1
|
Wang Y, Su W, Zeng X, Liu Z, Zhu J, Wang M, Li L, Shen W. Surprising diversity of new plasmids in bacteria isolated from hemorrhoid patients. PeerJ 2024; 12:e18023. [PMID: 39224828 PMCID: PMC11368089 DOI: 10.7717/peerj.18023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hemorrhoids are common conditions at or around the anus, to which numerous people suffer worldwide. Previous research has suggested that microbes may play a role in the development of hemorrhoids, and the origins of these microbes have been preliminarily investigated. However, no detailed research on the microbes related to hemorrhoid patients has been conducted. This work aims to provide an initial investigation into the microbes related to hemorrhoid patients with high quality whole genome sequencing. Methods Forty-nine bacterial strains were isolated from seven hemorrhoid patients. Third-generation nanopore sequencing was performed to obtain high quality whole genome sequences. The presence of plasmids, particularly new plasmids, along with antibiotic resistance genes, was investigated for these strains. Phylogenetic analysis and genome comparisons were performed. Results Out of the 31 plasmids found in the strains, 15 new plasmids that have not been observed previously were discovered. Further structural analysis revealed new multidrug-resistant conjugative plasmids, virulent plasmids, and small, high-copy mobile plasmids that may play significant functional roles. These plasmids were found to harbor numerous integrases, transposases, and recombinases, suggesting their ability to quickly obtain genes to change functions. Analysis of antibiotic resistance genes revealed the presence of antibiotic resistant-integrons. Together with the surprising number of new plasmids identified, as well as the finding of transmission and modification events for plasmids in this work, we came to the suggestion that plasmids play a major role in genetic plasticity. Conclusion This study reveals that the diversity of plasmids in human-associated microbes has been underestimated. With the decreasing cost of whole-genome sequencing, monitoring plasmids deserves increased attention in future surveillance efforts.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiang Zeng
- Department of Anorectal Surgery, Chengyang District People’s Hospital, Qingdao, China
| | - Zhaopeng Liu
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenlong Shen
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Morgan CJ, Enustun E, Armbruster EG, Birkholz EA, Prichard A, Forman T, Aindow A, Wannasrichan W, Peters S, Inlow K, Shepherd IL, Razavilar A, Chaikeeratisak V, Adler BA, Cress BF, Doudna JA, Pogliano K, Villa E, Corbett KD, Pogliano J. An essential and highly selective protein import pathway encoded by nucleus-forming phage. Proc Natl Acad Sci U S A 2024; 121:e2321190121. [PMID: 38687783 PMCID: PMC11087766 DOI: 10.1073/pnas.2321190121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Targeting proteins to specific subcellular destinations is essential in prokaryotes, eukaryotes, and the viruses that infect them. Chimalliviridae phages encapsulate their genomes in a nucleus-like replication compartment composed of the protein chimallin (ChmA) that excludes ribosomes and decouples transcription from translation. These phages selectively partition proteins between the phage nucleus and the bacterial cytoplasm. Currently, the genes and signals that govern selective protein import into the phage nucleus are unknown. Here, we identify two components of this protein import pathway: a species-specific surface-exposed region of a phage intranuclear protein required for nuclear entry and a conserved protein, PicA (Protein importer of chimalliviruses A), that facilitates cargo protein trafficking across the phage nuclear shell. We also identify a defective cargo protein that is targeted to PicA on the nuclear periphery but fails to enter the nucleus, providing insight into the mechanism of nuclear protein trafficking. Using CRISPRi-ART protein expression knockdown of PicA, we show that PicA is essential early in the chimallivirus replication cycle. Together, our results allow us to propose a multistep model for the Protein Import Chimallivirus pathway, where proteins are targeted to PicA by amino acids on their surface and then licensed by PicA for nuclear entry. The divergence in the selectivity of this pathway between closely related chimalliviruses implicates its role as a key player in the evolutionary arms race between competing phages and their hosts.
Collapse
Affiliation(s)
- Chase J. Morgan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Eray Enustun
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Emily G. Armbruster
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Erica A. Birkholz
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Amy Prichard
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Taylor Forman
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Ann Aindow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Wichanan Wannasrichan
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Sela Peters
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Koe Inlow
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Isabelle L. Shepherd
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Alma Razavilar
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Vorrapon Chaikeeratisak
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 10330
| | - Benjamin A. Adler
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Brady F. Cress
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Jennifer A. Doudna
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Department of Chemistry, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Kit Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| | - Elizabeth Villa
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California San Diego, La Jolla, CA92093
| | - Kevin D. Corbett
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093
| | - Joe Pogliano
- School of Biological Sciences, Division of Molecular Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Guilvout I, Samsudin F, Huber RG, Bond PJ, Bardiaux B, Francetic O. Membrane platform protein PulF of the Klebsiella type II secretion system forms a trimeric ion channel essential for endopilus assembly and protein secretion. mBio 2024; 15:e0142323. [PMID: 38063437 PMCID: PMC10790770 DOI: 10.1128/mbio.01423-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Type IV pili and type II secretion systems are members of the widespread type IV filament (T4F) superfamily of nanomachines that assemble dynamic and versatile surface fibers in archaea and bacteria. The assembly and retraction of T4 filaments with diverse surface properties and functions require the plasma membrane platform proteins of the GspF/PilC superfamily. Generally considered dimeric, platform proteins are thought to function as passive transmitters of the mechanical energy generated by the ATPase motor, to somehow promote insertion of pilin subunits into the nascent pilus fibers. Here, we generate and experimentally validate structural predictions that support the trimeric state of a platform protein PulF from a type II secretion system. The PulF trimers form selective proton or sodium channels which might energize pilus assembly using the membrane potential. The conservation of the channel sequence and structural features implies a common mechanism for all T4F assembly systems. We propose a model of the oligomeric PulF-PulE ATPase complex that provides an essential framework to investigate and understand the pilus assembly mechanism.
Collapse
Affiliation(s)
- Ingrid Guilvout
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | | | - Peter J. Bond
- Bioinformatics Institute (A-STAR), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Bioinformatics Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Transmembrane Systems Unit, Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Biochemistry of Macromolecular Interactions Unit, Paris, France
| |
Collapse
|