1
|
Guo D, Yao W, Du X, Dong J, Zhang X, Shen W, Zhu S. NEK2 promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through the Wnt/β-catenin signaling pathway. Discov Oncol 2023; 14:80. [PMID: 37233832 DOI: 10.1007/s12672-023-00692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES The NEK2 (never in mitosis gene A-related kinase 2), a serine/threonine kinase involved in chromosome instability and tumorigenesis. Hence, this study aimed to explore the molecular function of NEK2 in esophageal squamous cell carcinoma (ESCC). METHODS By available transcriptome datasets (GSE53625 cohort, GSE38129 cohort, and GSE21293 cohort), we analyzed the differentially expressed genes in invading and non-invading ESCC. Subsequently, we evaluated the association between NEK2 expression level and clinical outcomes through Kaplan-Meier analysis method. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) analyses were performed to determine the expression levels of NEK2 mRNA and protein, respectively. We knocked down the NEK2 expression in ESCC cells (ECA109 and TE1), and evaluated the NEK2 biology function associated with ESCC cell proliferation, migration, invasion, and colony formation abilities. Finally, the downstream pathway of NEK2 was analyzed through Gene Set Enrichment Analysis (GSEA) and validated the regulatory mechanism of NEK2 on the potential pathway through WB. RESULTS We found that NEK2 was highly expressed in ESCC cells compared with human esophageal epithelial cells (HEEC) (P < 0.0001), and high NEK2 expression was remarkably associated with poor survival (P = 0.019). Knockdown of NEK2 showed the significant inhibitory effect for tumorigenesis, and suppressed the ESCC cells proliferation, migration, invasion, and formation of colonies abilities. Additionally, GSEA revealed that Wnt/β-catenin pathway was a downstream pathway of NEK2. WB results further validated the regulatory mechanism of NEK2 for Wnt/β-catenin signaling. CONCLUSIONS Our results indicated that NEK2 promotes ESCC cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. NEK2 could be a promising target for ESCC.
Collapse
Affiliation(s)
- Dong Guo
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Weinan Yao
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xingyu Du
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jing Dong
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xueyuan Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbin Shen
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuchai Zhu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Qu L, Shen M, Guo J, Wang X, Dou T, Hu Y, Li Y, Ma M, Wang K, Liu H. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Arch Anim Breed 2019; 62:113-123. [PMID: 31807621 PMCID: PMC6853030 DOI: 10.5194/aab-62-113-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Albumen
quality is a leading economic trait in the chicken industry. Major studies have paid
attention to genetic architecture underlying albumen quality. However, the putative
quantitative trait locus (QTL) for this trait is still unclear. In this genome-wide
association study, we used an F2 resource population to study longitudinal albumen
quality. Seven single-nucleotide polymorphism (SNP) loci were found to be significantly
(p<8.43×10-7) related to albumen quality by univariate analysis,
while 11 SNPs were significantly (p<8.43×10-7) associated with
albumen quality by multivariate analysis. A QTL on GGA4 had a pervasive function on
albumen quality, including a SNP at the missense of NCAPG, and a SNP at the
intergenic region of FGFPB1. It was further found that the putative QTLs at
GGA1, GGA2, and GGA7 had the strongest effects on albumen height (AH) at 32 weeks, Haugh
units (HU) at 44 weeks, and AH at 55 weeks. Moreover, novel SNPs on GGA5 and GGA3 were
associated with AH and HU at 32, 44, and 48 weeks of age. These results confirmed the
regions for egg weight that were detected in a previous study and were similar with QTL
for albumen quality. These results showed that GGA4 had the strongest effect on albumen
quality. Only a few significant loci were detected for most characteristics probably
reflecting the attributes of a pleiotropic gene and a minor-polygene in quantitative
traits.
Collapse
Affiliation(s)
- Liang Qu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China.,Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Manman Shen
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China.,College of Animal Science & Technology, Yangzhou University, Yangzhou, China
| | - Jun Guo
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Xingguo Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Taocun Dou
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Yuping Hu
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Yongfeng Li
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Meng Ma
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Kehua Wang
- Jiangsu Institute of Poultry Science, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Fisk HA, Thomas JL, Nguyen TB. Breaking Bad: Uncoupling of Modularity in Centriole Biogenesis and the Generation of Excess Centrioles in Cancer. Results Probl Cell Differ 2019; 67:391-411. [PMID: 31435805 DOI: 10.1007/978-3-030-23173-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Centrosomes are tiny yet complex cytoplasmic structures that perform a variety of roles related to their ability to act as microtubule-organizing centers. Like the genome, centrosomes are single copy structures that undergo a precise semi-conservative replication once each cell cycle. Precise replication of the centrosome is essential for genome integrity, because the duplicated centrosomes will serve as the poles of a bipolar mitotic spindle, and any number of centrosomes other than two will lead to an aberrant spindle that mis-segregates chromosomes. Indeed, excess centrosomes are observed in a variety of human tumors where they generate abnormal spindles in situ that are thought to participate in tumorigenesis by driving genomic instability. At the heart of the centrosome is a pair of centrioles, and at the heart of centrosome duplication is the replication of this centriole pair. Centriole replication proceeds through a complex macromolecular assembly process. However, while centrosomes may contain as many as 500 proteins, only a handful of proteins have been shown to be essential for centriole replication. Our observations suggest that centriole replication is a modular, bottom-up process that we envision akin to building a house; the proper site of assembly is identified, a foundation is assembled at that site, and subsequent modules are added on top of the foundation. Here, we discuss the data underlying our view of modularity in the centriole assembly process, and suggest that non-essential centriole assembly factors take on greater importance in cancer cells due to their function in coordination between centriole modules, using the Monopolar spindles 1 protein kinase and its substrate Centrin 2 to illustrate our model.
Collapse
Affiliation(s)
- Harold A Fisk
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
| | - Jennifer L Thomas
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tan B Nguyen
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Purification and biochemical analysis of catalytically active human cdc25C dual specificity phosphatase. Biochimie 2013; 95:1450-61. [DOI: 10.1016/j.biochi.2013.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022]
|
5
|
Alternative splicing of CHEK2 and codeletion with NF2 promote chromosomal instability in meningioma. Neoplasia 2012; 14:20-8. [PMID: 22355270 DOI: 10.1593/neo.111574] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 12/13/2022] Open
Abstract
Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas.
Collapse
|
6
|
Shen T, Huang S. The Role of Cdc25A in the Regulation of Cell Proliferation and Apoptosis. Anticancer Agents Med Chem 2012; 12:631-9. [DOI: 10.2174/187152012800617678] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/22/2011] [Accepted: 12/31/2011] [Indexed: 12/11/2022]
|
7
|
Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication. Mol Cell Biol 2012; 32:1421-32. [PMID: 22331465 DOI: 10.1128/mcb.06721-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 1 (CDK1) inhibitory phosphorylation controls the onset of mitosis and is essential for the checkpoint pathways that prevent the G(2)- to M-phase transition in cells with unreplicated or damaged DNA. To address whether CDK2 inhibitory phosphorylation plays a similar role in cell cycle regulation and checkpoint responses at the start of the S phase, we constructed a mouse strain in which the two CDK2 inhibitory phosphorylation sites, threonine 14 and tyrosine 15, were changed to alanine and phenylalanine, respectively (CDK2AF). This approach showed that inhibitory phosphorylation of CDK2 had a major role in controlling cyclin E-associated kinase activity and thus both determined the timing of DNA replication in a normal cell cycle and regulated centrosome duplication. Further, DNA damage in G(1) CDK2AF cells did not downregulate cyclin E-CDK2 activity when the CDK inhibitor p21 was also knocked down. We were surprised to find that this was insufficient to cause cells to bypass the checkpoint and enter the S phase. This led to the discovery of two previously unrecognized pathways that control the activity of cyclin A at the G(1) DNA damage checkpoint and may thereby prevent S-phase entry even when cyclin E-CDK2 activity is deregulated.
Collapse
|
8
|
Younis RH, Cao W, Lin R, Xia R, Liu Z, Edelman MJ, Mei Y, Mao L, Ren H. CDC25A(Q110del): a novel cell division cycle 25A isoform aberrantly expressed in non-small cell lung cancer. PLoS One 2012; 7:e46464. [PMID: 23071577 PMCID: PMC3465328 DOI: 10.1371/journal.pone.0046464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/30/2012] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Lung cancer remains number one cause of cancer related deaths worldwide. Cell cycle deregulation plays a major role in the pathogenesis of Non-Small Cell Lung Cancer (NSCLC). CDC25A represents a critical cell cycle regulator that enhances cell cycle progression. In this study we aimed to investigate the role of a novel CDC25A transcriptional variant, CDC25A(Q110del), on the regulation of the CDC25A protein, and its impact on prognosis of NSCLC patients. METHODOLOGY/PRINCIPAL FINDINGS Here we report a novel CDC25A transcript variant with codon 110 (Glutamine) deletion, that we termed CDC25A(Q110del) in NSCLC cells. In 9 (75%) of the 12 NSCLC cell lines, CDC25A(Q110del) expression accounted for more than 20% of the CDC25A transcripts. Biological effects of CDC25A(Q110del) were investigated in H1299 and HEK-293F cells using UV radiation, flowcytometry, cyclohexamide treatment, and confocal microscopy. Compared to CDC25A(wt), CDC25A(Q110del) protein had longer half-life; cells expressing CDC25A(Q110del) were more resistant to UV irradiation and showed more mitotic activity. Taqman-PCR was used to quantify CDC25A(Q110del) expression levels in 88 primary NSCLC tumor/normal tissue pairs. In patients with NSCLC, Kaplan Meier curves showed tumors expressing higher levels of CDC25A(Q110del) relative to the adjacent lung tissues to have significantly inferior overall survival (P = .0018). SIGNIFICANCE Here we identified CDC25A(Q110del) as a novel transcriptional variant of CDC25A in NSCLC. The sequence-specific nature of the abnormality could be a prognostic indicator in NSCLC patients as well as a candidate target for future therapeutic strategies.
Collapse
Affiliation(s)
- Rania H. Younis
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Wei Cao
- Department of Oral and Maxillofacial Surgery, Jiao Tong University School of Stomatology, Shanghai, China
| | - Ruxian Lin
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Ronghui Xia
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- Department of Oral Pathology, 9th People Hospital, Shanghai Jiao Tong University, School of Medicine, Key Laboratory of Stomatology, Shanghai, China
| | - Zhenqiu Liu
- Department of Epidemiology, School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Martin J. Edelman
- University of Maryland Greenebaum Cancer Center, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Yuping Mei
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
| | - Hening Ren
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Koledova Z, Krämer A, Kafkova LR, Divoky V. Cell-cycle regulation in embryonic stem cells: centrosomal decisions on self-renewal. Stem Cells Dev 2010; 19:1663-78. [PMID: 20594031 DOI: 10.1089/scd.2010.0136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem cells seem to have the intriguing capacity to divide indefinitely while retaining their pluripotency. This self-renewal is accomplished by specialized mechanisms of cell-cycle control. In the last few years, several studies have provided evidence for a direct link between cell-cycle regulation and cell-fate decisions in stem cells. In this review, we discuss the peculiarities of embryonic stem cell-cycle control mechanisms, implicate their involvement in cell-fate decisions, and distinguish centrosomes as important players in the self-renewal versus differentiation roulette.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Biology, Faculty of Medicine, Palacky University, Olomouc, Czech Republic.
| | | | | | | |
Collapse
|
10
|
DNA damage induces Chk1-dependent threonine-160 phosphorylation and activation of Cdk2. Oncogene 2009; 29:616-24. [PMID: 19838212 DOI: 10.1038/onc.2009.340] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormal centrosome numbers arise in tumours and can cause multipolar mitoses and genome instability. Cdk2 controls normal centrosome duplication, but Chk1-dependent centrosome amplification also occurs after DNA damage. We investigated the involvement of cyclin-dependent kinases (Cdks) in DNA damage-induced centrosome amplification using cells lacking either Cdk2, or both Cdk1 and Cdk2 activity. Cdk2(-/-) DT40 cells showed robust centrosome amplification after ionizing radiation (IR), whereas Cdk1-deficient Cdk2(-/-) cells showed no centrosome amplification, demonstrating that Cdk1 can substitute for Cdk2 in this pathway. Surprisingly, we found that Cdk2 activity was upregulated by IR in wild-type but not in Chk1(-/-) DT40 cells. Cdk2 upregulation also occurred in HeLa cells after IR treatment. Chk1-dependent Cdk2 induction was not accompanied by increased levels of Cdk1, Cdk2, cyclin A or cyclin E, but activating T160 phosphorylation of Cdk2 increased after IR. Moreover, Cdk2 overexpression restored IR-induced centrosome amplification in Cdk1-deficient Cdk2(-/-) cells, but T160A mutation blocked this rescue. Our data suggest that Chk1 signalling causes centrosome amplification after IR by upregulating Cdk2 activity through activating phosphorylation.
Collapse
|
11
|
Timofeev O, Cizmecioglu O, Hu E, Orlik T, Hoffmann I. Human Cdc25A phosphatase has a non-redundant function in G2 phase by activating Cyclin A-dependent kinases. FEBS Lett 2009; 583:841-7. [PMID: 19192479 DOI: 10.1016/j.febslet.2009.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/18/2009] [Accepted: 01/23/2009] [Indexed: 11/24/2022]
Abstract
Cdc25 phosphatases activate Cdk/Cyclin complexes by dephosphorylation and thus promote cell cycle progression. We observed that the peak activity of Cdc25A precedes the one of Cdc25B in prophase and the maximum of Cyclin/Cdk kinase activity. Furthermore, Cdc25A activates both Cdk1-2/Cyclin A and Cdk1/Cyclin B complexes while Cdc25B seems to be involved only in activation of Cdk1/Cyclin B. Concomitantly, repression of Cdc25A led to a decrease in Cyclin A-associated kinase activity and attenuated Cdk1 activation. Our results indicate that Cdc25A acts before Cdc25B - at least in cancer cells, and has non-redundant functions in late G2/early M-phase as a major regulator of Cyclin A/kinase complexes.
Collapse
Affiliation(s)
- Oleg Timofeev
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, Im Neuenheimer Feld 242, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|