1
|
Rezapour M, Walker SJ, Ornelles DA, Niazi MKK, McNutt PM, Atala A, Gurcan MN. Exploring the host response in infected lung organoids using NanoString technology: A statistical analysis of gene expression data. PLoS One 2024; 19:e0308849. [PMID: 39591472 PMCID: PMC11594423 DOI: 10.1371/journal.pone.0308849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/31/2024] [Indexed: 11/28/2024] Open
Abstract
In this study, we used a three-dimensional airway "organ tissue equivalent" (OTE) model at an air-liquid interface (ALI) to mimic human airways. We investigated the effects of three viruses (Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) on this model, incorporating various control conditions for data integrity. Our primary objective was to assess gene expression using the NanoString platform in OTE models infected with these viruses at 24- and 72-hour intervals, focusing on 773 specific genes. To enhance the comprehensiveness of our analysis, we introduced a novel algorithm, namely MAS (Magnitude-Altitude Score). This innovative approach uniquely combines biological significance, as indicated by fold changes in gene expression, with statistical rigor, as represented by adjusted p-values. By incorporating both dimensions, MAS ensures that the genes identified as differentially expressed are not mere statistical artifacts but hold genuine biological relevance, providing a more holistic understanding of the airway tissue response to viral infections. Our results unveiled distinct patterns of gene expression in response to viral infections. At 24 hours post-IAV infection, a robust interferon-stimulated gene (ISG) response was evident, marked by the upregulation of key genes including IFIT2, RSAD2, IFIT3, IFNL1, IFIT1, IFNB1, ISG15, OAS2, OASL, and MX1, collectively highlighting a formidable antiviral defense. MPV infection at the same time point displayed a dual innate and adaptive immune response, with highly expressed ISGs, immune cell recruitment signaled by CXCL10, and early adaptive immune engagement indicated by TXK and CD79A. In contrast, PIV3 infection at 24 hours triggered a transcriptional response dominated by ISGs, active immune cell recruitment through CXCL10, and inflammation modulation through OSM. The picture evolved at 72 hours post-infection. For IAV, ISGs and immune responses persisted, suggesting a sustained impact. MPV infection at this time point showed a shift towards IL17A and genes related to cellular signaling and immune responses, indicating adaptation to the viral challenge over time. In the case of PIV3, the transcriptional response remained interferon-centric, indicating a mature antiviral state. Our analysis underscored the pivotal role of ISGs across all infections and time points, emphasizing their universal significance in antiviral defense. Temporal shifts in gene expression indicative of adaptation and fine-tuning of the immune response. Additionally, the identification of shared and unique genes unveiled host-specific responses to specific pathogens. IAV exerted a sustained impact on genes from the initial 24 hours, while PIV3 displayed a delayed yet substantial genomic response, suggestive of a gradual and nuanced strategy.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - David A. Ornelles
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Muhammad Khalid Khan Niazi
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States of America
| |
Collapse
|
2
|
Lin Y, Khan M, Weynand B, Laporte M, Coenjaerts F, Babusis D, Bilello JP, Mombaerts P, Jochmans D, Neyts J. A robust mouse model of HPIV-3 infection and efficacy of GS-441524 against virus-induced lung pathology. Nat Commun 2024; 15:7765. [PMID: 39237507 PMCID: PMC11377736 DOI: 10.1038/s41467-024-52071-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
Human parainfluenza virus type 3 (HPIV-3) can cause severe respiratory tract infections. There are no convenient small-animal infection models. Here, we show viral replication in the upper and lower airways of AG129 mice (double IFNα/β and IFNγ receptor knockout mice) upon intranasal inoculation. By multiplex fluorescence RNAscope and immunohistochemistry followed by confocal microscopy, we demonstrate viral tropism to ciliated cells and club cells of the bronchiolar epithelium. HPIV-3 causes a marked lung pathology. No virus transmission of the virus was observed by cohousing HPIV-3-infected AG129 mice with other mice. Oral treatment with GS-441524, the parent nucleoside of remdesivir, reduced infectious virus titers in the lung, with a relatively normal histology. Intranasal treatment also affords an antiviral effect. Thus, AG129 mice serve as a robust preclinical model for developing therapeutic and prophylactic strategies against HPIV-3. We suggest further investigation of GS-441524 and its prodrug forms to treat HPIV-3 infection in humans.
Collapse
Affiliation(s)
- Yuxia Lin
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Division of Translational Cell and Tissue Research, Leuven, Belgium
| | - Manon Laporte
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Frank Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, Leuven, Belgium.
- VirusBank Platform, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Rezapour M, Walker SJ, Ornelles DA, McNutt PM, Atala A, Gurcan MN. Analysis of gene expression dynamics and differential expression in viral infections using generalized linear models and quasi-likelihood methods. Front Microbiol 2024; 15:1342328. [PMID: 38655085 PMCID: PMC11037428 DOI: 10.3389/fmicb.2024.1342328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Our study undertakes a detailed exploration of gene expression dynamics within human lung organ tissue equivalents (OTEs) in response to Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) infections. Through the analysis of RNA-Seq data from 19,671 genes, we aim to identify differentially expressed genes under various infection conditions, elucidating the complexities of virus-host interactions. Methods We employ Generalized Linear Models (GLMs) with Quasi-Likelihood (QL) F-tests (GLMQL) and introduce the novel Magnitude-Altitude Score (MAS) and Relaxed Magnitude-Altitude Score (RMAS) algorithms to navigate the intricate landscape of RNA-Seq data. This approach facilitates the precise identification of potential biomarkers, highlighting the host's reliance on innate immune mechanisms. Our comprehensive methodological framework includes RNA extraction, library preparation, sequencing, and Gene Ontology (GO) enrichment analysis to interpret the biological significance of our findings. Results The differential expression analysis unveils significant changes in gene expression triggered by IAV, MPV, and PIV3 infections. The MAS and RMAS algorithms enable focused identification of biomarkers, revealing a consistent activation of interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) across all viruses. Our GO analysis provides deep insights into the host's defense mechanisms and viral strategies exploiting host cellular functions. Notably, changes in cellular structures, such as cilium assembly and mitochondrial ribosome assembly, indicate a strategic shift in cellular priorities. The precision of our methodology is validated by a 92% mean accuracy in classifying respiratory virus infections using multinomial logistic regression, demonstrating the superior efficacy of our approach over traditional methods. Discussion This study highlights the intricate interplay between viral infections and host gene expression, underscoring the need for targeted therapeutic interventions. The stability and reliability of the MAS/RMAS ranking method, even under stringent statistical corrections, and the critical importance of adequate sample size for biomarker reliability are significant findings. Our comprehensive analysis not only advances our understanding of the host's response to viral infections but also sets a new benchmark for the identification of biomarkers, paving the way for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David A. Ornelles
- Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
4
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Ribó-Molina P, van Nieuwkoop S, Mykytyn AZ, van Run P, Lamers MM, Haagmans BL, Fouchier RAM, van den Hoogen BG. Human metapneumovirus infection of organoid-derived human bronchial epithelium represents cell tropism and cytopathology as observed in in vivo models. mSphere 2024; 9:e0074323. [PMID: 38265200 PMCID: PMC10900881 DOI: 10.1128/msphere.00743-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M. Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
6
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
7
|
de Oliveira LF, Filho DM, Marques BL, Maciel GF, Parreira RC, do Carmo Neto JR, Da Silva PEF, Guerra RO, da Silva MV, Santiago HDC, Birbrair A, Kihara AH, Dias da Silva VJ, Glaser T, Resende RR, Ulrich H. Organoids as a novel tool in modelling infectious diseases. Semin Cell Dev Biol 2023; 144:87-96. [PMID: 36182613 DOI: 10.1016/j.semcdb.2022.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022]
Abstract
Infectious diseases worldwide affect human health and have important societal impacts. A better understanding of infectious diseases is urgently needed. In vitro and in vivo infection models have brought notable contributions to the current knowledge of these diseases. Organoids are multicellular culture systems resembling tissue architecture and function, recapitulating many characteristics of human disease and elucidating mechanisms of host-infectious agent interactions in the respiratory and gastrointestinal systems, the central nervous system and the skin. Here, we discuss the applicability of the organoid technology for modeling pathogenesis, host response and features, which can be explored for the development of preventive and therapeutic treatments.
Collapse
Affiliation(s)
- Lucas Felipe de Oliveira
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Daniel Mendes Filho
- Departamento de Fisiologia, Escola Médica de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruno Lemes Marques
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal deGoiás, Goiânia, GO, Brazil
| | | | | | - José Rodrigues do Carmo Neto
- Departamento de Biociência e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Rhanoica Oliveira Guerra
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Departamento de Microbiologia, Imunologia eParasitologia, Instituto de Ciências Naturais e Biológicas, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helton da Costa Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Radiology, Columbia University Medical Center, New York, NY, USA; Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Valdo José Dias da Silva
- Departamento de Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil; Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Talita Glaser
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Rodrigo R Resende
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Belo Horizonte, MG, Brazil
| | - Henning Ulrich
- Instituto Nacional de Ciência e Tecnologia de Medicina Regenerativa, Rio de Janeiro, RJ, Brazil; Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|