1
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Nhu NTQ, Lin H, Pigli Y, Sia JK, Kuhn P, Snitkin ES, Young V, Kamboj M, Pamer EG, Rice PA, Shen A, Dong Q. Flagellar switch inverted repeat impacts flagellar invertibility and varies Clostridioides difficile RT027/MLST1 virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546185. [PMID: 39386689 PMCID: PMC11463649 DOI: 10.1101/2023.06.22.546185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Clostridioides difficile RT027 strains cause infections that vary in severity from asymptomatic to lethal, but the molecular basis for this variability is poorly understood. Through comparative analyses of RT027 clinical isolates, we determined that isolates that exhibit greater variability in their flagellar gene expression exhibit greater virulence in vivo. C. difficile flagellar genes are phase-variably expressed due to the site-specific inversion of the flgB 5'UTR region, which reversibly generates ON vs. OFF orientations for the flagellar switch. We found that longer inverted repeat (IR) sequences in this switch region correlate with greater disease severity, with RT027 strains carrying 6A/6T IR sequences exhibiting greater phenotypic heterogeneity in flagellar gene expression (60%-75% ON) and causing more severe disease than those with shorter IRs (> 99% ON or OFF). Taken together, our results reveal that phenotypic heterogeneity in flagellar gene expression may contribute to the variable disease severity observed in C. difficile patients.
Collapse
Affiliation(s)
- Nguyen T. Q. Nhu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Huaiying Lin
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Ying Pigli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jonathan K. Sia
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Pola Kuhn
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Evan S. Snitkin
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent Young
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Mini Kamboj
- Infection Control, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric G. Pamer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| | - Qiwen Dong
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Duchossois Family Institute, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Liu L, Luo D, Zhang Y, Liu D, Yin K, Tang Q, Chou SH, He J. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis. Microbiol Spectr 2024; 12:e0045024. [PMID: 38819160 PMCID: PMC11218506 DOI: 10.1128/spectrum.00450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro, while downstream terminator T2 is more efficient in vivo. Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehua Luo
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongji Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dingqi Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kang Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Vuotto C, Donelli G, Buckley A, Chilton C. Clostridioides difficile Biofilm. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:249-272. [PMID: 38175479 DOI: 10.1007/978-3-031-42108-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile infection (CDI), previously Clostridium difficile infection, is a symptomatic infection of the large intestine caused by the spore-forming anaerobic, gram-positive bacterium Clostridioides difficile. CDI is an important healthcare-associated disease worldwide, characterized by high levels of recurrence, morbidity, and mortality. CDI is observed at a higher rate in immunocompromised patients after antimicrobial therapy, with antibiotics disrupting the commensal microbiota and promoting C. difficile colonization of the gastrointestinal tract.A rise in clinical isolates resistant to multiple antibiotics and the reduced susceptibility to the most commonly used antibiotic molecules have made the treatment of CDI more complicated, allowing the persistence of C. difficile in the intestinal environment.Gut colonization and biofilm formation have been suggested to contribute to the pathogenesis and persistence of C. difficile. In fact, biofilm growth is considered as a serious threat because of the related antimicrobial tolerance that makes antibiotic therapy often ineffective. This is the reason why the involvement of C. difficile biofilm in the pathogenesis and recurrence of CDI is attracting more and more interest, and the mechanisms underlying biofilm formation of C. difficile as well as the role of biofilm in CDI are increasingly being studied by researchers in the field.Findings on C. difficile biofilm, possible implications in CDI pathogenesis and treatment, efficacy of currently available antibiotics in treating biofilm-forming C. difficile strains, and some antimicrobial alternatives under investigation will be discussed here.
Collapse
Affiliation(s)
- Claudia Vuotto
- Microbial Biofilm Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | - Anthony Buckley
- Microbiome and Nutritional Sciences Group, School of Food Science & Nutrition, University of Leeds, Leeds, UK
| | - Caroline Chilton
- Healthcare Associated Infection Research Group, Section of Molecular Gastroenterology, Leeds Institute for Medical Research at St James, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Berumen Alvarez O, Purcell EB. Expanding our grasp of two-component signaling in Clostridioides difficile. J Bacteriol 2023; 205:e0018823. [PMID: 37728603 PMCID: PMC10601699 DOI: 10.1128/jb.00188-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The intestinal pathogen Clostridioides difficile encodes roughly 50 TCS, but very few have been characterized in terms of their activating signals or their regulatory roles. A. G. Pannullo, B. R. Zbylicki, and C. D. Ellermeier (J Bacteriol 205:e00164-23, 2023, https://doi.org/10.1128/jb.00164-23) have identified both for the novel C. difficile TCD DraRS. DraRS responds to antibiotics that target lipid-II molecules in the bacterial cell envelope, and regulates the production of a novel glycolipid necessary for bacitracin and daptomycin resistance in C. difficile.
Collapse
Affiliation(s)
| | - Erin B. Purcell
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, USA
| |
Collapse
|
6
|
Pannullo AG, Zbylicki BR, Ellermeier CD. Identification of DraRS in Clostridioides difficile, a Two-Component Regulatory System That Responds to Lipid II-Interacting Antibiotics. J Bacteriol 2023; 205:e0016423. [PMID: 37439672 PMCID: PMC10601625 DOI: 10.1128/jb.00164-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen that results in 220,000 infections, 12,000 deaths, and upwards of $1 billion in medical costs in the United States each year. C. difficile is highly resistant to a variety of antibiotics, but we have a poor understanding of how C. difficile senses and responds to antibiotic stress and how such sensory systems affect clinical outcomes. We have identified a spontaneous C. difficile mutant that displays increased daptomycin resistance. We performed whole-genome sequencing and found a nonsense mutation, S605*, in draS, which encodes a putative sensor histidine kinase of a two-component system (TCS). The draSS605* mutant has an ~4- to 8-fold increase in the daptomycin MIC compared to the wild type (WT). We found that the expression of constitutively active DraRD54E in the WT increases daptomycin resistance 8- to 16-fold and increases bacitracin resistance ~4-fold. We found that a selection of lipid II-inhibiting compounds leads to the increased activity of the luciferase-based reporter PdraR-slucopt, including vancomycin, bacitracin, ramoplanin, and daptomycin. Using RNA sequencing (RNA-seq), we identified the DraRS regulon. Interestingly, we found that DraRS can induce the expression of the previously identified hex locus required for the synthesis of a novel glycolipid produced in C. difficile. Our data suggest that the induction of the hex locus by DraR explains some, but not all, of the DraR-induced daptomycin and bacitracin resistance. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. C. difficile encodes ~50 annotated two-component systems (TCSs); however, only a few have been studied. The function of these unstudied TCSs is not known. Here, we show that the TCS DraRS plays a role in responding to a subset of lipid II-inhibiting antibiotics and mediates resistance to daptomycin and bacitracin in part by inducing the expression of the recently identified hex locus, which encodes enzymes required for the production of a novel glycolipid in C. difficile.
Collapse
Affiliation(s)
- Anthony G. Pannullo
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Brianne R. Zbylicki
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Auria E, Hunault L, England P, Monot M, Pipoli Da Fonseca J, Matondo M, Duchateau M, Tremblay YDN, Dupuy B. The cell wall lipoprotein CD1687 acts as a DNA binding protein during deoxycholate-induced biofilm formation in Clostridioides difficile. NPJ Biofilms Microbiomes 2023; 9:24. [PMID: 37169797 PMCID: PMC10175255 DOI: 10.1038/s41522-023-00393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The ability of bacterial pathogens to establish recurrent and persistent infections is frequently associated with their ability to form biofilms. Clostridioides difficile infections have a high rate of recurrence and relapses and it is hypothesized that biofilms are involved in its pathogenicity and persistence. Biofilm formation by C. difficile is still poorly understood. It has been shown that specific molecules such as deoxycholate (DCA) or metronidazole induce biofilm formation, but the mechanisms involved remain elusive. In this study, we describe the role of the C. difficile lipoprotein CD1687 during DCA-induced biofilm formation. We showed that the expression of CD1687, which is part of an operon within the CD1685-CD1689 gene cluster, is controlled by multiple transcription starting sites and some are induced in response to DCA. Only CD1687 is required for biofilm formation and the overexpression of CD1687 is sufficient to induce biofilm formation. Using RNAseq analysis, we showed that CD1687 affects the expression of transporters and metabolic pathways and we identified several potential binding partners by pull-down assay, including transport-associated extracellular proteins. We then demonstrated that CD1687 is surface exposed in C. difficile, and that this localization is required for DCA-induced biofilm formation. Given this localization and the fact that C. difficile forms eDNA-rich biofilms, we confirmed that CD1687 binds DNA in a non-specific manner. We thus hypothesize that CD1687 is a component of the downstream response to DCA leading to biofilm formation by promoting interaction between the cells and the biofilm matrix by binding eDNA.
Collapse
Affiliation(s)
- Emile Auria
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | - Lise Hunault
- Institut Pasteur, Université Paris-Cité, INSERM UMR1222, Unit of Antibodies in Therapy and Pathology, Paris, France
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, Institut Pasteur, CNRS UMR3528, Paris, France
| | - Marc Monot
- Plateforme Technologique Biomics, Institut Pasteur, Paris, France
| | | | | | | | - Yannick D N Tremblay
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bruno Dupuy
- Institut Pasteur, Université Paris-Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France.
| |
Collapse
|
8
|
HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile. mBio 2023; 14:e0339722. [PMID: 36786594 PMCID: PMC10128005 DOI: 10.1128/mbio.03397-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
Collapse
|
9
|
Reyes Ruiz LM, King KA, Agosto-Burgos C, Gamez IS, Gadda NC, Garrett EM, Tamayo R. Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile. PLoS Pathog 2022; 18:e1010677. [PMID: 35789350 PMCID: PMC9286219 DOI: 10.1371/journal.ppat.1010677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/15/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
The opportunistic nosocomial pathogen Clostridioides difficile exhibits phenotypic heterogeneity through phase variation, a stochastic, reversible process that modulates expression. In C. difficile, multiple sequences in the genome undergo inversion through site-specific recombination. Two such loci lie upstream of pdcB and pdcC, which encode phosphodiesterases (PDEs) that degrade the signaling molecule c-di-GMP. Numerous phenotypes are influenced by c-di-GMP in C. difficile including cell and colony morphology, motility, colonization, and virulence. In this study, we aimed to assess whether PdcB phase varies, identify the mechanism of regulation, and determine the effects on intracellular c-di-GMP levels and regulated phenotypes. We found that expression of pdcB is heterogeneous and the orientation of the invertible sequence, or ‘pdcB switch’, determines expression. The pdcB switch contains a promoter that when properly oriented promotes pdcB expression. Expression is augmented by an additional promoter upstream of the pdcB switch. Mutation of nucleotides at the site of recombination resulted in phase-locked strains with significant differences in pdcB expression. Characterization of these mutants showed that the pdcB locked-ON mutant has reduced intracellular c-di-GMP compared to the locked-OFF mutant, consistent with increased and decreased PdcB activity, respectively. These alterations in c-di-GMP had concomitant effects on multiple known c-di-GMP regulated processes, indicating that phase variation of PdcB allows C. difficile to coordinately diversify multiple phenotypes in the population to enhance survival. Phase variation is a mechanism by which many bacteria introduce phenotypic heterogeneity into a population as a bet-hedging strategy to help ensure survival under detrimental conditions. In C. difficile, the intracellular signaling molecule c-di-GMP regulates production of flagella, toxins, adhesins, and other factors that impact virulence. C. difficile encodes multiple c-di-GMP synthases and hydrolases that modulate intracellular c-di-GMPs and control these processes. Here, we show that production of a c-di-GMP hydrolytic enzyme, PdcB, undergoes phase variation in C. difficile. We generated phase-locked mutants unable to phase vary and found that PdcB affects global intracellular c-di-GMP levels, swimming and surface motility, and biofilm formation. These findings suggest that phase variation of PdcB enables C. difficile to coordinately regulate the production multiple factors by generating heterogeneity in intracellular c-di-GMP levels among bacteria in the population.
Collapse
Affiliation(s)
- Leila M. Reyes Ruiz
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kathleen A. King
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Christian Agosto-Burgos
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Isabella S. Gamez
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Nicole C. Gadda
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Elizabeth M. Garrett
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|