1
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency. Significance Copper deficiency is present in rare conditions such as Menkes disease and CTR1 deficiency and in more common diseases like Alzheimer's. The mechanisms of resilience and ultimate susceptibility to copper deficiency and associated pathology in the brain remain unknown. We demonstrate that in a human cell line, Drosophila , and the mouse cerebellum, copper-deficient neuronal cells exhibit increased protein synthesis through mTORC1 activation and decreased PERK (EIF2AK3) activity. Upregulation of protein synthesis facilitates resilience of neuronal cells to copper deficiency, including partial restoration of dendritic arborization. Our findings offer a new framework for understanding copper deficiency-related pathology in neurological disorders.
Collapse
|
2
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
3
|
Liu H, Zhang J, Yan X, An D, Lei H. The Anti-atherosclerosis Mechanism of Ziziphora clinopodioides Lam. Based On Network Pharmacology. Cell Biochem Biophys 2023; 81:515-532. [PMID: 37523140 DOI: 10.1007/s12013-023-01151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
We investigated the mechanisms underlying the effects of Ziziphora clinopodioides Lam. (ZCL) on atherosclerosis (AS) using network pharmacology and in vitro validation.We collected the active components of ZCL and predicted their targets in AS. We constructed the protein-protein interaction, compound-target, and target-compound-pathway networks, and performed GO and KEGG analyses. Molecular docking of the active components and key targets was constructed with Autodock and Pymol software. Validation was performed with qRT-PCR, ELISA, and Western blot.We obtained 80 components of ZCL. The network analysis identified that 14 components and 37 genes were involved in AS. Then, 10 key nodes in the PPI network were identified as the key targets of ZCL because of their importance in network topology. The binding energy of 8 components (Cynaroside, α-Spinasterol, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin) to 4 targets (MMP9, TP53, AKT1, SRC) was strong and <-1 kJ/mol. In addition, 13 of the 14 components were flavonoids and thus total flavonoids of Ziziphora clinopodioides Lam. (ZCF) were used for in vitro validation. We found that ZCF reduced eNOS, P22phox, gp91phox, and PCSK9 at mRNA and protein levels, as well as the levels of IL-1β, TNF-α, and IL-6 proteins in vitro (P < 0.05).We successfully predicted the active components, targets, and mechanisms of ZCL in treating AS using network pharmacology. We confirmed that ZCF may play a role in AS by modulating oxidative stress, lipid metabolism, and inflammatory response via Cynaroside, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin.
Collapse
Affiliation(s)
- Hongbing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Jianxin Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Xuehua Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
4
|
Firoz A, Ravanan P, Saha P, Prashar T, Talwar P. Genome-wide screening and identification of potential kinases involved in endoplasmic reticulum stress responses. Life Sci 2023; 317:121452. [PMID: 36720454 DOI: 10.1016/j.lfs.2023.121452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
AIM This study aims to identify endoplasmic reticulum stress response elements (ERSE) in the human genome to explore potentially regulated genes, including kinases and transcription factors, involved in the endoplasmic reticulum (ER) stress and its related diseases. MATERIALS AND METHODS Python-based whole genome screening of ERSE was performed using the Amazon Web Services elastic computing system. The Kinome database was used to filter out the kinases from the extracted list of ERSE-related genes. Additionally, network analysis and genome enrichment were achieved using NDEx, the Network and Data Exchange software, and web-based computational tools. To validate the gene expression, quantitative RT-PCR was performed for selected kinases from the list by exposing the HeLa cells to tunicamycin and brefeldin, ER stress inducers, for various time points. KEY FINDINGS The overall number of ERSE-associated genes follows a similar pattern in humans, mice, and rats, demonstrating the ERSE's conservation in mammals. A total of 2705 ERSE sequences were discovered in the human genome (GRCh38.p14), from which we identified 36 kinases encoding genes. Gene expression analysis has shown a significant change in the expression of selected genes under ER stress conditions in HeLa cells, supporting our finding. SIGNIFICANCE In this study, we have introduced a rapid method using Amazon cloud-based services for genome-wide screening of ERSE sequences from both positive and negative strands, which covers the entire genome reference sequences. Approximately 10 % of human protein-protein interactomes were found to be associated with ERSE-related genes. Our study also provides a rich resource of human ER stress-response-based protein networks and transcription factor interactions and a reference point for future research aiming at targeted therapeutics.
Collapse
Affiliation(s)
- Arman Firoz
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Functional Genomics Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi campus, Thiruvarur 610005, Tamil Nadu, India
| | - Pritha Saha
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Tanish Prashar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Li BB, Fan JQ, Hong QM, Yang XJ, Yan ZY, Huang W, Chen YH. Preliminary study of the intranuclear function of Sma and Mad related protein 5 gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104564. [PMID: 36216082 DOI: 10.1016/j.dci.2022.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Litopenaeus vannamei Smad5 (LvSmad5) in cytoplasm has been proved to be involved in environmental stress response. As LvSmad5 could also locate in nucleus under specific stress, it was conjectured that LvSmad5 might participate in environmental stress response. While, the experimental evidence is still lacking. In this study, cytosolic LvSmad5 mutant or nuclear LvSmad5 mutant was expressed in Drosophila S2 cells, and then transcriptomic analysis of mentioned cells was performed using Illumina HiSeq based RNA-Seq, to reveal the function of LvSmad5 in nucleus. By comparing the two groups of cDNA libraries from S2 cells with cytosolic or nucleus LvSmad5 mutant, 86 differentially expressed genes as well as 765 differentially expressed transcripts were found. It was revealed that genes in the ER-stress response pathway, such as unfolded protein response and ER-associated degradation (ERAD) were enriched. Additionally, some kinds of metabolic reprogramming occurred in S2 cells with over-expressing nuclear LvSmad5, for significant changes in the expression of some metabolism-related genes. To test our infer that nuclear LvSmad5 was engaged in environmental stress response, homologous gene of Drosophila translocation in renal carcinoma on chromosome 8 in L.vannamei (LvTRC8) was chosen for further investigation. And studies about LvTRC8, a member of ERAD showed that it was induced by ER-stress or heat shock treatment. Suppressed the expression of LvTRC8 increased the cumulative mortality of shrimp upon stress. In some degree, these results support our speculation that nuclear LvSmad5 are involved in the environmental stress response of L. vannamei in fact.
Collapse
Affiliation(s)
- Bin-Bin Li
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Jin-Quan Fan
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xin-Jun Yang
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ze-Yu Yan
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Wen Huang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
6
|
Exploring Anti-Type 2 Diabetes Mellitus Mechanism of Gegen Qinlian Decoction by Network Pharmacology and Experimental Validation. DISEASE MARKERS 2022; 2022:1927688. [PMID: 36284987 PMCID: PMC9588339 DOI: 10.1155/2022/1927688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Purpose. Gegen Qinlian Decoction (GGQL) has been employed to treat type 2 diabetes mellitus (T2DM) in the clinical practice of traditional Chinese medicine. However, the underlying mechanism of GGQL in the treatment of T2DM remains unknown. This study was aimed at exploring the pharmacological mechanisms of GGQL against T2DM via network pharmacology analysis combined with experimental validation. Methods. The effective components of GGQL were screened, and the target was predicted by using traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). The candidate targets of GGQL were predicted by network pharmacological analysis, and crucial targets were chosen by the protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of GGQL against T2DM. Then, T2DM mice were induced by a high-fat diet combined with streptozotocin. The model and GGQL groups were given normal saline and GGQL aqueous solution (10 and 20 g/kg/d) intragastric administration, respectively, for 8 weeks. The mice in the GGQLT groups were administered with GGQLT at 10 and 20 g/kg/d, respectively. The pathological changes in liver tissues were observed by hematoxylin-eosin staining. The protein expression of TNF-α and NF-κB was verified by western blotting. Results. A total of 204 common targets of GGQL for the treatment of T2DM were obtained from 140 active ingredients and 212 potential targets of T2DM. GO and KEGG enrichment analysis involved 119 signaling pathways, mainly in inflammatory TNF signaling pathways. Animal experiments showed that GGQL significantly reduced the serum levels of body mass, fasting blood glucose, fasting insulin, HOMA-IR, TNF-α, and IL-17. The liver pathological section showed that GGQL could improve the vacuolar degeneration and lipid deposition in the liver of T2DM mice. Mechanistically, GGQL downregulated the mRNA expression of TNF-α and NF-κB. Conclusions. This study demonstrated that GGQL may exert antidiabetic effects against T2DM by suppressing TNF-α signaling pathway activation, thus providing a basis for its potential use in clinical practice and further study in treating T2DM.
Collapse
|
7
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
8
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
9
|
The Ameliorative Effect of Berberine on Vascular Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2022; 80:294-304. [PMID: 35580317 DOI: 10.1097/fjc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/24/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Vascular calcification (VC), which currently cannot be prevented or treated, is an independent risk factor for cardiovascular events. We aimed to investigate the ameliorative effect of berberine on VC via the activation of Akt signaling and inhibition of endoplasmic reticulum stress (ERS). The VC model was induced by high-dose Vitamin D 3 in rats and beta-glycerophosphate in primary vascular smooth muscle cells of rat aortas, which were evaluated by Alizarin red staining to determine the calcium content and alkaline phosphatase activity. ERS was determined by the levels of GRP78 and CHOP, whereas that of the Akt signaling pathway was determined by the levels of phosphorylated Akt and GSK3β. VC was significantly ameliorated by berberine treatment in vivo and in vitro, and the inhibition of ERS and the activation of the Akt/GSK3 signaling pathway. In the vascular smooth muscle cells of primary rats, tunicamycin, an ERS activator, blocked the ameliorative effect of berberine on VC and ERS, but not the activation of Akt/GSK3. The ameliorative effects of berberine on VC, ERS, and the Akt signaling pathway were all prevented by inhibitor IV. Four-phenylbutyric acid, an ERS inhibitor, can restore the ameliorative effect of berberine on VC and ERS that was blocked by inhibitor IV. Our results are the first to demonstrate the ameliorative effect of VC that was mediated by the activation of the Akt signaling pathway and inhibition of ERS. These results may provide a new pharmaceutical candidate for the prevention and treatment of VC.
Collapse
|
10
|
Miao R, Fang X, Wei J, Wu H, Wang X, Tian J. Akt: A Potential Drug Target for Metabolic Syndrome. Front Physiol 2022; 13:822333. [PMID: 35330934 PMCID: PMC8940245 DOI: 10.3389/fphys.2022.822333] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase Akt, also known as protein kinase B (PKB), is one of the key factors regulating glucose and lipid energy metabolism, and is the core focus of current research on diabetes and metabolic diseases. Akt is mostly expressed in key metabolism-related organs and it is activated in response to various stimuli, including cell stress, cell movement, and various hormones and drugs that affect cell metabolism. Genetic and pharmacological studies have shown that Akt is necessary to maintain the steady state of glucose and lipid metabolism and a variety of cellular responses. Existing evidence shows that metabolic syndrome is related to insulin resistance and lipid metabolism disorders. Based on a large number of studies on Akt-related pathways and reactions, we believe that Akt can be used as a potential drug target to effectively treat metabolic syndrome.
Collapse
Affiliation(s)
- Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xinmiao Wang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Aggarwal R, Peng Z, Zeng N, Silva J, He L, Chen J, Debebe A, Tu T, Alba M, Chen CY, Stiles EX, Hong H, Stiles BL. Chronic Exposure to Palmitic Acid Down-Regulates AKT in Beta-Cells through Activation of mTOR. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:130-145. [PMID: 34619135 PMCID: PMC8759041 DOI: 10.1016/j.ajpath.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
High circulating lipids occurring in obese individuals and insulin-resistant patients are considered a contributing factor to type 2 diabetes. Exposure to high lipid concentration is proposed to both protect and damage beta-cells under different circumstances. Here, by feeding mice a high-fat diet (HFD) for 2 weeks to up to 14 months, the study showed that HFD initially causes the beta-cells to expand in population, whereas long-term exposure to HFD is associated with failure of beta-cells and the inability of animals to respond to glucose challenge. To prevent the failure of beta-cells and the development of type 2 diabetes, the molecular mechanisms that underlie this biphasic response of beta-cells to lipid exposure were explored. Using palmitic acid (PA) in cultured beta-cells and islets, the study demonstrated that chronic exposure to lipids leads to reduced viability and inhibition of cell cycle progression concurrent with down-regulation of a pro-growth/survival kinase AKT, independent of glucose. This AKT down-regulation by PA is correlated with the induction of mTOR/S6K activity. Inhibiting mTOR activity with rapamycin induced Raptor and restored AKT activity, allowing beta-cells to gain proliferation capacity that was lost after HFD exposure. In summary, a novel mechanism in which lipid exposure may cause the dipole effects on beta-cell growth was elucidated, where mTOR acts as a lipid sensor. These mechanisms can be novel targets for future therapeutic developments.
Collapse
Affiliation(s)
- Richa Aggarwal
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Zhechu Peng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Ni Zeng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Joshua Silva
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Lina He
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jingyu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Anketse Debebe
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Taojian Tu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Mario Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chien-Yu Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Eileen X. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Handan Hong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California,Address correspondence to Bangyan L. Stiles, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033.
| |
Collapse
|
12
|
Ajoolabady A, Wang S, Kroemer G, Klionsky DJ, Uversky VN, Sowers JR, Aslkhodapasandhokmabad H, Bi Y, Ge J, Ren J. ER Stress in Cardiometabolic Diseases: From Molecular Mechanisms to Therapeutics. Endocr Rev 2021; 42:839-871. [PMID: 33693711 DOI: 10.1210/endrev/bnab006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 02/08/2023]
Abstract
The endoplasmic reticulum (ER) hosts linear polypeptides and fosters natural folding of proteins through ER-residing chaperones and enzymes. Failure of the ER to align and compose proper protein architecture leads to accumulation of misfolded/unfolded proteins in the ER lumen, which disturbs ER homeostasis to provoke ER stress. Presence of ER stress initiates the cytoprotective unfolded protein response (UPR) to restore ER homeostasis or instigates a rather maladaptive UPR to promote cell death. Although a wide array of cellular processes such as persistent autophagy, dysregulated mitophagy, and secretion of proinflammatory cytokines may contribute to the onset and progression of cardiometabolic diseases, it is well perceived that ER stress also evokes the onset and development of cardiometabolic diseases, particularly cardiovascular diseases (CVDs), diabetes mellitus, obesity, and chronic kidney disease (CKD). Meanwhile, these pathological conditions further aggravate ER stress, creating a rather vicious cycle. Here in this review, we aimed at summarizing and updating the available information on ER stress in CVDs, diabetes mellitus, obesity, and CKD, hoping to offer novel insights for the management of these cardiometabolic comorbidities through regulation of ER stress.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | - James R Sowers
- Dalton and Diabetes and Cardiovascular Center, University of Missouri Columbia, Columbia, Missouri 65212, USA
| | | | - Yaguang Bi
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, Wyoming 82071, USA
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
13
|
Altman MK, Schaub CM, Dadi PK, Dickerson MT, Zaborska KE, Nakhe AY, Graff SM, Galletta TJ, Amarnath G, Thorson AS, Gu G, Jacobson DA. TRPM7 is a crucial regulator of pancreatic endocrine development and high-fat-diet-induced β-cell proliferation. Development 2021; 148:dev194928. [PMID: 34345920 PMCID: PMC8406533 DOI: 10.1242/dev.194928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/20/2021] [Indexed: 12/31/2022]
Abstract
The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function. Ablation of TRPM7 within pancreatic progenitors reduced pancreatic size, and α-cell and β-cell mass. This resulted in modestly impaired glucose tolerance. However, TRPM7 ablation following endocrine specification or in adult mice did not impact endocrine expansion or glucose tolerance. As TRPM7 regulates cell proliferation, we assessed how TRPM7 influences β-cell hyperplasia under insulin-resistant conditions. β-Cell proliferation induced by high-fat diet was significantly decreased in TRPM7-deficient β-cells. The endocrine roles of TRPM7 may be influenced by cation flux through the channel, and indeed we found that TRPM7 ablation altered β-cell Mg2+ and reduced the magnitude of elevation in β-cell Mg2+ during proliferation. Together, these findings revealed that TRPM7 controls pancreatic development and β-cell proliferation, which is likely due to regulation of Mg2+ homeostasis.
Collapse
Affiliation(s)
- Molly K. Altman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Charles M. Schaub
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Prasanna K. Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Karolina E. Zaborska
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Arya Y. Nakhe
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Sarah M. Graff
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Thomas J. Galletta
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Gautami Amarnath
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
- Molecular Neurophysiology, Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Ariel S. Thorson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| | - Guoqiang Gu
- Vanderbilt Program in Developmental Biology, Vanderbilt Center for Stem Cell Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 7425B MRB IV, 2213 Garland Ave., Nashville, TN 37232, USA
| |
Collapse
|
14
|
Systemic pharmacology understanding of the key mechanism of Sedum sarmentosum Bunge in treating hepatitis. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:421-430. [PMID: 32734365 DOI: 10.1007/s00210-020-01952-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Sedum sarmentosum Bunge is a Traditional Chinese Medicine that is widely used in treating hepatitis, whereas the detailed mechanisms have not been fully interpreted. A systemic pharmacology method including absorption, distribution, metabolism and elimination screening, drug targeting, interaction network plotting, and enrichment analysis was applied for exploring the underlying mechanisms of Sedum sarmentosum Bunge in the treatment of hepatitis. A total of 47 ingredients were identified in Sedum sarmentosum Bunge, and 5 active ingredients (DFV, isorhamnetin, beta-sitosterol, luteolin and quercetin) were screened out with the criteria of oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. Those 5 ingredients interacted with 170 targets, 163 of which were hepatitis-related. By compound-target-disease network plotting, protein-protein interaction network plotting and enrichment analysis, the pathways that the 5 ingredients engaged in during hepatitis development and progression were investigated, such as threonine-protein kinase signaling. The integrated systemic pharmacology analysis facilitates the in-depth understanding of Sedum sarmentosum Bunge in the hepatitis treatment, which also paves the way for further knowledge of the molecular mechanism of Sedum sarmentosum Bunge in treating hepatitis.
Collapse
|