1
|
Kushnirov VV, Dergalev AA, Alieva MK, Alexandrov AI. Structural Bases of Prion Variation in Yeast. Int J Mol Sci 2022; 23:ijms23105738. [PMID: 35628548 PMCID: PMC9147965 DOI: 10.3390/ijms23105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/04/2022] Open
Abstract
Amyloids are protein aggregates with a specific filamentous structure that are related to a number of human diseases, and also to some important physiological processes in animals and other kingdoms of life. Amyloids in yeast can stably propagate as heritable units, prions. Yeast prions are of interest both on their own and as a model for amyloids and prions in general. In this review, we consider the structure of yeast prions and its variation, how such structures determine the balance of aggregated and soluble prion protein through interaction with chaperones and how the aggregated state affects the non-prion functions of these proteins.
Collapse
|
2
|
Gil‐Garcia M, Iglesias V, Pallarès I, Ventura S. Prion-like proteins: from computational approaches to proteome-wide analysis. FEBS Open Bio 2021; 11:2400-2417. [PMID: 34057308 PMCID: PMC8409284 DOI: 10.1002/2211-5463.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
Prions are self-perpetuating proteins able to switch between a soluble state and an aggregated-and-transmissible conformation. These proteinaceous entities have been widely studied in yeast, where they are involved in hereditable phenotypic adaptations. The notion that such proteins could play functional roles and be positively selected by evolution has triggered the development of computational tools to identify prion-like proteins in different kingdoms of life. These algorithms have succeeded in screening multiple proteomes, allowing the identification of prion-like proteins in a diversity of unrelated organisms, evidencing that the prion phenomenon is well conserved among species. Interestingly enough, prion-like proteins are not only connected with the formation of functional membraneless protein-nucleic acid coacervates, but are also linked to human diseases. This review addresses state-of-the-art computational approaches to identify prion-like proteins, describes proteome-wide analysis efforts, discusses these unique proteins' functional role, and illustrates recently validated examples in different domains of life.
Collapse
Affiliation(s)
- Marcos Gil‐Garcia
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Valentín Iglesias
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Irantzu Pallarès
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| | - Salvador Ventura
- Departament de Bioquímica i Biologia MolecularInstitut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaSpain
| |
Collapse
|
3
|
Bandyopadhyay A, Sannigrahi A, Chattopadhyay K. Membrane composition and lipid to protein ratio modulate amyloid kinetics of yeast prion protein. RSC Chem Biol 2021; 2:592-605. [PMID: 34458802 PMCID: PMC8341755 DOI: 10.1039/d0cb00203h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding of prion aggregation in a membrane environment may help to ameliorate neurodegenerative complications caused by the amyloid forms of prions. Here, we investigated the membrane binding-induced aggregation of yeast prion protein Sup35. Using the combination of fluorescence correlation spectroscopy (FCS) at single molecule resolution and other biophysical studies, we establish that lipid composition and lipid/protein ratio are key modulators of the aggregation kinetics of Sup35. In the presence of a zwitterionic membrane (DMPC), Sup35 exhibited novel biphasic aggregation kinetics at lipid/protein ratios ranging between 20 : 1 and 70 : 1 (termed here as the optimum lipid concentration, OLC). In ratios below (low lipid concentration, LLC) and above (ELC, excess lipid concentration) that range, the aggregation was found to be monophasic. In contrast, in the presence of negatively charged membranes, we did not observe any bi-phasic aggregation kinetics in the entire range of protein to lipid ratios. Our results provide a mechanistic description of the role that membrane concentration/composition-modulated aggregation may play in neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnab Bandyopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
4
|
MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation. Commun Biol 2021; 4:414. [PMID: 33772081 PMCID: PMC7997880 DOI: 10.1038/s42003-021-01930-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
A disordered to β-sheet transition was thought to drive the functional switch of Q/N-rich prions, similar to pathogenic amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) regions within yeast prion domains in amyloid formation. We show that many human prion-like domains (PrLDs) contain CC regions that overlap with polyQ tracts. Most of the proteins bearing these domains are transcriptional coactivators, including the Mediator complex subunit 15 (MED15) involved in bridging enhancers and promoters. We demonstrate that the human MED15-PrLD forms homodimers in solution sustained by CC interactions and that it is this CC fold that mediates the transition towards a β-sheet amyloid state, its chemical or genetic disruption abolishing aggregation. As in functional yeast prions, a GFP globular domain adjacent to MED15-PrLD retains its structural integrity in the amyloid state. Expression of MED15-PrLD in human cells promotes the formation of cytoplasmic and perinuclear inclusions, kidnapping endogenous full-length MED15 to these aggregates in a prion-like manner. The prion-like properties of MED15 are conserved, suggesting novel mechanisms for the function and malfunction of this transcription coactivator.
Collapse
|
5
|
Michiels E, Liu S, Gallardo R, Louros N, Mathelié-Guinlet M, Dufrêne Y, Schymkowitz J, Vorberg I, Rousseau F. Entropic Bristles Tune the Seeding Efficiency of Prion-Nucleating Fragments. Cell Rep 2021; 30:2834-2845.e3. [PMID: 32101755 PMCID: PMC7043027 DOI: 10.1016/j.celrep.2020.01.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
Prions of lower eukaryotes are self-templating protein aggregates with cores formed by parallel in-register beta strands. Short aggregation-prone glutamine (Q)- and asparagine (N)-rich regions embedded in longer disordered domains have been proposed to act as nucleation sites that initiate refolding of soluble prion proteins into highly ordered fibrils, termed amyloid. We demonstrate that a short Q/N-rich peptide corresponding to a proposed nucleation site in the prototype Saccharomyces cerevisiae prion protein Sup35 is sufficient to induce infectious cytosolic prions in mouse neuroblastoma cells ectopically expressing the soluble Sup35 NM prion domain. Embedding this nucleating core in a non-native N-rich sequence that does not form amyloid but acts as an entropic bristle quadruples seeding efficiency. Our data suggest that large disordered sequences flanking an aggregation core in prion proteins act as not only solubilizers of the monomeric protein but also breakers of the formed amyloid fibrils, enhancing infectivity of the prion seeds. A short peptide derived from Sup35 (p103–113) forms rigid amyloid fibrils p103–113 fibrils can induce infectious Sup35 NM prions in mammalian cells Embedding p103–113 in an N-rich sequence increases fibril brittleness Increased fibril brittleness enhances prion-inducing capacity
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Rodrigo Gallardo
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium
| | - Yves Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.06, 1348 Louvain-la-Neuve, Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), 1300 Wavre, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| | - Ina Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany; Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KULeuven, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Huang YW, Kushnirov VV, King CY. Mutable yeast prion variants are stabilized by a defective Hsp104 chaperone. Mol Microbiol 2020; 115:774-788. [PMID: 33190361 DOI: 10.1111/mmi.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Gorkovskiy et al. observed that many [PSI+ ] prion isolates, obtained in yeast with the mutant Hsp104T160M chaperone, propagate poorly in wild-type cells and suggested that Hsp104 is part of the cellular anti-prion system, curing many nascent [PSI+ ] variants. Here, we argue that the concept may require reassessment. We induced [PSI+ ] variants in both the wild-type and the mutant background. Three new variants were isolated in the T160M background. They exhibited lower thermostability, possessed novel structural features, and were inherently mutable, changing to well-characterized VH, VK, and VL variants in wild-type cells. In contrast, VH, VK, and VL of the wild-type background, could not change freely and were lost in the mutant, due to insufficient chaperone activity. Thus, mutant Hsp104 can impose as much restriction against emerging prion variants as the wild-type protein. Such restriction conserved the transmutable variants in the T160M background, since new structures mis-templated from them could not gain a foothold. We further demonstrate excess Hsp104T160M or Hsp104∆2-147 can eliminate nearly all of the [PSI+ ] variants in their native background. This finding contradicts the generally held belief that Hsp104-induced [PSI+ ] curing requires its N-terminal domain, and may help settling the current contention regarding how excess Hsp104 cures [PSI+ ].
Collapse
Affiliation(s)
- Yu-Wen Huang
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Vitaly V Kushnirov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
7
|
Wang W, Ventura S. Prion domains as a driving force for the assembly of functional nanomaterials. Prion 2020; 14:170-179. [PMID: 32597308 PMCID: PMC7518758 DOI: 10.1080/19336896.2020.1785659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloids display a highly ordered fibrillar structure. Many of these assemblies appear associated with human disease. However, the controllable, stable, tunable, and robust nature of amyloid fibrils can be exploited to build up remarkable nanomaterials with a wide range of applications in biomedicine and biotechnology. Functional prions constitute a particular class of amyloids. These transmissible proteins exhibit a modular architecture, with a disordered prion domain responsible for the assembly and one or more globular domains that account for the activity. Importantly, the original globular protein can be replaced with any protein of interest, without compromising the fibrillation potential. These genetic fusions form fibrils in which the globular domain remains folded, rendering functional nanostructures. However, in some cases, steric hindrance restricts the activity of these fibrils. This limitation can be solved by dissecting prion domains into shorter sequences that keep their self-assembling properties while allowing better access to the active protein in the fibrillar state. In this review, we will discuss the properties of prion-like functional nanomaterials and the amazing applications of these biocompatible fibrillar arrangements.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
8
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Intercellular Transmission of a Synthetic Bacterial Cytotoxic Prion-Like Protein in Mammalian Cells. mBio 2020; 11:mBio.02937-19. [PMID: 32291306 PMCID: PMC7157824 DOI: 10.1128/mbio.02937-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteotoxic amyloid seeds can be transmitted between mammalian cells, arguing that the intercellular exchange of prion-like protein aggregates can be a common phenomenon. RepA-WH1 is derived from a bacterial intracellular functional amyloid protein, engineered to become cytotoxic in Escherichia coli. Here, we have studied if such bacterial aggregates can also be transmitted to, and become cytotoxic to, mammalian cells. We demonstrate that RepA-WH1 is capable of entering naive cells, thereby inducing the cytotoxic aggregation of a soluble RepA-WH1 variant expressed in the cytosol, following the same trend that had been described in bacteria. These findings highlight the universality of one of the central principles underlying prion biology: No matter the biological origin of a given prion-like protein, it can be transmitted to a phylogenetically unrelated recipient cell, provided that the latter expresses a soluble protein onto which the incoming protein can readily template its amyloid conformation. RepA is a bacterial protein that builds intracellular amyloid oligomers acting as inhibitory complexes of plasmid DNA replication. When carrying a mutation enhancing its amyloidogenesis (A31V), the N-terminal domain (WH1) generates cytosolic amyloid particles that are inheritable within a bacterial lineage. Such amyloids trigger in bacteria a lethal cascade reminiscent of mitochondrial impairment in human cells affected by neurodegeneration. To fulfill all the criteria to qualify as a prion-like protein, horizontal (intercellular) transmissibility remains to be demonstrated for RepA-WH1. Since this is experimentally intractable in bacteria, here we transiently expressed in a murine neuroblastoma cell line the soluble, barely cytotoxic RepA-WH1 wild type [RepA-WH1(WT)] and assayed its response to exposure to in vitro-assembled RepA-WH1(A31V) amyloid fibers. In parallel, murine cells releasing RepA-WH1(A31V) aggregates were cocultured with human neuroblastoma cells expressing RepA-WH1(WT). Both the assembled fibers and donor-derived RepA-WH1(A31V) aggregates induced, in the cytosol of recipient cells, the formation of cytotoxic amyloid particles. Mass spectrometry analyses of the proteomes of both types of injured cells pointed to alterations in mitochondria, protein quality triage, signaling, and intracellular traffic. Thus, a synthetic prion-like protein can be propagated to, and become cytotoxic to, cells of organisms placed at such distant branches of the tree of life as bacteria and mammalia, suggesting that mechanisms of protein aggregate spreading and toxicity follow default pathways.
Collapse
|
10
|
Wang W, Navarro S, Azizyan RA, Baño-Polo M, Esperante SA, Kajava AV, Ventura S. Prion soft amyloid core driven self-assembly of globular proteins into bioactive nanofibrils. NANOSCALE 2019; 11:12680-12694. [PMID: 31237592 DOI: 10.1039/c9nr01755k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Amyloids have been exploited to build amazing bioactive materials. In most cases, short synthetic peptides constitute the functional components of such materials. The controlled assembly of globular proteins into active amyloid nanofibrils is still challenging, because the formation of amyloids implies a conformational conversion towards a β-sheet-rich structure, with a concomitant loss of the native fold and the inactivation of the protein. There is, however, a remarkable exception to this rule: yeast prions. They are singular proteins able to switch between a soluble and an amyloid state. In both states, the structure of their globular domains remains essentially intact. The transit between these two conformations is encoded in prion domains (PrDs): long and disordered sequences to which the active globular domains are appended. PrDs are much larger than typical self-assembling peptides. This seriously limits their use for nanotechnological applications. We have recently shown that these domains contain soft amyloid cores (SACs) that suffice to nucleate their self-assembly reaction. Here we genetically fused a model SAC with different globular proteins. We demonstrate that this very short sequence acts as a minimalist PrD, driving the selective and slow assembly of the initially soluble fusion proteins into amyloid fibrils in which the globular proteins retain their native structure and display high activity. Overall, we provide here a novel, modular and straightforward strategy to build active protein-based nanomaterials at a preparative scale.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Rafayel A Azizyan
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Manuel Baño-Polo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Sebastian A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Riemschoss K, Arndt V, Bolognesi B, von Eisenhart-Rothe P, Liu S, Buravlova O, Duernberger Y, Paulsen L, Hornberger A, Hossinger A, Lorenzo-Gotor N, Hogl S, Müller SA, Tartaglia G, Lichtenthaler SF, Vorberg IM. Fibril-induced glutamine-/asparagine-rich prions recruit stress granule proteins in mammalian cells. Life Sci Alliance 2019; 2:2/4/e201800280. [PMID: 31266883 PMCID: PMC6607448 DOI: 10.26508/lsa.201800280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
This study provides evidence that exogenous proteinaceous seeds can induce protein aggregates that sequester stress granule components independent of stress granule assembly. Prions of lower eukaryotes are self-templating protein aggregates that replicate by converting homotypic proteins into stable, tightly packed beta-sheet–rich protein assemblies. Propagation is mediated by prion domains, low-complexity regions enriched in polar and devoid of charged amino acid residues. In mammals, compositionally similar domains modulate the assembly of dynamic stress granules (SGs) that associate via multivalent weak interactions. Dysregulation of SGs composed of proteins with prion-like domains has been proposed to underlie the formation of pathological inclusions in several neurodegenerative diseases. The events that drive prion-like domains into transient or solid assemblies are not well understood. We studied the interactors of the prototype prion domain NM of Saccharomyces cerevisiae Sup35 in its soluble or fibril-induced prion conformation in the mammalian cytosol. We show that the interactomes of soluble and prionized NM overlap with that of SGs. Prion induction by exogenous seeds does not cause SG assembly, demonstrating that colocalization of aberrant protein inclusions with SG components does not necessarily reveal SGs as initial sites of protein misfolding.
Collapse
Affiliation(s)
- Katrin Riemschoss
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - Verena Arndt
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - Benedetta Bolognesi
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
| | | | - Shu Liu
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | | | - Yvonne Duernberger
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - Lydia Paulsen
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - Annika Hornberger
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - André Hossinger
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany
| | - Nieves Lorenzo-Gotor
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
| | - Sebastian Hogl
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Gian Tartaglia
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Ina M Vorberg
- German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Bonn, Germany .,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
12
|
Iglesias V, Paladin L, Juan-Blanco T, Pallarès I, Aloy P, Tosatto SCE, Ventura S. In silico Characterization of Human Prion-Like Proteins: Beyond Neurological Diseases. Front Physiol 2019; 10:314. [PMID: 30971948 PMCID: PMC6445884 DOI: 10.3389/fphys.2019.00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Prion-like behavior has been in the spotlight since it was first associated with the onset of mammalian neurodegenerative diseases. However, a growing body of evidence suggests that this mechanism could be behind the regulation of processes such as transcription and translation in multiple species. Here, we perform a stringent computational survey to identify prion-like proteins in the human proteome. We detected 242 candidate polypeptides and computationally assessed their function, protein–protein interaction networks, tissular expression, and their link to disease. Human prion-like proteins constitute a subset of modular polypeptides broadly expressed across different cell types and tissues, significantly associated with disease, embedded in highly connected interaction networks, and involved in the flow of genetic information in the cell. Our analysis suggests that these proteins might play a relevant role not only in neurological disorders, but also in different types of cancer and viral infections.
Collapse
Affiliation(s)
- Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Teresa Juan-Blanco
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,CNR Institute of Neuroscience, Padua, Italy
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Pallarès I, de Groot NS, Iglesias V, Sant'Anna R, Biosca A, Fernàndez-Busquets X, Ventura S. Discovering Putative Prion-Like Proteins in Plasmodium falciparum: A Computational and Experimental Analysis. Front Microbiol 2018; 9:1737. [PMID: 30131778 PMCID: PMC6090025 DOI: 10.3389/fmicb.2018.01737] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Prions are a singular subset of proteins able to switch between a soluble conformation and a self-perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to transit between conformations is encoded in the so-called prion domains, long disordered regions usually enriched in glutamine/asparagine residues. Interestingly, Plasmodium falciparum, the parasite that causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. falciparum. Our data indicate that ∼10% of P. falciparum protein sequences have prionic signatures, and that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding proteins. Furthermore, we experimentally demonstrate for several of the identified PrLDs that, despite their disordered nature, they contain inner short sequences able to spontaneously self-assemble into amyloid-like structures. Although the ability of these sequences to nucleate the conformational conversion of the respective full-length proteins should still be demonstrated, our analysis suggests that, as previously described for other organisms, prion-like proteins might also play a functional role in P. falciparum.
Collapse
Affiliation(s)
- Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natalia S de Groot
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Biosca
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Barcelona Institute for Global Health, Barcelona Centre for International Health Research (Hospital Clínic - Universitat de Barcelona), Barcelona, Spain.,Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|