA is a conserved efflux pump responsible for the maturation and secretion of peptide signals, including the competence-stimulating peptide (CSP), yet its structure and function remain unclear. Here, we functionally characterize ComA as an ABC transporter with high ATP affinity and determined its cryo-EM structures in the presence or absence of CSP or nucleotides. Our findings reveal a network of strong electrostatic interactions unique to ComA at the intracellular gate, a putative binding pocket for two CSP molecules, and negatively charged residues facilitating CSP translocation. Mutations of these residues affect ComA's peptidase activity in-vitro and prevent CSP export in-vivo. We demonstrate that ATP-Mg2+ triggers the outward-facing conformation of ComA for CSP release, rather than ATP alone. Our study provides molecular insights into the QS signal peptide secretion, highlighting potential targets for QS-targeting drugs.
Collapse
Affiliation(s)
- Lin Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Hao Feng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Kai Shao
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Yumei Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Zongli Li
- Harvard Cryo-EM Center for Structural Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Su T, Chua WZ, Liu Y, Fan J, Tan SY, Yang DW, Sham LT. Rewiring the pneumococcal capsule pathway for investigating glycosyltransferase specificity and genetic glycoengineering. SCIENCE ADVANCES 2023; 9:eadi8157. [PMID: 37672581 PMCID: PMC10482335 DOI: 10.1126/sciadv.adi8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Virtually all living cells are covered with glycans. Their structures are primarily controlled by the specificities of glycosyltransferases (GTs). GTs typically adopt one of the three folds, namely, GT-A, GT-B, and GT-C. However, what defines their specificities remain poorly understood. Here, we developed a genetic glycoengineering platform by reprogramming the capsular polysaccharide pathways in Streptococcus pneumoniae to interrogate GT specificity and manipulate glycan structures. Our findings suggest that the central cleft of GT-B enzymes is important for determining acceptor specificity. The constraint of the glycoengineering platform was partially alleviated when the specificity of the precursor transporter was reduced, indicating that the transporter contributes to the overall fidelity of glycan synthesis. We also modified the pneumococcal capsule to produce several medically important mammalian glycans, as well as demonstrated the importance of regiochemistry in a glycosidic linkage on binding lung epithelial cells. Our work provided mechanistic insights into GT specificity and an approach for investigating glycan functions.
Collapse
Affiliation(s)
- Tong Su
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Yao Liu
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Jingsong Fan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Si-Yin Tan
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Dai-wen Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117545, Singapore
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| |
Collapse
|
6
|
Nakamoto R, Bamyaci S, Blomqvist K, Normark S, Henriques-Normark B, Sham LT. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat Commun 2023; 14:3170. [PMID: 37264013 DOI: 10.1038/s41467-023-38904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial cell envelope consists of multiple layers, including the peptidoglycan cell wall, one or two membranes, and often an external layer composed of capsular polysaccharides (CPS) or other components. How the synthesis of all these layers is precisely coordinated remains unclear. Here, we identify a mechanism that coordinates the synthesis of CPS and peptidoglycan in Streptococcus pneumoniae. We show that CPS synthesis initiates from the division septum and propagates along the long axis of the cell, organized by the tyrosine kinase system CpsCD. CpsC and the rest of the CPS synthesis complex are recruited to the septum by proteins associated with the divisome (a complex involved in septal peptidoglycan synthesis) but not the elongasome (involved in peripheral peptidoglycan synthesis). Assembly of the CPS complex starts with CpsCD, then CpsA and CpsH, the glycosyltransferases, and finally CpsJ. Remarkably, targeting CpsC to the cell pole is sufficient to reposition CPS synthesis, leading to diplococci that lack CPS at the septum. We propose that septal CPS synthesis is important for chain formation and complement evasion, thereby promoting bacterial survival inside the host.
Collapse
Affiliation(s)
- Rei Nakamoto
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Sarp Bamyaci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
7
|
Xu X, Li J, Chua WZ, Pages MA, Shi J, Hermoso JA, Bernhardt T, Sham LT, Luo M. Mechanistic insights into the regulation of cell wall hydrolysis by FtsEX and EnvC at the bacterial division site. Proc Natl Acad Sci U S A 2023; 120:e2301897120. [PMID: 37186861 PMCID: PMC10214136 DOI: 10.1073/pnas.2301897120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
The peptidoglycan (PG) cell wall produced by the bacterial division machinery is initially shared between the daughters and must be split to promote cell separation and complete division. In gram-negative bacteria, enzymes that cleave PG called amidases play major roles in the separation process. To prevent spurious cell wall cleavage that can lead to cell lysis, amidases like AmiB are autoinhibited by a regulatory helix. Autoinhibition is relieved at the division site by the activator EnvC, which is in turn regulated by the ATP-binding cassette (ABC) transporter-like complex called FtsEX. EnvC is also known to be autoinhibited by a regulatory helix (RH), but how its activity is modulated by FtsEX and the mechanism by which it activates the amidases have remained unclear. Here, we investigated this regulation by determining the structure of Pseudomonas aeruginosa FtsEX alone with or without bound ATP, in complex with EnvC, and in a FtsEX-EnvC-AmiB supercomplex. In combination with biochemical studies, the structures reveal that ATP binding is likely to activate FtsEX-EnvC and promote its association with AmiB. Furthermore, the AmiB activation mechanism is shown to involve a RH rearrangement. In the activated state of the complex, the inhibitory helix of EnvC is released, freeing it to associate with the RH of AmiB, which liberates its active site for PG cleavage. These regulatory helices are found in many EnvC proteins and amidases throughout gram-negative bacteria, suggesting that the activation mechanism is broadly conserved and a potential target for lysis-inducing antibiotics that misregulate the complex.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
| | - Jianwei Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545, Singapore
| | - Martin A. Pages
- Department of Crystallography and Structural Biology, Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid28006, Spain
| | - Jian Shi
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore117543
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física “Rocasolano”, Consejo Superior de Investigaciones Científicas, Madrid28006, Spain
| | - Thomas Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- HHMI, MA02115, Boston
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545, Singapore
| | - Min Luo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore117543
- Center for Bioimaging Sciences, Department of Biological Sciences, National University of Singapore117543
| |
Collapse
|
8
|
Chun YY, Tan KS, Yu L, Pang M, Wong MHM, Nakamoto R, Chua WZ, Huee-Ping Wong A, Lew ZZR, Ong HH, Chow VT, Tran T, Yun Wang D, Sham LT. Influence of glycan structure on the colonization of Streptococcus pneumoniae on human respiratory epithelial cells. Proc Natl Acad Sci U S A 2023; 120:e2213584120. [PMID: 36943879 PMCID: PMC10068763 DOI: 10.1073/pnas.2213584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.
Collapse
Affiliation(s)
- Ye-Yu Chun
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597
| | - Lisa Yu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- College of Art and Sciences, Cornell University, Ithaca, NY14853
| | - Michelle Pang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Ming Hui Millie Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Amanda Huee-Ping Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - Zhe Zhang Ryan Lew
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Hsiao Hui Ong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Vincent T. Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - De Yun Wang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| |
Collapse
|