1
|
Gong C, Guo Z, Hu Y, Yang Z, Xia J, Yang X, Xie W, Wang S, Wu Q, Ye W, Zhou X, Turlings TCJ, Zhang Y. A Horizontally Transferred Plant Fatty Acid Desaturase Gene Steers Whitefly Reproduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306653. [PMID: 38145364 PMCID: PMC10933598 DOI: 10.1002/advs.202306653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.
Collapse
Affiliation(s)
- Cheng Gong
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Yuan Hu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Zezhong Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
- Institute of Plant ProtectionTianjin Academy of Agricultural SciencesTianjin300381China
| | - Jixing Xia
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Xin Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wen Xie
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Shaoli Wang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Qingjun Wu
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Xuguo Zhou
- Department of EntomologyUniversity of KentuckyLexingtonKY40546‐0091USA
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical EcologyInstitute of BiologyUniversity of NeuchâtelNeuchâtelCH‐2000Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
2
|
Luan JB. Insect Bacteriocytes: Adaptation, Development, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:81-98. [PMID: 38270981 DOI: 10.1146/annurev-ento-010323-124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
3
|
Wierz JC, Gimmel ML, Huthmacher S, Engl T, Kaltenpoth M. Evolutionary history of tyrosine-supplementing endosymbionts in pollen-feeding beetles. THE ISME JOURNAL 2024; 18:wrae080. [PMID: 38861456 PMCID: PMC11191362 DOI: 10.1093/ismejo/wrae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Many insects feeding on nutritionally challenging diets like plant sap, leaves, or wood engage in ancient associations with bacterial symbionts that supplement limiting nutrients or produce digestive or detoxifying enzymes. However, the distribution, function, and evolutionary dynamics of microbial symbionts in insects exploiting other plant tissues or relying on a predacious diet remain poorly understood. Here, we investigated the evolutionary history and function of the intracellular gamma-proteobacterial symbiont "Candidatus Dasytiphilus stammeri" in soft-winged flower beetles (Coleoptera, Melyridae, Dasytinae) that transition from saprophagy or carnivory to palynivory (pollen-feeding) between larval and adult stage. Reconstructing the distribution of the symbiont within the Dasytinae phylogeny unraveled not only a long-term coevolution, originating from a single acquisition event with subsequent host-symbiont codiversification, but also several independent symbiont losses. The analysis of 20 different symbiont genomes revealed that their genomes are severely eroded. However, the universally retained shikimate pathway indicates that the core metabolic contribution to their hosts is the provisioning of tyrosine for cuticle sclerotization and melanization. Despite the high degree of similarity in gene content and order across symbiont strains, the capacity to synthesize additional essential amino acids and vitamins and to recycle urea is retained in some but not all symbionts, suggesting ecological differences among host lineages. This report of tyrosine-provisioning symbionts in insects with saprophagous or carnivorous larvae and pollen-feeding adults expands our understanding of tyrosine supplementation as an important symbiont-provided benefit across a broad range of insects with diverse feeding ecologies.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Matthew L Gimmel
- Department of Invertebrate Zoology, Santa Barbara Museum of Natural History, Santa Barbara, CA 93105, United States
| | - Selina Huthmacher
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
4
|
Yasuda Y, Inoue H, Hirose Y, Nakabachi A. Highly Reduced Complementary Genomes of Dual Bacterial Symbionts in the Mulberry Psyllid Anomoneura mori. Microbes Environ 2024; 39:n/a. [PMID: 39245568 PMCID: PMC11427311 DOI: 10.1264/jsme2.me24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The genomes of obligately host-restricted bacteria suffer from accumulating mildly deleterious mutations, resulting in marked size reductions. Psyllids (Hemiptera) are phloem sap-sucking insects with a specialized organ called the bacteriome, which typically harbors two vertically transmitted bacterial symbionts: the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria) and a secondary symbiont that is phylogenetically diverse among psyllid lineages. The genomes of several Carsonella lineages were revealed to be markedly reduced (158-174 kb), AT-rich (14.0-17.9% GC), and structurally conserved with similar gene inventories devoted to synthesizing essential amino acids that are scarce in the phloem sap. However, limited genomic information is currently available on secondary symbionts. Therefore, the present study investigated the genomes of the bacteriome-associated dual symbionts, Secondary_AM (Gammaproteobacteria) and Carsonella_AM, in the mulberry psyllid Anomoneura mori (Psyllidae). The results obtained revealed that the Secondary_AM genome is as small and AT-rich (229,822 bp, 17.3% GC) as those of Carsonella lineages, including Carsonella_AM (169,120 bp, 16.2% GC), implying that Secondary_AM is an evolutionarily ancient obligate mutualist, as is Carsonella. Phylogenomic ana-lyses showed that Secondary_AM is sister to "Candidatus Psyllophila symbiotica" of Cacopsylla spp. (Psyllidae), the genomes of which were recently reported (221-237 kb, 17.3-18.6% GC). The Secondary_AM and Psyllophila genomes showed highly conserved synteny, sharing all genes for complementing the incomplete tryptophan biosynthetic pathway of Carsonella and those for synthesizing B vitamins. However, sulfur assimilation and carotenoid-synthesizing genes were only retained in Secondary_AM and Psyllophila, respectively, indicating ongoing gene silencing. Average nucleotide identity, gene ortholog similarity, genome-wide synteny, and substitution rates suggest that the Secondary_AM/Psyllophila genomes are more labile than Carsonella genomes.
Collapse
Affiliation(s)
- Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology
| |
Collapse
|
5
|
Kiefer JST, Bauer E, Okude G, Fukatsu T, Kaltenpoth M, Engl T. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. THE ISME JOURNAL 2023:10.1038/s41396-023-01415-y. [PMID: 37085551 DOI: 10.1038/s41396-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Eugen Bauer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Genta Okude
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
6
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Smith TE, Li Y, Perreau J, Moran NA. Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera. PLoS Genet 2022; 18:e1010195. [PMID: 35522718 PMCID: PMC9116674 DOI: 10.1371/journal.pgen.1010195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.
Collapse
Affiliation(s)
- Thomas E. Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|