1
|
Role of the TATA-box binding protein (TBP) and associated family members in transcription regulation. Gene X 2022; 833:146581. [PMID: 35597524 DOI: 10.1016/j.gene.2022.146581] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The assembly of transcription complexes on eukaryotic promoters involves a series of steps, including chromatin remodeling, recruitment of TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme, and additional basal transcription factors. This review describes the transcriptional regulation by TBP and its corresponding homologs that constitute the TBP family and their interactions with promoter DNA. The C-terminal core domain of TBP is highly conserved and contains two structural repeats that fold into a saddle-like structure, essential for the interaction with the TATA-box on DNA. Based on the TBP C-terminal core domain similarity, three TBP-related factors (TRFs) or TBP-like factors (TBPLs) have been discovered in metazoans, TRF1, TBPL1, and TBPL2. TBP is autoregulated, and once bound to DNA, repressors such as Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the active TBP/DNA complex into inactive, negatively regulating TBP. TFIIA antagonizes the TBP repressors but may be effective only in conjunction with the RNA polymerase II holoenzyme recruitment to the promoter by promoter-bound activators. TRF1 has been discovered inDrosophila melanogasterandAnophelesbut found absent in vertebrates and yeast. TBPL1 cannot bind to the TATA-box; instead, TBPL1 prefers binding to TATA-less promoters. However, TBPL1 shows a stronger association with TFIIA than TBP. The TCT core promoter element is present in most ribosomal protein genes inDrosophilaand humans, and TBPL1 is required for the transcription of these genes. TBP directly participates in the DNA repair mechanism, and TBPL1 mediates cell cycle arrest and apoptosis. TBPL2 is closely related to its TBP paralog, showing 95% sequence similarity with the TBP core domain. Like TBP, TBPL2 also binds to the TATA-box and shows interactions with TFIIA, TFIIB, and other basal transcription factors. Despite these advances, much remains to be explored in this family of transcription factors.
Collapse
|
2
|
Chavarria-Pizarro T, Resl P, Kuhl-Nagel T, Janjic A, Fernandez Mendoza F, Werth S. Antibiotic-Induced Treatments Reveal Stress-Responsive Gene Expression in the Endangered Lichen Lobaria pulmonaria. J Fungi (Basel) 2022; 8:jof8060625. [PMID: 35736108 PMCID: PMC9225190 DOI: 10.3390/jof8060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics are primarily found in the environment due to human activity, which has been reported to influence the structure of biotic communities and the ecological functions of soil and water ecosystems. Nonetheless, their effects in other terrestrial ecosystems have not been well studied. As a result of oxidative stress in organisms exposed to high levels of antibiotics, genotoxicity can lead to DNA damage and, potentially, cell death. In addition, in symbiotic organisms, removal of the associated microbiome by antibiotic treatment has been observed to have a big impact on the host, e.g., corals. The lung lichen Lobaria pulmonaria has more than 800 associated bacterial species, a microbiome which has been hypothesized to increase the lichen's fitness. We artificially exposed samples of L. pulmonaria to antibiotics and a stepwise temperature increase to determine the relative effects of antibiotic treatments vs. temperature on the mycobiont and photobiont gene expression and the viability and on the community structure of the lichen-associated bacteria. We found that the mycobiont and photobiont highly reacted to different antibiotics, independently of temperature exposure. We did not find major differences in bacterial community composition or alpha diversity between antibiotic treatments and controls. For these reasons, the upregulation of stress-related genes in antibiotic-treated samples could be caused by genotoxicity in L. pulmonaria and its photobiont caused by exposure to antibiotics, and the observed stress responses are reactions of the symbiotic partners to reduce damage to their cells. Our study is of great interest for the community of researchers studying symbiotic organisms as it represents one of the first steps to understanding gene expression in an endangered lichen in response to exposure to toxic environments, along with dynamics in its associated bacterial communities.
Collapse
Affiliation(s)
- Tania Chavarria-Pizarro
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria;
| | - Theresa Kuhl-Nagel
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Network Biology (INET), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany;
| | | | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| |
Collapse
|
3
|
Chavarria-Pizarro T, Resl P, Janjic A, Werth S. Gene expression responses to thermal shifts in the endangered lichen Lobaria pulmonaria. Mol Ecol 2021; 31:839-858. [PMID: 34784096 DOI: 10.1111/mec.16281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change has led to unprecedented shifts in temperature across many ecosystems. In a context of rapid environmental changes, acclimation is an important process as it may influence the capacity of organisms to survive under novel thermal conditions. Mechanisms of acclimation could involve upregulation of stress response genes involved in protein folding, DNA damage repair and the regulation of signal transduction genes, along with a simultaneous downregulation of genes involved in growth or the cell cycle, in order to maintain cellular functions and equilibria. We transplanted Lobaria pulmonaria lichens originating from different forests to determine the relative effects of long-term acclimation and genetic factors on the variability in expression of mycobiont and photobiont genes. We found a strong response of the mycobiont and photobiont to high temperatures, regardless of sample origin. The green-algal photobiont had an overall lower response than the mycobiont. Gene expression of both symbionts was also influenced by acclimation to transplantation sites and by genetic factors. L. pulmonaria seems to have evolved powerful molecular pathways to deal with environmental fluctuations and stress and can acclimate to new habitats by transcriptomic convergence. Although L. pulmonaria has the molecular machinery to counteract short-term thermal stress, survival of lichens such as L. pulmonaria depends mostly on their long-term positive carbon balance, which can be compromised by higher temperatures and reduced precipitation, and both these outcomes have been predicted for Central Europe in connection with global climate change.
Collapse
Affiliation(s)
| | - Philipp Resl
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Silke Werth
- Systematic Botany and Mycology, Faculty of Biology, LMU Munich, Munich, Germany.,Institute of Biology, University of Graz, Graz, Austria
| |
Collapse
|
4
|
Turowski TW, Petfalski E, Goddard BD, French SL, Helwak A, Tollervey D. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates. Mol Cell 2020; 79:488-503.e11. [PMID: 32585128 PMCID: PMC7427326 DOI: 10.1016/j.molcel.2020.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Transcription elongation rates influence RNA processing, but sequence-specific regulation is poorly understood. We addressed this in vivo, analyzing RNAPI in S. cerevisiae. Mapping RNAPI by Miller chromatin spreads or UV crosslinking revealed 5' enrichment and strikingly uneven local polymerase occupancy along the rDNA, indicating substantial variation in transcription speed. Two features of the nascent transcript correlated with RNAPI distribution: folding energy and GC content in the transcription bubble. In vitro experiments confirmed that strong RNA structures close to the polymerase promote forward translocation and limit backtracking, whereas high GC in the transcription bubble slows elongation. A mathematical model for RNAPI elongation confirmed the importance of nascent RNA folding in transcription. RNAPI from S. pombe was similarly sensitive to transcript folding, as were S. cerevisiae RNAPII and RNAPIII. For RNAPII, unstructured RNA, which favors slowed elongation, was associated with faster cotranscriptional splicing and proximal splice site use, indicating regulatory significance for transcript folding.
Collapse
Affiliation(s)
- Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| | - Elisabeth Petfalski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - Benjamin D Goddard
- School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sarah L French
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Abstract
A wide variety of factors are required for the conversion of pre-tRNA molecules into the mature tRNAs that function in translation. To identify factors influencing tRNA biogenesis, we previously performed a screen for strains carrying mutations that induce lethality when combined with a sup61-T47:2C allele, encoding a mutant form of [Formula: see text]. Analyzes of two complementation groups led to the identification of Tan1 as a protein involved in formation of the modified nucleoside N4-acetylcytidine (ac4C) in tRNA and Bud13 as a factor controlling the levels of ac4C by promoting TAN1 pre-mRNA splicing. Here, we describe the remaining complementation groups and show that they include strains with mutations in genes for known tRNA biogenesis factors that modify (DUS2, MOD5 and TRM1), transport (LOS1), or aminoacylate (SES1) [Formula: see text]. Other strains carried mutations in genes for factors involved in rRNA/mRNA synthesis (RPA49, RRN3 and MOT1) or magnesium uptake (ALR1). We show that mutations in not only DUS2, LOS1 and SES1 but also in RPA49, RRN3 and MOT1 cause a reduction in the levels of the altered [Formula: see text]. These results indicate that Rpa49, Rrn3 and Mot1 directly or indirectly influence [Formula: see text] biogenesis.
Collapse
Affiliation(s)
- Fu Xu
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Yang Zhou
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | - Anders S Byström
- a Department of Molecular Biology , Umeå University , Umeå , Sweden
| | | |
Collapse
|
6
|
Steinhäuser SS, Andrésson ÓS, Pálsson A, Werth S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol 2016; 120:1194-208. [PMID: 27647237 DOI: 10.1016/j.funbio.2016.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/27/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Organisms have evolved different cellular mechanisms to deal with environmental stress, primarily through complex molecular mechanisms including protein refolding and DNA repair. As mutualistic symbioses, lichens offer the possibility of analyzing molecular stress responses in a particularly tight interspecific relationship. We study the widespread cyanolichen Peltigera membranacea, a key player in carbon and nitrogen cycling in terrestrial ecosystems at northern latitudes. We ask whether increased temperature is reflected in mRNA levels of selected damage control genes, and do the response patterns show geographical associations? Using real-time PCR quantification of 38 transcripts, differential expression was demonstrated for nine cyanobacterial and nine fungal stress response genes (plus the fungal symbiosis-related lec2 gene) when the temperature was increased from 5 °C to 15 °C and 25 °C. Principle component analysis (PCA) revealed two gene groups with different response patterns. Whereas a set of cyanobacterial DNA repair genes and the fungal lec2 (PC1 group) showed an expression drop at 15 °C vs. 5 °C, most fungal candidates (PC2 group) showed increased expression at 25 °C vs. 5 °C. PC1 responses also correlated with elevation. The correlated downregulation of lec2 and cyanobacterial DNA repair genes suggests a possible interplay between the symbionts warranting further studies.
Collapse
Affiliation(s)
- Sophie S Steinhäuser
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Ólafur S Andrésson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Arnar Pálsson
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
| | - Silke Werth
- Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria.
| |
Collapse
|
7
|
Neumüller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, Hu Y, Sharifpoor S, Rosebrock AP, Andrews B, Winston F, Perrimon N. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal 2013; 6:ra70. [PMID: 23962978 PMCID: PMC3964804 DOI: 10.1126/scisignal.2004145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I-mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I-mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry-based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules.
Collapse
Affiliation(s)
- Ralph A Neumüller
- 1Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rpd3- and spt16-mediated nucleosome assembly and transcriptional regulation on yeast ribosomal DNA genes. Mol Cell Biol 2013; 33:2748-59. [PMID: 23689130 DOI: 10.1128/mcb.00112-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribosomal DNA (rDNA) genes in eukaryotes are organized into multicopy tandem arrays and transcribed by RNA polymerase I. During cell proliferation, ∼50% of these genes are active and have a relatively open chromatin structure characterized by elevated accessibility to psoralen cross-linking. In Saccharomyces cerevisiae, transcription of rDNA genes becomes repressed and chromatin structure closes when cells enter the diauxic shift and growth dramatically slows. In this study, we found that nucleosomes are massively depleted from the active rDNA genes during log phase and reassembled during the diauxic shift, largely accounting for the differences in psoralen accessibility between active and inactive genes. The Rpd3L histone deacetylase complex was required for diauxic shift-induced H4 and H2B deposition onto rDNA genes, suggesting involvement in assembly or stabilization of the entire nucleosome. The Spt16 subunit of FACT, however, was specifically required for H2B deposition, suggesting specificity for the H2A/H2B dimer. Miller chromatin spreads were used for electron microscopic visualization of rDNA genes in an spt16 mutant, which was found to be deficient in the assembly of normal nucleosomes on inactive genes and the disruption of nucleosomes on active genes, consistent with an inability to fully reactivate polymerase I (Pol I) transcription when cells exit stationary phase.
Collapse
|
9
|
Distinguishing the roles of Topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 2010; 31:482-94. [PMID: 21098118 DOI: 10.1128/mcb.00589-10] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To better understand the role of topoisomerase activity in relieving transcription-induced supercoiling, yeast genes encoding rRNA were visualized in cells deficient for either or both of the two major topoisomerases. In the absence of both topoisomerase I (Top1) and topoisomerase II (Top2) activity, processivity was severely impaired and polymerases were unable to transcribe through the 6.7-kb gene. Loss of Top1 resulted in increased negative superhelical density (two to six times the normal value) in a significant subset of rRNA genes, as manifested by regions of DNA template melting. The observed DNA bubbles were not R-loops and did not block polymerase movement, since genes with DNA template melting showed no evidence of slowed elongation. Inactivation of Top2, however, resulted in characteristic signs of slowed elongation in rRNA genes, suggesting that Top2 alleviates transcription-induced positive supercoiling. Together, the data indicate that torsion in front of and behind transcribing polymerase I has different consequences and different resolution. Positive torsion in front of the polymerase induces supercoiling (writhe) and is largely resolved by Top2. Negative torsion behind the polymerase induces DNA strand separation and is largely resolved by Top1.
Collapse
|
10
|
Sprouse RO, Wells MN, Auble DT. TATA-binding protein variants that bypass the requirement for Mot1 in vivo. J Biol Chem 2009; 284:4525-35. [PMID: 19098311 PMCID: PMC2640957 DOI: 10.1074/jbc.m808951200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Mot1 is an essential TATA-binding protein (TBP)-associated factor and Snf2/Swi2 ATPase that both represses and activates transcription. Biochemical and structural results support a model in which ATP binding and hydrolysis induce a conformational change in Mot1 that drives local translocation along DNA, thus removing TBP. Although this activity explains transcriptional repression, it does not as easily explain Mot1-mediated transcriptional activation, and several different models have been proposed to explain how Mot1 activates transcription. To better understand the function of Mot1 in yeast cells in vivo, particularly with regard to gene activation, TBP mutants were identified that bypass the requirement for Mot1 in vivo. Although TBP has been extensively mutated and analyzed previously, this screen uncovered two novel TBP variants that are unique in their ability to bypass the requirement for Mot1. Surprisingly, in vitro analyses reveal that rather than having acquired an improved biochemical activity, one of the TBPs was defective for interaction with polymerase II preinitiation complex (PIC) components and other regulators of TBP function. The other mutant was defective for DNA binding in vitro yet was still recruited to chromatin in vivo. These results suggest that Mot1-mediated dissociation of TBP (or TBP-containing complexes) from chromatin can explain the Mot1 activation mechanism at some promoters. The results also suggest that PICs can be dynamically unstable and that appropriate PIC instability is critical for the regulation of transcription in vivo.
Collapse
Affiliation(s)
- Rebekka O Sprouse
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
11
|
Transcription of multiple yeast ribosomal DNA genes requires targeting of UAF to the promoter by Uaf30. Mol Cell Biol 2008; 28:6709-19. [PMID: 18765638 DOI: 10.1128/mcb.00703-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Upstream activating factor (UAF) is a multisubunit complex that functions in the activation of ribosomal DNA (rDNA) transcription by RNA polymerase I (Pol I). Cells lacking the Uaf30 subunit of UAF reduce the rRNA synthesis rate by approximately 70% compared to wild-type cells and produce rRNA using both Pol I and Pol II. Miller chromatin spreads demonstrated that even though there is an overall reduction in rRNA synthesis in uaf30 mutants, the active rDNA genes in such strains are overloaded with polymerases. This phenotype was specific to defects in Uaf30, as mutations in other UAF subunits resulted in a complete absence of rDNA genes with high or even modest Pol densities. The lack of Uaf30 prevented UAF from efficiently binding to the rDNA promoter in vivo, leading to an inability to activate a large number of rDNA genes. The relatively few genes that did become activated were highly transcribed, apparently to compensate for the reduced rRNA synthesis capacity. The results show that Uaf30p is a key targeting factor for the UAF complex that facilitates activation of a large proportion of rDNA genes in the tandem array.
Collapse
|
12
|
Arnett DR, Jennings JL, Tabb DL, Link AJ, Weil PA. A proteomics analysis of yeast Mot1p protein-protein associations: insights into mechanism. Mol Cell Proteomics 2008; 7:2090-106. [PMID: 18596064 DOI: 10.1074/mcp.m800221-mcp200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Yeast Mot1p, a member of the Snf2 ATPase family of proteins, is a transcriptional regulator that has the unusual ability to both repress and activate mRNA gene transcription. To identify interactions with other proteins that may assist Mot1p in its regulatory processes, Mot1p was purified from replicate yeast cell extracts, and Mot1p-associated proteins were identified by coupled multidimensional liquid chromatography and tandem mass spectrometry. Using this approach we generated a catalog of Mot1p-interacting proteins. Mot1p interacts with a range of transcriptional co-regulators as well as proteins involved in chromatin remodeling. We propose that interaction with such a wide range of proteins may be one mechanism through which Mot1p subserves its roles as a transcriptional activator and repressor.
Collapse
Affiliation(s)
- Diana R Arnett
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|