1
|
Eddoubaji Y, Aldeia C, Heg D, Campos-Madueno EI, Endimiani A. Refining the gut colonization Zophobas morio larvae model using an oral administration of multidrug-resistant Escherichia coli. J Glob Antimicrob Resist 2024; 39:240-246. [PMID: 39491644 DOI: 10.1016/j.jgar.2024.10.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND The darkling beetle Zophobas morio can be implemented as an alternative in vivo model to study different intestinal colonization aspects. Recently, we showed that its larvae can be colonized by multidrug-resistant Escherichia coli strains administered via contaminated food (for 7 d) for a total experimental duration of 28 d. METHOD In the present work, we aimed to shorten the model to 14 d (T14) by administering the previously used CTX-M-15 extended-spectrum β-lactamase-producing ST131 E. coli strain Ec-4901.28 via a single oral administration (5 µL dose of 108 CFU/mL), using a blunt 26s-gauge needle connected to a 250 μL gastight syringe. Force-feeding was performed either without or with (larvae placed on ice for 10 min before injection) anaesthesia. In addition, phage-treated larvae were orally injected with 10 µL of INTESTI bacteriophage cocktail (∼105-6 PFU/mL) on d 4 (T4) and 7 (T7). RESULTS Growth curve analyses showed that, while larvae rapidly became colonized with Ec-4901.28 (T1, ∼106-7 CFU/mL), only those anaesthetized maintained a high bacterial load (∼102-3 vs. ∼105-6 CFU/mL) and survival rate (76% vs. 99%; P < 0.001) by T14. Moreover, bacteriophage administration to anaesthetized larvae significantly reduced the bacterial count of INTESTI-susceptible Ec-4901.28 at T14 (5.17 × 105 vs. 2.26 × 104, for non-treated and phage-treated larvae, respectively; P = 0.04). CONCLUSIONS The methodological refinements applied to establish the intestinal colonization model simplify the use of Z. morio larvae, facilitate prompt evaluation of novel decolonization approaches and reduce experiments involving vertebrate animals in accordance with the Replacement, Reduction and Refinement principles.
Collapse
Affiliation(s)
- Yasmine Eddoubaji
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Dik Heg
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Scott TA, Baker KS, Trotter C, Jenkins C, Mostowy S, Hawkey J, Schmidt H, Holt KE, Thomson NR, Baker S. Shigella sonnei: epidemiology, evolution, pathogenesis, resistance and host interactions. Nat Rev Microbiol 2024:10.1038/s41579-024-01126-x. [PMID: 39604656 DOI: 10.1038/s41579-024-01126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Shigella sonnei is a major cause of diarrhoea globally and is increasing in prevalence relative to other Shigella because of multiple demographic and environmental influences. This single-serotype species has traditionally received less attention in comparison to Shigella flexneri and Shigella dysenteriae, which were more common in low-income countries and more tractable in the laboratory. In recent years, we have learned that Shigella are highly complex and highly susceptible to environmental change, as exemplified by epidemiological trends and increasing relevance of S. sonnei. Ultimately, methods, tools and data generated from decades of detailed research into S. flexneri have been used to gain new insights into the epidemiology, microbiology and pathogenesis of S. sonnei. In parallel, widespread adoption of genomic surveillance has yielded insights into antimicrobial resistance, evolution and organism transmission. In this Review, we provide an overview of current knowledge of S. sonnei, highlighting recent insights into this globally disseminated antimicrobial-resistant pathogen and assessing how novel data may impact future vaccine development and implementation.
Collapse
Affiliation(s)
- Timothy A Scott
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
| | - Kate S Baker
- Department of Clinical Microbiology, Immunology and Infection, University of Liverpool, Liverpool, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Caroline Trotter
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Serge Mostowy
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Jane Hawkey
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Hayden Schmidt
- Neutralizing Antibody Center, International AIDS Vaccine Initiative, San Diego, CA, USA
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nicholas R Thomson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- International AIDS Vaccine Initiative, London, UK.
| |
Collapse
|
3
|
Shi Y, Tan Q, Gong T, Li QY, Zhu Y, Duan X, Yang C, Ding JW, Li S, Xie H, Li Y, Chen L. Cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of Shigella flexneri. Mikrochim Acta 2024; 191:271. [PMID: 38632191 DOI: 10.1007/s00604-024-06309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/03/2024] [Indexed: 04/19/2024]
Abstract
Pathogen infections including Shigella flexneri have posed a significant threat to human health for numerous years. Although culturing and qPCR were the gold standards for pathogen detection, time-consuming and instrument-dependent restrict their application in rapid diagnosis and economically less-developed regions. Thus, it is urgently needed to develop rapid, simple, sensitive, accurate, and low-cost detection methods for pathogen detection. In this study, an immunomagnetic beads-recombinase polymerase amplification-CRISPR/Cas12a (IMB-RPA-CRISPR/Cas12a) method was built based on a cascaded signal amplification strategy for ultra-specific, ultra-sensitive, and visual detection of S. flexneri in the laboratory. Firstly, S. flexneri was specifically captured and enriched by IMB (Shigella antibody-coated magnetic beads), and the genomic DNA was released and used as the template in the RPA reaction. Then, the RPA products were mixed with the pre-loaded CRISPR/Cas12a for fluorescence visualization. The results were observed by naked eyes under LED blue light, with a sensitivity of 5 CFU/mL in a time of 70 min. With no specialized equipment or complicated technical requirements, the IMB-RPA-CRISPR/Cas12a diagnostic method can be used for visual, rapid, and simple detection of S. flexneri and can be easily adapted to monitoring other pathogens.
Collapse
Affiliation(s)
- Yaoqiang Shi
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qi Tan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Tao Gong
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Qing-Yuan Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Ya Zhu
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Xiaoqiong Duan
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Chunhui Yang
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - Jia-Wei Ding
- Clinical Laboratory Department, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Shilin Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China
| | - He Xie
- The Hospital of Xidian Group, Xi'an, 710077, China
| | - Yujia Li
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
| | - Limin Chen
- Provincial Key Laboratory for Transfusion-Transmitted Infectious Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, Sichuan, China.
- The Joint Laboratory On Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Nanning, 530007, China.
- The Hospital of Xidian Group, Xi'an, 710077, China.
| |
Collapse
|
4
|
Chowdhury G, Das B, Kumar S, Pant A, Mukherjee P, Ghosh D, Koley H, Miyoshi SI, Okamoto K, Paul A, Dutta S, Ramamurthy T, Mukhopadyay AK. Genomic insights into extensively drug-resistant Pseudomonas aeruginosa isolated from a diarrhea case in Kolkata, India. Future Microbiol 2023; 18:173-186. [PMID: 36916516 DOI: 10.2217/fmb-2022-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: To characterize extensively drug-resistant Pseudomonas aeruginosa from a patient with diarrhea. Materials & methods: Antimicrobial susceptibility was tested by the disk diffusion method. The P. aeruginosa genome was sequenced to identify virulence, antibiotic resistance and prophages encoding genes. Results: P. aeruginosa had a wide spectrum of resistance to antibiotics. Genomic analysis of P. aeruginosa revealed 76 genes associated with antimicrobial resistance, xenobiotic degradation and the type three secretion system. Conclusion: This is the first report on diarrhea associated with P. aeruginosa. Since no other organism was identified, the authors assume that the patient had dysbiosis due to antibiotic exposure, leading to antibiotic-associated diarrhea. The in vivo toxicity expressed by the pathogen may be associated with T3SS.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Bhabatosh Das
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Shakti Kumar
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Archana Pant
- Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Priyadarshini Mukherjee
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Debjani Ghosh
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Graduate School of Medicine, Dentistry & Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Alapan Paul
- Department of Medicine, Nil Ratan Sircar Medical College & Hospital, Kolkata, 700014, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India.,Infection & Immunology Division, Translational Health Science & Technology Institute, Faridabad, 121001, India
| | - Asish K Mukhopadyay
- Division of Bacteriology, Indian Council of Medical Research - National Institute of Cholera & Enteric Diseases, Kolkata, 700010, India
| |
Collapse
|
5
|
Wang J, Xia S, Fan H, Shao J, Tang T, Yang L, Sun W, Jia X, Chen S, Lai S. Microbiomics Revealed the Disturbance of Intestinal Balance in Rabbits with Diarrhea Caused by Stopping the Use of an Antibiotic Diet. Microorganisms 2022; 10:841. [PMID: 35630287 PMCID: PMC9145392 DOI: 10.3390/microorganisms10050841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022] Open
Abstract
The harmful effects of diarrhea on the growth performance of rabbits have been well documented, but the details of the potential mechanism of intestinal diarrhea when antibiotics are stopped are still unclear. Here, PacBio sequencing technology was used to sequence the full length 16S rRNA gene of the microbiota of intestinal content samples, in order to characterize the bacterial communities in the small intestine (duodenum and jejunum) and large intestine (colon and cecum) in normal Hyplus rabbits and those with diarrhea. The histopathological examination showed that intestinal necrosis occurred in different degrees in the diarrhea group, and that the mucosal epithelium was shed and necrotic, forming erosion, and the clinical manifestation was necrosis. However, the intestinal tissue structure of the normal group was normal. The results revealed that there were significant differences in bacterial communities and structure between the diarrhea and normal groups of four intestinal segments (p < 0.05). In general, 16 bacterial phyla, 144 bacterial genera and 22 metabolic pathways were identified in the two groups. Tax4Fun functional prediction analysis showed that KEGG related to amino acid metabolism and energy metabolism was enriched in the large intestines of rabbits with diarrhea, whereas lipid metabolism was more abundant in the small intestine of rabbits with diarrhea. In conclusion, the change in the relative abundance of the identified dominant microbiota, which could deplete key anti-inflammatory metabolites and lead to bacterial imbalance and diarrhea, resulted in diarrhea in Hyplus rabbits that stopped using antibiotics.
Collapse
Affiliation(s)
- Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.); (S.C.)
| | - Siqi Xia
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (H.F.); (J.S.); (T.T.); (L.Y.)
| | - Huimei Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (H.F.); (J.S.); (T.T.); (L.Y.)
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (H.F.); (J.S.); (T.T.); (L.Y.)
| | - Tao Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (H.F.); (J.S.); (T.T.); (L.Y.)
| | - Li Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (S.X.); (H.F.); (J.S.); (T.T.); (L.Y.)
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.); (S.C.)
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.); (S.C.)
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.); (S.C.)
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (J.W.); (W.S.); (X.J.); (S.C.)
| |
Collapse
|
6
|
Köseoğlu VK, Jones MK, Agaisse H. The type 3 secretion effector IpgD promotes S. flexneri dissemination. PLoS Pathog 2022; 18:e1010324. [PMID: 35130324 PMCID: PMC8853559 DOI: 10.1371/journal.ppat.1010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The bacterial pathogen Shigella flexneri causes 270 million cases of bacillary dysentery worldwide every year, resulting in more than 200,000 deaths. S. flexneri pathogenic properties rely on its ability to invade epithelial cells and spread from cell to cell within the colonic epithelium. This dissemination process relies on actin-based motility in the cytosol of infected cells and formation of membrane protrusions that project into adjacent cells and resolve into double-membrane vacuoles (DMVs) from which the pathogen escapes, thereby achieving cell-to-cell spread. S. flexneri dissemination is facilitated by the type 3 secretion system (T3SS) through poorly understood mechanisms. Here, we show that the T3SS effector IpgD facilitates the resolution of membrane protrusions into DMVs during S. flexneri dissemination. The phosphatidylinositol 4-phosphatase activity of IpgD decreases PtdIns(4,5)P2 levels in membrane protrusions, thereby counteracting de novo cortical actin formation in protrusions, a process that restricts the resolution of protrusions into DMVs. Finally, using an infant rabbit model of shigellosis, we show that IpgD is required for efficient cell-to-cell spread in vivo and contributes to the severity of dysentery. The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery (blood in stool). Invasion of epithelial cells and cell-to-cell spread are critical determinants of S. flexneri pathogenesis. Cell-to-cell spread relies on the formation of membrane protrusions that project into adjacent cells and resolve into vacuoles. The molecular mechanisms supporting this dissemination process are poorly understood. In this study, we show that S. flexneri employs the phosphatidylinositol phosphatase activity of the T3SS effector protein IpgD to manipulate phosphoinositides in the protrusion membrane. Manipulation of phosphoinositide signaling restricts the formation of actin networks underneath the protrusion membrane, which would otherwise prevent the scission of protrusions into vacuoles. We also demonstrate that IpgD is required for efficient dissemination in the colon of infant rabbits and contributes to the severity of disease. This study exemplifies how manipulation of phosphoinositide signaling by intracellular pathogens supports bacterial pathogenesis.
Collapse
Affiliation(s)
- Volkan K. Köseoğlu
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Marieke K. Jones
- Claude Moore Health Sciences Library, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Ang B, Xu X, Liu L, Xu L, Kuang H, Xu C. A colloidal gold immunochromatographic strip assay for the rapid detection of Shigella in milk and meat products. NEW J CHEM 2022. [DOI: 10.1039/d1nj04708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anti-Shigella mAb was produced using IpaC and an immunochromatographic strip was developed to detect different serotypes of Shigella in food.
Collapse
Affiliation(s)
- Beijun Ang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|