1
|
Londoño AF, Sharma A, Sealy J, Rana VS, Foor SD, Matrosova VY, Gaidamakova EK, Volpe RP, Daly MJ, Hoffman BM, Pal U, Dumler JS. Borrelia burgdorferi radiosensitivity and Mn antioxidant content: antigenic preservation and pathobiology. mBio 2024:e0313124. [PMID: 39727419 DOI: 10.1128/mbio.03131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The bacterium responsible for Lyme disease, Borrelia burgdorferi, accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B. burgdorferi B31 cells are radiosensitive, with a gamma-radiation survival limit for 106 wild-type cells of <1 kGy. Thus, we explored B. burgdorferi radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn2+ present as antioxidant Mn2+ metabolite complexes (H-Mn). The spirochetes displayed relatively low levels of H-Mn, in stark contrast to the extremely radiation-resistant Deinococcus radiodurans. The H-Mn content as revealed by EPR spectroscopy is sufficiently sensitive to detect small changes in radiosensitivity among B. burgdorferi strains. However, B. burgdorferi cells are significantly more sensitive than predicted by EPR, implicating their linear genome architecture as an additional explanation for radiosensitivity. We then explored the influence of the Mn2+-decapeptide-phosphate antioxidant complex MDP, known to shield proteins during irradiation, and showed that treatment with MDP preserves B. burgdorferi's epitopes at 5 kGy irradiation, which crucially prevents cell proliferation. This finding defines some of the pivotal mechanisms that B. burgdorferi evolved to survive oxidative conditions experienced with tick and mammal immune responses. These observations also provide an opportunity for innovative vaccine development strategies employing ionizing radiation to disrupt the B. burgdorferi genome, while maintaining antigenic potency. These fresh insights extend our understanding of the unique biology of B. burgdorferi and open new avenues for considering novel whole-cell Lyme disease vaccines using MDP and irradiation-based inactivation.IMPORTANCEThe study highlights that electron paramagnetic resonance (EPR) spectroscopy is sufficiently sensitive to detect small differences in radiation resistance among Borrelia burgdorferi strains based on their population of Mn2+-metabolite complexes (H-Mn). B. burgdorferi appears to have evolved a system not to protect from irradiation, but presumably to protect from oxidative stress when cyclically transmitted from tick to mammalian host and back. These data also suggest a path forward in the development of novel vaccines against spirochete infections, including Lyme disease, through preparation involving the synthetic Mn2+-decapeptide-phosphate antioxidant complex MDP to provide B. burgdorferi epitope protection during sterilizing gamma-irradiation that eliminates growth. Given the current lack of effective whole-cell vaccines for Lyme disease, this research identifies a potential strategy for developing alternative radiation-inactivated, yet highly effective vaccines.
Collapse
Affiliation(s)
- Andrés F Londoño
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Jared Sealy
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- The Cooper Union, ANSOE, New York City, New York, USA
| | - Vipin S Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Shelby D Foor
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vera Y Matrosova
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elena K Gaidamakova
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Robert P Volpe
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael J Daly
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - J Stephen Dumler
- School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
| |
Collapse
|
2
|
Yang H, Sharma A, Daly MJ, Hoffman BM. The ternary complex of Mn 2+, synthetic decapeptide DP1 (DEHGTAVMLK), and orthophosphate is a superb antioxidant. Proc Natl Acad Sci U S A 2024; 121:e2417389121. [PMID: 39665753 DOI: 10.1073/pnas.2417389121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Mn2+ coordinated by orthophosphate (Pi), metabolites, or peptides acts as a superoxide dismutase (SOD), and these Mn antioxidant complexes are universally accumulated in extremely radiation-resistant cell types across the tree of life. This behavior prompted design of decapeptide DP1 (DEHGTAVMLK) as a Mn2+ ligand, and development of a highly potent Mn2+-antioxidant (MDP) containing [Pi] = 25 mM, and [DP1] = 3 mM, the ratio found in the radioresistant bacterium Deinococcus radiodurans, with [Mn2+] = 1 mM. MDP is an exceptional antioxidant, both in vitro and in vivo, and has reinvigorated the development of radiation-inactivated whole-cell vaccines. This study investigates the nature of the active Mn2+ complex in MDP. We measure the affinity of DP1 for the substitutionally labile Mn2+ ion using isothermal-titration calorimetry (ITC) and use changes in the Mn2+ solution EPR spectrum to determine affinities of Mn2+ for DP1 and for Pi, and to monitor Mn2+ ligation while titrated with the fixed Pi/DP1 ratio of MDP, 25/3, using ENDOR/ESEEM to characterize DP1 ligation to Mn2+. In parallel, 1H NMR of DP1 was used to monitor binding interactions between Pi and DP1, and DP1 binding to the diamagnetic Ca2+. We report: i) DP1 forms an extremely weak, dynamic Mn2+ complex (Ka ≈ 40 M-1) ii) Mn2+ binds Pi much more strongly (Ka ≈ 390 M-1) as shown previously, but iii) DP1 and Pi jointly bind to Mn2+ in MDP to form a ternary Mn2+ (Pi) (DP1) complex with greater formation-constant than Pi alone (Kaapp ≈ 670 M-1). It is this ternary complex that is the superb antioxidant in MDP.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Science, Bethesda, MD 20814
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
3
|
Szabla R, Li M, Warner V, Song Y, Junop M. DdrC, a unique DNA repair factor from D. radiodurans, senses and stabilizes DNA breaks through a novel lesion-recognition mechanism. Nucleic Acids Res 2024; 52:9282-9302. [PMID: 39036966 PMCID: PMC11347143 DOI: 10.1093/nar/gkae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterium Deinococcus radiodurans is known to survive high doses of DNA damaging agents. This resistance is the result of robust antioxidant systems which protect efficient DNA repair mechanisms that are unique to Deinococcus species. The protein DdrC has been identified as an important component of this repair machinery. DdrC is known to bind to DNA in vitro and has been shown to circularize and compact DNA fragments. The mechanism and biological relevance of this activity is poorly understood. Here, we show that the DdrC homodimer is a lesion-sensing protein that binds to two single-strand (ss) or double-strand (ds) breaks. The immobilization of DNA breaks in pairs consequently leads to the circularization of linear DNA and the compaction of nicked DNA. The degree of compaction is directly proportional with the number of available nicks. Previously, the structure of the DdrC homodimer was solved in an unusual asymmetric conformation. Here, we solve the structure of DdrC under different crystallographic environments and confirm that the asymmetry is an endogenous feature of DdrC. We propose a dynamic structural mechanism where the asymmetry is necessary to trap a pair of lesions. We support this model with mutant disruption and computational modeling experiments.
Collapse
Affiliation(s)
- Robert Szabla
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Mingyi Li
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Victoria Warner
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Yifeng Song
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| | - Murray Junop
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
| |
Collapse
|
4
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
5
|
Dai S, Xie Z, Wang B, Ye R, Ou X, Wang C, Yu N, Huang C, Zhao J, Cai C, Zhang F, Buratto D, Khan T, Qiao Y, Hua Y, Zhou R, Tian B. An inorganic mineral-based protocell with prebiotic radiation fitness. Nat Commun 2023; 14:7699. [PMID: 38052788 DOI: 10.1038/s41467-023-43272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Protocell fitness under extreme prebiotic conditions is critical in understanding the origin of life. However, little is known about protocell's survival and fitness under prebiotic radiations. Here we present a radioresistant protocell model based on assembly of two types of coacervate droplets, which are formed through interactions of inorganic polyphosphate (polyP) with divalent metal cation and cationic tripeptide, respectively. Among the coacervate droplets, only the polyP-Mn droplet is radiotolerant and provides strong protection for recruited proteins. The radiosensitive polyP-tripeptide droplet sequestered with both proteins and DNA could be encapsulated inside the polyP-Mn droplet, and form into a compartmentalized protocell. The protocell protects the inner nucleoid-like condensate through efficient reactive oxygen species' scavenging capacity of intracellular nonenzymic antioxidants including Mn-phosphate and Mn-peptide. Our results demonstrate a radioresistant protocell model with redox reaction system in response to ionizing radiation, which might enable the protocell fitness to prebiotic radiation on the primitive Earth preceding the emergence of enzyme-based fitness. This protocell might also provide applications in synthetic biology as bioreactor or drug delivery system.
Collapse
Affiliation(s)
- Shang Dai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China
| | - Zhenming Xie
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Binqiang Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rui Ye
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Xinwen Ou
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, China
| | - Ning Yu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Huang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jie Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chunhui Cai
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Furong Zhang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Damiano Buratto
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Taimoor Khan
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China
| | - Yan Qiao
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Ruhong Zhou
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study of Zhejiang University, Shanghai, China.
- School of Physics, Institute of Quantitative Biology, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
de Groot A, Blanchard L. DNA repair and oxidative stress defense systems in radiation-resistant Deinococcus murrayi. Can J Microbiol 2023; 69:416-431. [PMID: 37552890 DOI: 10.1139/cjm-2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Deinococcus murrayi is a bacterium isolated from hot springs in Portugal, and named after Dr. Robert G.E. Murray in recognition of his research on the genus Deinococcus. Like other Deinococcus species, D. murrayi is extremely resistant to ionizing radiation. Repair of massive DNA damage and limitation of oxidative protein damage are two important factors contributing to the robustness of Deinococcus bacteria. Here, we identify, among others, the DNA repair and oxidative stress defense proteins in D. murrayi, and highlight special features of D. murrayi. For DNA repair, D. murrayi does not contain a standalone uracil-DNA glycosylase (Ung), but it encodes a protein in which Ung is fused to a DNA photolyase domain (PhrB). UvrB and UvrD contain large insertions corresponding to inteins. One of its endonuclease III enzymes lacks a [4Fe-4S] cluster. Deinococcus murrayi possesses a homolog of the error-prone DNA polymerase IV. Concerning oxidative stress defense, D. murrayi encodes a manganese catalase in addition to a heme catalase. Its organic hydroperoxide resistance protein Ohr is atypical because the redox active cysteines are present in a CXXC motif. These and other characteristics of D. murrayi show further diversity among Deinococcus bacteria with respect to resistance-associated mechanisms.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
7
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
8
|
Liu S, Wang F, Chen H, Yang Z, Ning Y, Chang C, Yang D. New Insights into Radio-Resistance Mechanism Revealed by (Phospho)Proteome Analysis of Deinococcus Radiodurans after Heavy Ion Irradiation. Int J Mol Sci 2023; 24:14817. [PMID: 37834265 PMCID: PMC10572868 DOI: 10.3390/ijms241914817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Deinococcus radiodurans (D. radiodurans) can tolerate various extreme environments including radiation. Protein phosphorylation plays an important role in radiation resistance mechanisms; however, there is currently a lack of systematic research on this topic in D. radiodurans. Based on label-free (phospho)proteomics, we explored the dynamic changes of D. radiodurans under various doses of heavy ion irradiation and at different time points. In total, 2359 proteins and 1110 high-confidence phosphosites were identified, of which 66% and 23% showed significant changes, respectively, with the majority being upregulated. The upregulated proteins at different states (different doses or time points) were distinct, indicating that the radio-resistance mechanism is dose- and stage-dependent. The protein phosphorylation level has a much higher upregulation than protein abundance, suggesting phosphorylation is more sensitive to irradiation. There were four distinct dynamic changing patterns of phosphorylation, most of which were inconsistent with protein levels. Further analysis revealed that pathways related to RNA metabolism and antioxidation were activated after irradiation, indicating their importance in radiation response. We also screened some key hub phosphoproteins and radiation-responsive kinases for further study. Overall, this study provides a landscape of the radiation-induced dynamic change of protein expression and phosphorylation, which provides a basis for subsequent functional and applied studies.
Collapse
Affiliation(s)
- Shihao Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Fei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Heye Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Zhixiang Yang
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Yifan Ning
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China; (S.L.); (H.C.); (Y.N.); (C.C.)
| |
Collapse
|
9
|
Abstract
Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.
Collapse
Affiliation(s)
- Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia; ,
| |
Collapse
|
10
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
11
|
Sleiman A, Lalanne K, Vianna F, Perrot Y, Richaud M, SenGupta T, Cardot-Martin M, Pedini P, Picard C, Nilsen H, Galas S, Adam-Guillermin C. Targeted Central Nervous System Irradiation with Proton Microbeam Induces Mitochondrial Changes in Caenorhabditis elegans. BIOLOGY 2023; 12:839. [PMID: 37372124 DOI: 10.3390/biology12060839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Fifty percent of all patients with cancer worldwide require radiotherapy. In the case of brain tumors, despite the improvement in the precision of radiation delivery with proton therapy, studies have shown structural and functional changes in the brains of treated patients with protons. The molecular pathways involved in generating these effects are not completely understood. In this context, we analyzed the impact of proton exposure in the central nervous system area of Caenorhabditis elegans with a focus on mitochondrial function, which is potentially implicated in the occurrence of radiation-induced damage. To achieve this objective, the nematode C. elegans were micro-irradiated with 220 Gy of protons (4 MeV) in the nerve ring (head region) using the proton microbeam, MIRCOM. Our results show that protons induce mitochondrial dysfunction, characterized by an immediate dose-dependent loss of the mitochondrial membrane potential (ΔΨm) associated with oxidative stress 24 h after irradiation, which is itself characterized by the induction of the antioxidant proteins in the targeted region, observed using SOD-1::GFP and SOD-3::GFP strains. Moreover, we demonstrated a two-fold increase in the mtDNA copy number in the targeted region 24 h after irradiation. In addition, using the GFP::LGG-1 strain, an induction of autophagy in the irradiated region was observed 6 h following the irradiation, which is associated with the up-regulation of the gene expression of pink-1 (PTEN-induced kinase) and pdr-1 (C. elegans parkin homolog). Furthermore, our data showed that micro-irradiation of the nerve ring region did not impact the whole-body oxygen consumption 24 h following the irradiation. These results indicate a global mitochondrial dysfunction in the irradiated region following proton exposure. This provides a better understanding of the molecular pathways involved in radiation-induced side effects and may help in finding new therapies.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Kévin Lalanne
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - François Vianna
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses, France
| | - Myriam Richaud
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Tanima SenGupta
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
| | - Mikaël Cardot-Martin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Pascal Pedini
- Aix Marseille University, CNRS, EFS, ADES, 13288 Marseille, France
| | | | - Hilde Nilsen
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0372 Oslo, Norway
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, PSE-SANTE/SDOS/LMDN, Cadarache, 13115 Saint-Paul-lez-Durance, France
| |
Collapse
|
12
|
Farci D, Graça AT, Iesu L, de Sanctis D, Piano D. The SDBC is active in quenching oxidative conditions and bridges the cell envelope layers in Deinococcus radiodurans. J Biol Chem 2022; 299:102784. [PMID: 36502921 PMCID: PMC9823218 DOI: 10.1016/j.jbc.2022.102784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Deinococcus radiodurans is known for its remarkable ability to withstand harsh stressful conditions. The outermost layer of its cell envelope is a proteinaceous coat, the S-layer, essential for resistance to and interactions with the environment. The S-layer Deinoxanthin-binding complex (SDBC), one of the main units of the characteristic multilayered cell envelope of this bacterium, protects against environmental stressors and allows exchanges with the environment. So far, specific regions of this complex, the collar and the stalk, remained unassigned. Here, these regions are resolved by cryo-EM and locally refined. The resulting 3D map shows that the collar region of this multiprotein complex is a trimer of the protein DR_0644, a Cu-only superoxide dismutase (SOD) identified here to be efficient in quenching reactive oxygen species. The same data also showed that the stalk region consists of a coiled coil that extends into the cell envelope for ∼280 Å, reaching the inner membrane. Finally, the orientation and localization of the complex are defined by in situ cryo-electron crystallography. The structural organization of the SDBC couples fundamental UV antenna properties with the presence of a Cu-only SOD, showing here coexisting photoprotective and chemoprotective functions. These features suggests how the SDBC and similar protein complexes, might have played a primary role as evolutive templates for the origin of photoautotrophic processes by combining primary protective needs with more independent energetic strategies.
Collapse
Affiliation(s)
- Domenica Farci
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Chemistry, Umeå University, Umeå, Sweden,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| | | | - Luca Iesu
- Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy
| | - Daniele de Sanctis
- Structural Biology group, ESRF, The European Synchrotron Radiation Facility, Grenoble, France
| | - Dario Piano
- Department of Plant Physiology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland,Department of Life and Environmental Sciences, Laboratory of Plant Physiology and Photobiology, University of Cagliari, Cagliari, Italy,For correspondence: Dario Piano; Domenica Farci
| |
Collapse
|
13
|
Horne WH, Volpe RP, Korza G, DePratti S, Conze IH, Shuryak I, Grebenc T, Matrosova VY, Gaidamakova EK, Tkavc R, Sharma A, Gostinčar C, Gunde-Cimerman N, Hoffman BM, Setlow P, Daly MJ. Effects of Desiccation and Freezing on Microbial Ionizing Radiation Survivability: Considerations for Mars Sample Return. ASTROBIOLOGY 2022; 22:1337-1350. [PMID: 36282180 PMCID: PMC9618380 DOI: 10.1089/ast.2022.0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.
Collapse
Affiliation(s)
- William H. Horne
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York, USA
| | - Robert P. Volpe
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Sarah DePratti
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Isabel H. Conze
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center (CUIMC), New York, New York, USA
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Vera Y. Matrosova
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Elena K. Gaidamakova
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Rok Tkavc
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Cene Gostinčar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Michael J. Daly
- School of Medicine, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Member, Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC, USA
| |
Collapse
|
14
|
Dollery SJ, Zurawski DV, Bushnell RV, Tobin JK, Wiggins TJ, MacLeod DA, Tasker NJPER, Alamneh YA, Abu-Taleb R, Czintos CM, Su W, Escatte MG, Meeks HN, Daly MJ, Tobin GJ. Whole-cell vaccine candidates induce a protective response against virulent Acinetobacter baumannii. Front Immunol 2022; 13:941010. [PMID: 36238282 PMCID: PMC9553005 DOI: 10.3389/fimmu.2022.941010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii causes multi-system diseases in both nosocomial settings and a pre-disposed general population. The bacterium is not only desiccation-resistant but also notoriously resistant to multiple antibiotics and drugs of last resort including carbapenem, colistin, and sulbactam. The World Health Organization has categorized carbapenem-resistant A. baumannii at the top of its critical pathogen list in a bid to direct urgent countermeasure development. Several early-stage vaccines have shown a range of efficacies in healthy mice, but no vaccine candidates have advanced into clinical trials. Herein, we report our findings that both an ionizing γ-radiation-inactivated and a non-ionizing ultraviolet C-inactivated whole-cell vaccine candidate protects neutropenic mice from pulmonary challenge with virulent AB5075, a particularly pathogenic isolate. In addition, we demonstrate that a humoral response is sufficient for this protection via the passive immunization of neutropenic mice.
Collapse
Affiliation(s)
- Stephen J. Dollery
- Biological Mimetics, Inc., Frederick, MD, United States
- *Correspondence: Stephen J. Dollery,
| | - Daniel V. Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - John K. Tobin
- Biological Mimetics, Inc., Frederick, MD, United States
| | | | | | | | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christine M. Czintos
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Wanwen Su
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Mariel G. Escatte
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Heather N. Meeks
- Defense Threat Reduction Agency, Fort Belvoir, VA, United States
| | - Michael J. Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
15
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|