1
|
Li Y, Li Y, Wang Y, Yang Y, Qi M, Su T, Li R, Liu D, Gao Y, Qi Y, Qiu L. Flg22-facilitated PGPR colonization in root tips and control of root rot. MOLECULAR PLANT PATHOLOGY 2024; 25:e70026. [PMID: 39497329 PMCID: PMC11534644 DOI: 10.1111/mpp.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Plant root border cells (RBCs) prevent the colonization of plant growth-promoting rhizobacteria (PGPR) at the root tip, rendering the PGPR unable to effectively control pathogens infecting the root tip. In this study, we engineered four strains of Pseudomonas sp. UW4, a typical PGPR strain, each carrying an enhanced green fluorescent protein (EGFP)-expressing plasmid. The UW4E strain harboured only the plasmid, whereas the UW4E-flg22 strain expressed a secreted EGFP-Flg22 fusion protein, the UW4E-Flg(flg22) strain expressed a non-secreted Flg22, and the UW4E-flg22-D strain expressed a secreted Flg22-DNase fusion protein. UW4E-flg22 and UW4E-flg22-D, which secreted Flg22, induced an immune response in wheat RBCs and colonized wheat root tips, whereas the other strains, which did not secrete Flg22, failed to elicit this response and did not colonize wheat root tips. The immune response revealed that wheat RBCs synthesized mucilage, extracellular DNA, and reactive oxygen species. Furthermore, the Flg22-secreting strains showed a 33.8%-93.8% higher colonization of wheat root tips and reduced the root rot incidence caused by Rhizoctonia solani and Fusarium pseudograminearum by 24.6%-35.7% compared to the non-Flg22-secreting strains in pot trials. There was a negative correlation between the incidence of wheat root rot and colonization of wheat root tips by these strains. In contrast, wheat root length and dry weight were positively correlated with the colonization of wheat root tips by these strains. These results demonstrate that engineered secretion of Flg22 by PGPR is an effective strategy for controlling root rot and improving plant growth.
Collapse
Affiliation(s)
- Yanan Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yafei Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuepeng Wang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yanqing Yang
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Man Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Tongfu Su
- College of SciencesHenan Agricultural UniversityZhengzhouChina
| | - Rui Li
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Dehai Liu
- Institute of Biology Co., Ltd., Henan Academy of ScienceZhengzhouChina
| | - Yuqian Gao
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Yuancheng Qi
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| | - Liyou Qiu
- College of Life SciencesHenan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural AffairsZhengzhouChina
| |
Collapse
|
2
|
Ng MJ, Mohamad Razif MF, Kong BH, Yap HYY, Ng ST, Tan CS, Fung SY. RNA-seq transcriptome and pathway analysis of the medicinal mushroom Lignosus tigris (Polyporaceae) offer insights into its bioactive compounds with anticancer and antioxidant potential. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118073. [PMID: 38513780 DOI: 10.1016/j.jep.2024.118073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal mushrooms belonging to the Lignosus spp., colloquially known as Tiger Milk mushrooms (TMMs), are used as traditional medicine by communities across various regions of China and Southeast Asia to enhance immunity and to treat various diseases. At present, three Lignosus species have been identified in Malaysia: L. rhinocerus, L. tigris, and L. cameronensis. Similarities in their macroscopic morphologies and the nearly indistinguishable appearance of their sclerotia often lead to interchangeability between them. Hence, substantiation of their traditional applications via identification of their individual bioactive properties is imperative in ensuring that they are safe for consumption. L. tigris was first identified in 2013. Thus far, studies on L. tigris cultivar sclerotia (Ligno TG-K) have shown that it possesses significant antioxidant activities and has greater antiproliferative action against selected cancer cells in vitro compared to its sister species, L. rhinocerus TM02®. Our previous genomics study also revealed significant genetic dissimilarities between them. Further omics investigations on Ligno TG-K hold immense potential in facilitating the identification of its bioactive compounds and their associated bioactivities. AIM OF STUDY The overall aim of this study was to investigate the gene expression profile of Ligno TG-K via de novo RNA-seq and pathway analysis. We also aimed to identify highly expressed genes encoding compounds that contribute to its cytotoxic and antioxidant properties, as well as perform a comparative transcriptomics analysis between Ligno TG-K and its sister species, L. rhinocerus TM02®. MATERIALS AND METHODS Total RNA from fresh 3-month-old cultivated L. tigris sclerotia (Ligno TG-K) was extracted and analyzed via de novo RNA sequencing. Expressed genes were analyzed using InterPro and NCBI-Nr databases for domain identification and homology search. Functional categorization based on gene functions and pathways was performed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Clusters of Orthologous Genes (COG) databases. Selected genes were subsequently subjected to phylogenetic analysis. RESULTS Our transcriptomics analysis of Ligno TG-K revealed that 68.06% of its genes are expressed in the sclerotium; 80.38% of these were coding transcripts. Our analysis identified highly expressed transcripts encoding proteins with prospective medicinal properties. These included serine proteases (FPKM = 7356.68), deoxyribonucleases (FPKM = 3777.98), lectins (FPKM = 3690.87), and fungal immunomodulatory proteins (FPKM = 2337.84), all of which have known associations with anticancer activities. Transcripts linked to proteins with antioxidant activities, such as superoxide dismutase (FPKM = 1161.69) and catalase (FPKM = 1905.83), were also highly expressed. Results of our sequence alignments revealed that these genes and their orthologs can be found in other mushrooms. They exhibit significant sequence similarities, suggesting possible parallels in their anticancer and antioxidant bioactivities. CONCLUSION This study is the first to provide a reference transcriptome profile of genes expressed in the sclerotia of L. tigris. The current study also presents distinct COG profiles of highly expressed genes in Ligno TG-K and L. rhinocerus TM02®, highlighting that any distinctions uncovered may be attributed to their interspecies variations and inherent characteristics that are unique to each species. Our findings suggest that Ligno TG-K contains bioactive compounds with prospective medicinal properties that warrant further investigations. CLASSIFICATION Systems biology and omics.
Collapse
Affiliation(s)
- Min Jia Ng
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Fazril Mohamad Razif
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Boon Hong Kong
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Hui-Yeng Yeannie Yap
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, IMU University, Kuala Lumpur, Malaysia
| | - Szu Ting Ng
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Chon Seng Tan
- LiGNO Biotech Sdn. Bhd., Balakong Jaya, Selangor, Malaysia
| | - Shin-Yee Fung
- Medicinal Mushroom Research Group (MMRG), Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Center for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Ratsoma FM, Mokoena NZ, Santana QC, Wingfield BD, Steenkamp ET, Motaung TE. Characterization of the Fusarium circinatum biofilm environmental response role. J Basic Microbiol 2024; 64:e2300536. [PMID: 38314962 DOI: 10.1002/jobm.202300536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/07/2024]
Abstract
The capacity to form biofilms is a common trait among many microorganisms present on Earth. In this study, we demonstrate for the first time that the fatal pine pitch canker agent, Fusarium circinatum, can lead a biofilm-like lifestyle with aggregated hyphal bundles wrapped in extracellular matrix (ECM). Our research shows F. circinatum's ability to adapt to environmental changes by assuming a biofilm-like lifestyle. This was demonstrated by varying metabolic activities exhibited by the biofilms in response to factors like temperature and pH. Further analysis revealed that while planktonic cells produced small amounts of ECM per unit of the biomass, heat- and azole-exposed biofilms produced significantly more ECM than nonexposed biofilms, further demonstrating the adaptability of F. circinatum to changing environments. The increased synthesis of ECM triggered by these abiotic factors highlights the link between ECM production in biofilm and resistance to abiotic stress. This suggests that ECM-mediated response may be one of the key survival strategies of F. circinatum biofilms in response to changing environments. Interestingly, azole exposure also led to biofilms that were resistant to DNase, which typically uncouples biofilms by penetrating the biofilm and degrading its extracellular DNA; we propose that DNases were likely hindered from reaching target cells by the ECM barricade. The interplay between antifungal treatment and DNase enzyme suggests a complex relationship between eDNA, ECM, and antifungal agents in F. circinatum biofilms. Therefore, our results show how a phytopathogen's sessile (biofilm) lifestyle could influence its response to the surrounding environment.
Collapse
Affiliation(s)
- Francinah M Ratsoma
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nthabiseng Z Mokoena
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Agricultural Research Council (ARC) Biotechnology Platform, Private Bag X5 Onderstepoort, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Thabiso E Motaung
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Kujović A, Gostinčar C, Kavkler K, Govedić N, Gunde-Cimerman N, Zalar P. Degradation Potential of Xerophilic and Xerotolerant Fungi Contaminating Historic Canvas Paintings. J Fungi (Basel) 2024; 10:76. [PMID: 38248985 PMCID: PMC10817455 DOI: 10.3390/jof10010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking. With the aim of recognizing the most dangerous fungal species to the integrity and stability of paintings, we studied 55 recently isolated and identified strains from historic paintings or depositories, including 46 species from 16 genera. The fungi were categorized as xero/halotolerant or xero/halophilic based on their preference for solutes (glycerol or NaCl) that lower the water activity (aw) of the medium. Accordingly, the aw value of all further test media had to be adjusted to allow the growth of xero/halophilic species. The isolates were tested for growth at 15, 24 °C and 37 °C. The biodeterioration potential of the fungi was evaluated by screening their acidification properties, their ability to excrete pigments and their enzymatic activities, which were selected based on the available nutrients in paintings on canvas. A DNase test was performed to determine whether the selected fungi could utilize DNA of dead microbial cells that may be covering surfaces of the painting. The sequestration of Fe, which is made available through the production of siderophores, was also tested. The ability to degrade aromatic and aliphatic substrates was investigated to consider the potential degradation of synthetic restoration materials. Xerotolerant and moderately xerophilic species showed a broader spectrum of enzymatic activities than obligate xerophilic species: urease, β-glucosidase, and esterase predominated, while obligate xerophiles mostly exhibited β-glucosidase, DNase, and urease activity. Xerotolerant and moderately xerophilic species with the highest degradation potential belong to the genus Penicillium, while Aspergillus penicillioides and A. salinicola represent obligately xerophilic species with the most diverse degradation potential in low aw environments.
Collapse
Affiliation(s)
- Amela Kujović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Katja Kavkler
- Institute for the Protection of Cultural Heritage of Slovenia, Poljanska 40, SI-1000 Ljubljana, Slovenia;
| | - Natalija Govedić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; (A.K.); (C.G.); (N.G.); (N.G.-C.)
| |
Collapse
|
5
|
Wang Q, Zhou X, He S, Wang W, Ma D, Wang Y, Zhang H. Receptor Plants Alleviated Allelopathic Stress from Invasive Chenopodium ambrosioides L. by Upregulating the Production and Autophagy of Their Root Border Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3810. [PMID: 38005707 PMCID: PMC10674979 DOI: 10.3390/plants12223810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
Chenopodium ambrosioides L. is an invasive plant native to the Neotropics that has seriously threatened the ecological security of China, and allelopathy is one of the mechanisms underlying its successful invasion. Maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), as the main food crops, are usually affected by C. ambrosioides in their planting areas. The purpose of this study was to investigate the ultrastructure, autophagy, and release-related gene expression of receptor plant root border cells (RBCs) after exposure to volatile oil from C. ambrosioides and its main component α-terpene, which were studied using maize and soybean as receptor plants. The volatiles inhibited root growth and promoted a brief increase in the number of RBCs. As the volatile concentration increased, the organelles in RBCs were gradually destroyed, and intracellular autophagosomes were produced and continuously increased in number. Transcriptomic analysis revealed that genes involved in the synthesis of the plasma membrane and cell wall components in receptor root cells were significantly up-regulated, particularly those related to cell wall polysaccharide synthesis. Meanwhile, polygalacturonase and pectin methylesterases (PME) exhibited up-regulated expression, and PME activity also increased. The contribution of α-terpene to this allelopathic effect of C. ambrosioides volatile oil exceeded 70%. Based on these results, receptor plant root tips may increase the synthesis of cell wall substances while degrading the intercellular layer, accelerating the generation and release of RBCs. Meanwhile, their cells survived through autophagy of RBCs, indicating the key role of RBCs in alleviating allelopathic stress from C. ambrosioides volatiles.
Collapse
Affiliation(s)
- Qiang Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Xijie Zhou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Shengli He
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Wenguo Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Danwei Ma
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| | - Hong Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (Q.W.); (X.Z.); (S.H.); (Y.W.); (H.Z.)
| |
Collapse
|
6
|
Raposo C, Serrano I, Cunha E, Couto MP, Lopes F, Casero M, Tavares L, Oliveira M. Phenotypic Characterization of Oral Mucor Species from Eurasian Vultures: Pathogenic Potential and Antimicrobial Ability. Life (Basel) 2023; 13:1638. [PMID: 37629495 PMCID: PMC10455617 DOI: 10.3390/life13081638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Due to poisoning and decline in the food resources of Eurasian vultures, there has been a rise in the number of Griffon (Gyps fulvus) and Cinereous vultures (Aegypius monachus) needing veterinary care. In captivity, vultures often develop oral and other infectious diseases which can affect their survival and the probability of reintroduction in the wild. Therefore, it is important to characterize relevant microbial species present in the oral cavity of vultures, such as Mucor spp. In this work, seven Mucor spp. isolates previously obtained from Gyps fulvus and Aegypius monachus oral swabs collected at two rehabilitation centers in Portugal were characterized regarding their pathogenic enzymatic profile and antimicrobial activity. Isolates were identified by macro and microscopic observation, and PCR and ITS sequencing. Their antimicrobial activity was determined using a collection of pathogenic bacteria and two yeast species. Results showed that 86% of the isolates produced α-hemolysis, 71% expressed DNase, 57% produce lecithinase and lipase, 29% expressed gelatinase, and 29% were biofilm producers. Four isolates showed inhibitory activity against relevant human and veterinary clinical isolates, including Escherichia coli, Enterococcus faecium, Neisseria zoodegmatis, and Staphylococcus aureus. In conclusion, accurate management programs should consider the benefits and disadvantages of Mucor spp. presence in the oral mucosa.
Collapse
Affiliation(s)
- Catarina Raposo
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Maria Patrícia Couto
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Filipa Lopes
- CERAS—Centro de Estudos e Recuperação de Animais Selvagens, Quinta da Senhora de Mércules, 6000-909 Castelo Branco, Portugal;
| | - María Casero
- RIAS Centro de Recuperação e Investigação de Animais Selvagens, Rua do Parque Natural da Ria Formosa, Quelfes, 8700-194 Olhão, Portugal;
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (C.R.); (E.C.); (M.P.C.); (L.T.); (M.O.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Vega-Muñoz I, Herrera-Estrella A, Martínez-de la Vega O, Heil M. ATM and ATR, two central players of the DNA damage response, are involved in the induction of systemic acquired resistance by extracellular DNA, but not the plant wound response. Front Immunol 2023; 14:1175786. [PMID: 37256140 PMCID: PMC10225592 DOI: 10.3389/fimmu.2023.1175786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The plant immune response to DNA is highly self/nonself-specific. Self-DNA triggered stronger responses by early immune signals such as H2O2 formation than nonself-DNA from closely related plant species. Plants lack known DNA receptors. Therefore, we aimed to investigate whether a differential sensing of self-versus nonself DNA fragments as damage- versus pathogen-associated molecular patterns (DAMPs/PAMPs) or an activation of the DNA-damage response (DDR) represents the more promising framework to understand this phenomenon. Results We treated Arabidopsis thaliana Col-0 plants with sonicated self-DNA from other individuals of the same ecotype, nonself-DNA from another A. thaliana ecotype, or nonself-DNA from broccoli. We observed a highly self/nonself-DNA-specific induction of H2O2 formation and of jasmonic acid (JA, the hormone controlling the wound response to chewing herbivores) and salicylic acid (SA, the hormone controlling systemic acquired resistance, SAR, to biotrophic pathogens). Mutant lines lacking Ataxia Telangiectasia Mutated (ATM) or ATM AND RAD3-RELATED (ATR) - the two DDR master kinases - retained the differential induction of JA in response to DNA treatments but completely failed to induce H2O2 or SA. Moreover, we observed H2O2 formation in response to in situ-damaged self-DNA from plants that had been treated with bleomycin or SA or infected with virulent bacteria Pseudomonas syringae pv. tomato DC3000 or pv. glycinea carrying effector avrRpt2, but not to DNA from H2O2-treated plants or challenged with non-virulent P. syringae pv. glycinea lacking avrRpt2. Conclusion We conclude that both ATM and ATR are required for the complete activation of the plant immune response to extracellular DNA whereas an as-yet unknown mechanism allows for the self/nonself-differential activation of the JA-dependent wound response.
Collapse
Affiliation(s)
- Isaac Vega-Muñoz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Octavio Martínez-de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato, GTO, Mexico
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato, GTO, Mexico
| |
Collapse
|
8
|
Rafiqi M, Kosawang C, Peers JA, Jelonek L, Yvanne H, McMullan M, Nielsen LR. Endophytic fungi related to the ash dieback causal agent encode signatures of pathogenicity on European ash. IMA Fungus 2023; 14:10. [PMID: 37170345 PMCID: PMC10176688 DOI: 10.1186/s43008-023-00115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Tree diseases constitute a significant threat to biodiversity worldwide. Pathogen discovery in natural habitats is of vital importance to understanding current and future threats and prioritising efforts towards developing disease management strategies. Ash dieback is a fungal disease of major conservational concern that is infecting common ash trees, Fraxinus excelsior, in Europe. The disease is caused by a non-native fungal pathogen, Hymenoscyphus fraxineus. Other dieback causing-species have not previously been identified in the genus Hymenoscyphus. Here, we discover the pathogenicity potential of two newly identified related species of Asian origin, H. koreanus and H. occultus, and one Europe-native related species, H. albidus. We sequence the genomes of all three Hymenoscyphus species and compare them to that of H. fraxineus. Phylogenetic analysis of core eukaryotic genes identified H. albidus and H. koreanus as sister species, whilst H. occultus diverged prior to these and H. fraxineus. All four Hymenoscyphus genomes are of comparable size (55-62 Mbp) and GC contents (42-44%) and encode for polymorphic secretomes. Surprisingly, 1133 predicted secreted proteins are shared between the ash dieback pathogen H. fraxineus and the three related Hymenoscyphus endophytes. Amongst shared secreted proteins are cell death-inducing effector candidates, such as necrosis, and ethylene-inducing peptide 1-like proteins, Nep1-like proteins, that are upregulated during in planta growth of all Hymenoscyphus species. Indeed, pathogenicity tests showed that all four related Hymenoscyphus species develop pathogenic growth on European ash stems, with native H. albidus being the least virulent. Our results identify the threat Hymenoscypohus species pose to the survival of European ash trees, and highlight the importance of promoting pathogen surveillance in environmental landscapes. Identifying new pathogens and including them in the screening for durable immunity of common ash trees is key to the long-term survival of ash in Europe.
Collapse
Affiliation(s)
- Maryam Rafiqi
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK.
| | - Chatchai Kosawang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark
| | - Jessica A Peers
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Lukas Jelonek
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Hélène Yvanne
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Mark McMullan
- The Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Lene R Nielsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Yu H, Ruan H, Xia X, Chicowski AS, Whitham SA, Li Z, Wang G, Liu W. Maize FERONIA-like receptor genes are involved in the response of multiple disease resistance in maize. MOLECULAR PLANT PATHOLOGY 2022; 23:1331-1345. [PMID: 35596601 PMCID: PMC9366073 DOI: 10.1111/mpp.13232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 04/30/2022] [Indexed: 05/04/2023]
Abstract
Receptor-like kinases (RLKs) are key modulators of diverse cellular processes such as development and sensing the extracellular environment. FERONIA, a member of the CrRLK1L subfamily, acts as a pleiotropic regulator of plant immune responses, but little is known about how maize FERONIA-like receptors (FLRs) function in responding to the major foliar diseases of maize such as northern corn leaf blight (NLB), northern corn leaf spot (NLS), anthracnose stalk rot (ASR), and southern corn leaf blight (SLB). Here, we identified three ZmFLR homologous proteins that showed cell membrane localization. Transient expression in Nicotiana benthamiana proved that ZmFLRs were capable of inducing cell death. To investigate the role of ZmFLRs in maize, we used virus-induced gene silencing to knock down expression of ZmFLR1/2 and ZmFLR3 resulting in reduced reactive oxygen species production induced by flg22 and chitin. The resistance of maize to NLB, NLS, ASR, and SLB was also reduced in the ZmFLRs knockdown maize plants. These results indicate that ZmFLRs are positively involved in broad-spectrum disease resistance in maize.
Collapse
Affiliation(s)
- Haiyue Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongchun Ruan
- Institute of Plant ProtectionFujian Academy of Agricultural SciencesFuzhouChina
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | | | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
10
|
Liao C, Mao F, Qian M, Wang X. Pathogen-Derived Nucleases: An Effective Weapon for Escaping Extracellular Traps. Front Immunol 2022; 13:899890. [PMID: 35865526 PMCID: PMC9294136 DOI: 10.3389/fimmu.2022.899890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 2004 publication of the first study describing extracellular traps (ETs) from human neutrophils, several reports have shown the presence of ETs in a variety of different animals and plants. ETs perform two important functions of immobilizing and killing invading microbes and are considered a novel part of the phagocytosis-independent, innate immune extracellular defense system. However, several pathogens can release nucleases that degrade the DNA backbone of ETs, reducing their effectiveness and resulting in increased pathogenicity. In this review, we examined the relevant literature and summarized the results on bacterial and fungal pathogens and parasites that produce nucleases to evade the ET-mediated host antimicrobial mechanism.
Collapse
Affiliation(s)
- Chengshui Liao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| | - Fuchao Mao
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Vocational and Technical College, Luoyang, China
| | - Man Qian
- College of Animal Science and Technology/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Chengshui Liao, ; Xiaoli Wang,
| |
Collapse
|
11
|
Berry D, Lee K, Winter D, Mace W, Becker Y, Nagabhyru P, Treindl AD, Bogantes EV, Young CA, Leuchtmann A, Johnson LJ, Johnson RD, Cox MP, Schardl CL, Scott B. Cross-species transcriptomics identifies core regulatory changes differentiating the asymptomatic asexual and virulent sexual life cycles of grass-symbiotic Epichloë fungi. G3 (BETHESDA, MD.) 2022; 12:jkac043. [PMID: 35191483 PMCID: PMC8982410 DOI: 10.1093/g3journal/jkac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.
Collapse
Affiliation(s)
- Daniel Berry
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Kate Lee
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - David Winter
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Wade Mace
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Artemis D Treindl
- Institute of Integrative Biology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | - Murray P Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
12
|
Carbajal-Valenzuela IA, Medina-Ramos G, Caicedo-Lopez LH, Jiménez-Hernández A, Ortega-Torres AE, Contreras-Medina LM, Torres-Pacheco I, Guevara-González RG. Extracellular DNA: Insight of a Signal Molecule in Crop Protection. BIOLOGY 2021; 10:biology10101022. [PMID: 34681122 PMCID: PMC8533321 DOI: 10.3390/biology10101022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Agriculture systems use multiple chemical treatments to prevent pests and diseases, and to fertilize plants and eliminate weeds around the crop. These practices are less accepted by the consumers each day, mostly because of the associated environmental, health, and ecological impact; thus, new sustainable green technologies are being developed to replace the use of chemical products. Among green technologies for agriculture practices, the use of plant elicitors represents an alternative with great potential, and extracellular DNA has shown beneficial effects on important production traits such as defence mechanisms, plant growth and development, and secondary metabolites production that results in yield increment and better-quality food. In this review, we reunite experimental evidence of the natural effect that extracellular DNA has on plants. We also aim to contribute a step closer to the agricultural application of extracellular DNA. Additionally, we suggest that extracellular DNA can have a biostimulant effect on plants, and can be applied as a highly sustainable treatment contributing to the circular economy of primary production. Abstract Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution. Here, we discuss the potential agricultural application of extracellular DNA (eDNA), its multiple functioning mechanisms in plant metabolism, the importance of hormetic curves establishment, and as a challenge: the technical limitations of the industrial scale for this technology. We highlight the more viable natural mechanisms in which eDNA affects plant metabolism, acting as a damage/microbe-associated molecular pattern (DAMP, MAMP) or as a general plant biostimulant. Finally, we suggest a whole sustainable system, where DNA is extracted from organic sources by a simple methodology to fulfill the molecular characteristics needed to be applied in crop production systems, allowing the reduction in, or perhaps the total removal of, chemical pesticides, fertilizers, and insecticides application.
Collapse
Affiliation(s)
- Ireri Alejandra Carbajal-Valenzuela
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Gabriela Medina-Ramos
- Molecular Plant Pathology Laboratory, Polytechnic University of Guanajuato, Cortazar 38496, Mexico
- Correspondence: (G.M.-R.); or (R.G.G.-G.); Tel.: +52-1-461-441-4300 (G.M.-R.); +52-1-442-192-1200 (ext. 6093) (R.G.G.-G.)
| | - Laura Helena Caicedo-Lopez
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Alejandra Jiménez-Hernández
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Adrian Esteban Ortega-Torres
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Luis Miguel Contreras-Medina
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Irineo Torres-Pacheco
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
| | - Ramón Gerardo Guevara-González
- C. A. Biosystems Engineering, Campus Amazcala, Autonomous University of Queretaro, Carr. Chichimequillas-Amazcala Km 1 S/N, C.P., El Marques, Querétaro 76265, Mexico; (I.A.C.-V.); (L.H.C.-L.); (A.J.-H.); (A.E.O.-T.); (L.M.C.-M.); (I.T.-P.)
- Correspondence: (G.M.-R.); or (R.G.G.-G.); Tel.: +52-1-461-441-4300 (G.M.-R.); +52-1-442-192-1200 (ext. 6093) (R.G.G.-G.)
| |
Collapse
|
13
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
14
|
A Medicago truncatula Metabolite Atlas Enables the Visualization of Differential Accumulation of Metabolites in Root Tissues. Metabolites 2021; 11:metabo11040238. [PMID: 33924579 PMCID: PMC8068785 DOI: 10.3390/metabo11040238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Plant roots are composed of many differentiated tissue types, with each tissue exhibiting differential quantitative and qualitative accumulation of metabolites. The large-scale nontargeted metabolite profiles of these differentiated tissues are complex, which complicates the interpretation and development of hypotheses relative to the biological roles of differentially localized metabolites. Thus, we created a data visualization tool to aid in the visualization and understanding of differential metabolite accumulations in Medicago truncatula roots. This was achieved through the development of the Medicago truncatula Metabolite Atlas based upon an adaptation of the Arabidopsis Electronic Fluorescent Pictograph (eFP) Browser. Medicago truncatula roots were dissected into border cells, root cap, elongation zone, mature root, and root secretions. Each tissue was then analyzed by UHPLC-QTOF-MS and GC-Q-MS. Data were uploaded into a MySQL database and displayed in the Medicago truncatula Metabolite Atlas. The data revealed unique differential spatial localization of many metabolites, some of which are discussed here. Ultimately, the Medicago truncatula Metabolite Atlas compiles metabolite data into a singular, useful, and publicly available web-based tool that enables the visualization and understanding of differential metabolite accumulation and spatial localization.
Collapse
|
15
|
Kamino LN, Gulden RH. The effect of crop species on DNase-producing bacteria in two soils. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Extracellular deoxyribonucleases (exDNases) from microbial origin contribute substantially to the restriction of extracellular DNA (exDNA) in the soil. Hence, it is imperative to understand the diversity of bacterial species capable of performing this important soil function and how crop species influence their dynamics in the soil. The present study investigates the occurrence of DNase-producing bacteria (DPB) in leachate samples obtained from soils in which the crop species of alfalfa (Medicago sativa L.), canola (Brassica napus L.), soybean (Glycine max [L.] Merr.) and wheat (Triticum aestivum L.) were raised in a growth room.
Methods
Selective media containing methyl green indicator was used to screen for DPB from leachate samples, whereas the 16S rRNA sequence analysis was employed to identify the isolates.
Results
The proportion of culturable DPB ranged between 5.72 and 40.01%; however, we did observe specific crop effects that shifted throughout the growing period. In general, higher proportions of exDNase producers were observed when the soils had lower nutrient levels. On using the 16S rRNA to classify the DPB isolates, most isolates were found to be members of the Bacillus genera, while other groups included Chryseobacterium, Fictibacillus, Flavobacterium, Microbacterium, Nubsella, Pseudomonas, Psychrobacillus, Rheinheimera, Serratia and Stenotrophomonas. Five candidate exDNase/nuclease-encoding proteins were also identified from Bacillus mycoides genomes using online databases.
Conclusion
Results from this study showed that crop species, growth stage and soil properties were important factors shaping the populations of DPB in leachate samples; however, soil properties seemed to have a greater influence on the trends observed on these bacterial populations. It may be possible to target soil indigenous bacteria that produce exDNases through management to decrease potential unintended effects of transgenes originating from genetically modified organisms (GMOs) or other introduced nucleic acid sequences in the environment.
Collapse
|
16
|
Ramos-Martínez E, Hernández-González L, Ramos-Martínez I, Pérez-Campos Mayoral L, López-Cortés GI, Pérez-Campos E, Mayoral Andrade G, Hernández-Huerta MT, José MV. Multiple Origins of Extracellular DNA Traps. Front Immunol 2021; 12:621311. [PMID: 33717121 PMCID: PMC7943724 DOI: 10.3389/fimmu.2021.621311] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/06/2021] [Indexed: 01/21/2023] Open
Abstract
Extracellular DNA traps (ETs) are evolutionarily conserved antimicrobial mechanisms present in protozoa, plants, and animals. In this review, we compare their similarities in species of different taxa, and put forward the hypothesis that ETs have multiple origins. Our results are consistent with a process of evolutionary convergence in multicellular organisms through the application of a congruency test. Furthermore, we discuss why multicellularity is related to the presence of a mechanism initiating the formation of ETs.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- School of Sciences, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Iván Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), Créteil, France
| | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Eduardo Pérez-Campos
- Biochemistry and Immunology Unit, National Technological of Mexico/ITOaxaca, Oaxaca, Mexico
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | - Gabriel Mayoral Andrade
- Research Centre Medicine UNAM-UABJO, Faculty of Medicine, Benito Juárez Autonomous University of Oaxaca, Oaxaca, Mexico
| | | | - Marco V. José
- Theoretical Biology Group, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
17
|
Abstract
Donor-derived cell-free DNA (dd-cfDNA) in the blood circulation is an early marker of injury in solid organ transplantation. Here, we review recent evidence that indicates that dd-cfDNA may itself be a trigger of inflammation, thereby adding insult on injury. Early unresolving molecular allograft injury measured via changes in dd-cfDNA may be an early warning sign and may therefore enable stratification of patients who are at risk of subsequent allograft injury. Considering dd-cfDNA as a continuous and clinically significant biomarker opens up the potential for new management strategies, therapeutics, and ways to quantify interventions by considering the immunological potential of dd-cfDNA.
Collapse
|
18
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
19
|
Toum L, Conti G, Guerriero FC, Conforte VP, Garolla FA, Asurmendi S, Vojnov AA, Gudesblat GE. Single-stranded oligodeoxynucleotides induce plant defence in Arabidopsis thaliana. ANNALS OF BOTANY 2020; 126:413-422. [PMID: 32266377 PMCID: PMC7424753 DOI: 10.1093/aob/mcaa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Single-stranded DNA oligodeoxynucleotides (ssODNs) have been shown to elicit immune responses in mammals. In plants, RNA and genomic DNA can activate immunity, although the exact mechanism through which they are sensed is not clear. The aim of this work was to study the possible effect of ssODNs on plant immunity. KEY RESULTS The ssODNs IMT504 and 2006 increased protection against the pathogens Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea but not against tobacco mosaic virus-Cg when infiltrated in Arabidopsis thaliana. In addition, ssODNs inhibited root growth and promoted stomatal closure in a concentration-dependent manner, with half-maximal effective concentrations between 0.79 and 2.06 µm. Promotion of stomatal closure by ssODNs was reduced by DNase I treatment. It was also diminished by the NADPH oxidase inhibitor diphenyleneiodonium and by coronatine, a bacterial toxin that inhibits NADPH oxidase-dependent reactive oxygen species (ROS) synthesis in guard cells. In addition it was found that ssODN-mediated stomatal closure was impaired in bak1-5, bak1-5/bkk1, mpk3 and npr1-3 mutants. ssODNs also induced early expression of MPK3, WRKY33, PROPEP1 and FRK1 genes involved in plant defence, an effect that was reduced in bak1-5 and bak1-5/bkk1 mutants. CONCLUSIONS ssODNs are capable of inducing protection against pathogens through the activation of defence genes and promotion of stomatal closure through a mechanism similar to that of other elicitors of plant immunity, which involves the BAK1 co-receptor, and ROS synthesis.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA – Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina
| | - Francesca Coppola Guerriero
- Departamento de Fisiología, Biología Molecular y Celular ‘Profesor Héctor Maldonado’ – Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Argentina
| | - Valeria P Conforte
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Franco A Garolla
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA – Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Los Reseros y Nicolas Repeto, Hurlingham, Argentina
| | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo, Argentina
| | - Gustavo E Gudesblat
- Departamento de Fisiología, Biología Molecular y Celular ‘Profesor Héctor Maldonado’ – Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pres. Dr. Raúl Alfonsín S/N, Ciudad Universitaria, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Argentina
- For correspondence. E-mail:
| |
Collapse
|
20
|
Kumar N, Iyer-Pascuzzi AS. Shedding the Last Layer: Mechanisms of Root Cap Cell Release. PLANTS 2020; 9:plants9030308. [PMID: 32121604 PMCID: PMC7154840 DOI: 10.3390/plants9030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
The root cap, a small tissue at the tip of the root, protects the root from environmental stress and functions in gravity perception. To perform its functions, the position and size of the root cap remains stable throughout root growth. This occurs due to constant root cap cell turnover, in which the last layer of the root cap is released, and new root cap cells are produced. Cells in the last root cap layer are known as border cells or border-like cells, and have important functions in root protection against bacterial and fungal pathogens. Despite the importance of root cap cell release to root health and plant growth, the mechanisms regulating this phenomenon are not well understood. Recent work identified several factors including transcription factors, auxin, and small peptides with roles in the production and release of root cap cells. Here, we review the involvement of the known players in root cap cell release, compare the release of border-like cells and border cells, and discuss the importance of root cap cell release to root health and survival.
Collapse
|
21
|
Vincent D, Rafiqi M, Job D. The Multiple Facets of Plant-Fungal Interactions Revealed Through Plant and Fungal Secretomics. FRONTIERS IN PLANT SCIENCE 2020; 10:1626. [PMID: 31969889 PMCID: PMC6960344 DOI: 10.3389/fpls.2019.01626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/14/2023]
Abstract
The plant secretome is usually considered in the frame of proteomics, aiming at characterizing extracellular proteins, their biological roles and the mechanisms accounting for their secretion in the extracellular space. In this review, we aim to highlight recent results pertaining to secretion through the conventional and unconventional protein secretion pathways notably those involving plant exosomes or extracellular vesicles. Furthermore, plants are well known to actively secrete a large array of different molecules from polymers (e.g. extracellular RNA and DNA) to small compounds (e.g. ATP, phytochemicals, secondary metabolites, phytohormones). All of these play pivotal roles in plant-fungi (or oomycetes) interactions, both for beneficial (mycorrhizal fungi) and deleterious outcomes (pathogens) for the plant. For instance, recent work reveals that such secretion of small molecules by roots is of paramount importance to sculpt the rhizospheric microbiota. Our aim in this review is to extend the definition of the plant and fungal secretomes to a broader sense to better understand the functioning of the plant/microorganisms holobiont. Fundamental perspectives will be brought to light along with the novel tools that should support establishing an environment-friendly and sustainable agriculture.
Collapse
Affiliation(s)
- Delphine Vincent
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Maryam Rafiqi
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Dominique Job
- CNRS/Université Claude Bernard Lyon 1/Institut National des Sciences Appliquées/Bayer CropScience Joint Laboratory (UMR 5240), Bayer CropScience, Lyon, France
| |
Collapse
|
22
|
Abstract
We introduce machine learning (ML) to perform classification and quantitation of images of nuclei from human blood neutrophils. Here we assessed the use of convolutional neural networks (CNNs) using free, open source software to accurately quantitate neutrophil NETosis, a recently discovered process involved in multiple human diseases. CNNs achieved >94% in performance accuracy in differentiating NETotic from non-NETotic cells and vastly facilitated dose-response analysis and screening of the NETotic response in neutrophils from patients. Using only features learned from nuclear morphology, CNNs can distinguish between NETosis and necrosis and between distinct NETosis signaling pathways, making them a precise tool for NETosis detection. Furthermore, by using CNNs and tools to determine object dispersion, we uncovered differences in NETotic nuclei clustering between major NETosis pathways that is useful in understanding NETosis signaling events. Our study also shows that neutrophils from patients with sickle cell disease were unresponsive to one of two major NETosis pathways. Thus, we demonstrate the design, performance, and implementation of ML tools for rapid quantitative and qualitative cell analysis in basic science.
Collapse
|
23
|
Defence and counter defence. Nat Rev Microbiol 2019; 17:267. [DOI: 10.1038/s41579-019-0185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Huskey DA, Curlango‐Rivera G, Hawes MC. Use of rhodizonic acid for rapid detection of root border cell trapping of lead and reversal of trapping with DNase. APPLICATIONS IN PLANT SCIENCES 2019; 7:e01240. [PMID: 31024783 PMCID: PMC6476171 DOI: 10.1002/aps3.1240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Lead (Pb) is a contaminant whose removal from soil remains a challenge. In a previous study, border cells released from root tips were found to trap Pb, alter its chemistry, and prevent root uptake. Rhodizonic acid (RA) is a forensic tool used to reveal gunshot residue, and also to detect Pb within plant tissues. Here we report preliminary observations to assess the potential application of RA in exploring the dynamics of Pb accumulation at the root tip surface. METHODS AND RESULTS Corn root tips were immersed in Pb solution, stained with RA, and observed microscopically. Pb trapping by border cells was evident within minutes. The role of extracellular DNA was revealed when addition of nucleases resulted in dispersal of RA-stained Pb particles. CONCLUSIONS RA is an efficient tool to monitor Pb-root interactions. Trapping by border cells may control Pb levels and chemistry at the root tip surface. Understanding how plants influence Pb distribution in soil may facilitate its remediation.
Collapse
Affiliation(s)
- David A. Huskey
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Gilberto Curlango‐Rivera
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| | - Martha C. Hawes
- Department of Soil, Water and Environmental SciencesUniversity of Arizona429 Shantz Building, #38 1177 E. Fourth Street, P.O. Box 210038TucsonArizona85721‐0038USA
| |
Collapse
|