1
|
Álvarez-Herrera C, Maisanaba S, Llana Ruíz-Cabello M, Rojas R, Repetto G. A strategy for the investigation of toxic mechanisms and protection by efflux pumps using Schizosaccharomyces pombe strains: Application to rotenone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171253. [PMID: 38408667 DOI: 10.1016/j.scitotenv.2024.171253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/23/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Effects not related with the inhibition of complex I of the mitochondrial electron transport chain are studied in S. pombe, which lacks it. This study aims: First, the use of a strategy with S. pombe strains to investigate the toxicity, mechanisms of action, interactions and detoxication by efflux pumps. Second, to investigate the mechanisms of toxic action of rotenone. In the dose-response assessment, the yeast presented a good correlation with the toxicity in Daphnia magna for 15 chemicals. In the mechanistic study, the mph1Δ strain presented marked specificity to the interaction with microtubules by carbendazim. DNA damage caused by hydroxyurea, an inhibitor of deoxynucleotide synthesis, was identified with marked specificity with the rad3Δ strain. The sty1Δ strain was very sensitive to the oxidative and osmotic stress induced by hydrogen peroxide and potassium chloride, respectively, being more sensitive to oxidative stress than the pap1Δ strain. The protection by exclusion pumps was also evaluated. Rotenone presented low toxicity in S. pombe due to the lack of its main target, and the marked protection by the exclusion transporters Bfr1, Pmd1, Caf5 and Mfs1. Marked cellular stress was detected. Finally, the toxicity of rotenone could be potentiated by the fungicide carbendazim and the antimetabolite hydroxyurea. In conclusion, the use of S. pombe strains is a valid strategy to: a) assess global toxicity; b) investigate the main mechanisms of toxic action, particularly spindle and DNA interferences, and osmotic and oxidative stress not related to complex I inhibition; c) explore the detoxication by efflux pumps; and d) evaluate possible chemical interactions. Therefore, it should be useful for the investigation of adverse outcome pathways.
Collapse
Affiliation(s)
| | - Sara Maisanaba
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain.
| | | | - Raquel Rojas
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Guillermo Repetto
- Area of Toxicology, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
2
|
Davi K, Yurtsever I, Xu YJ. A missense mutation in the suc22 gene encoding the small subunit of ribonucleotide reductase significantly sensitizes fission yeast to chronic treatment with hydroxyurea. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001041. [PMID: 38188419 PMCID: PMC10765247 DOI: 10.17912/micropub.biology.001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Ribonucleotide reductase (RNR) is essential for the biosynthesis of dNTPs and a therapeutic target. We have identified a missense mutation in suc22 , which encodes the small subunit of RNR in fission yeast. The suc22-S239F mutation significantly sensitizes the cells to chronic but not acute treatment with the RNR inhibitor hydroxyurea. Preliminary data indicate that the drug sensitivity is likely due to decreased RNR activity. Since S239F is the first missense mutation reported for suc22 and the mutated residue is highly conserved, the results will be useful for future yeast genetic studies and potentially, the development of new therapeutics targeting RNR.
Collapse
Affiliation(s)
- Kajal Davi
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| | - Ilknur Yurtsever
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| | - Yong-jie Xu
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
3
|
Xu YJ, Bhadra S, Mahdi ATA, Dev K, Yurtsever I, Nakamura TM. Comprehensive mutational analysis of the checkpoint signaling function of Rpa1/Ssb1 in fission yeast. PLoS Genet 2023; 19:e1010691. [PMID: 37200372 DOI: 10.1371/journal.pgen.1010691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/31/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Replication protein A (RPA) is a heterotrimeric complex and the major single-strand DNA (ssDNA) binding protein in eukaryotes. It plays important roles in DNA replication, repair, recombination, telomere maintenance, and checkpoint signaling. Because RPA is essential for cell survival, understanding its checkpoint signaling function in cells has been challenging. Several RPA mutants have been reported previously in fission yeast. None of them, however, has a defined checkpoint defect. A separation-of-function mutant of RPA, if identified, would provide significant insights into the checkpoint initiation mechanisms. We have explored this possibility and carried out an extensive genetic screen for Rpa1/Ssb1, the large subunit of RPA in fission yeast, looking for mutants with defects in checkpoint signaling. This screen has identified twenty-five primary mutants that are sensitive to genotoxins. Among these mutants, two have been confirmed partially defective in checkpoint signaling primarily at the replication fork, not the DNA damage site. The remaining mutants are likely defective in other functions such as DNA repair or telomere maintenance. Our screened mutants, therefore, provide a valuable tool for future dissection of the multiple functions of RPA in fission yeast.
Collapse
Affiliation(s)
- Yong-Jie Xu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Sankhadip Bhadra
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Alaa Taha A Mahdi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Kamal Dev
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Ilknur Yurtsever
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States of America
| | - Toru M Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
4
|
Smc5/6 Complex Promotes Rad3 ATR Checkpoint Signaling at the Perturbed Replication Fork through Sumoylation of the RecQ Helicase Rqh1. Mol Cell Biol 2022; 42:e0004522. [PMID: 35612306 DOI: 10.1128/mcb.00045-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smc5/6, like cohesin and condensin, is a structural maintenance of chromosomes complex crucial for genome stability. Unlike cohesin and condensin, Smc5/6 carries an essential Nse2 subunit with SUMO E3 ligase activity. While screening for new DNA replication checkpoint mutants in fission yeast, we have identified two previously uncharacterized mutants in Smc5/6. Characterization of the mutants and a series of previously reported Smc5/6 mutants uncovered that sumoylation of the RecQ helicase Rqh1 by Nse2 facilitates the checkpoint signaling at the replication fork. We found that mutations that eliminate the sumoylation sites or the helicase activity of Rqh1 compromised the checkpoint signaling similar to a nse2 mutant lacking the ligase activity. Surprisingly, introducing a sumoylation site mutation to a helicase-inactive rqh1 mutant promoted cell survival under stress. These findings, together with other genetic data, support a mechanism that sumoylation of Rqh1 by Smc5/6-Nse2 recruits Rqh1 or modulates its helicase activity at the fork to facilitate the checkpoint signaling. Since the Smc5/6 complex, Rqh1, and the replication checkpoint are conserved in eukaryotes, a similar checkpoint mechanism may be operating in human cells.
Collapse
|
5
|
Telkoparan-Akillilar P, Cevik D. Identification of miR-17, miR-21, miR-27a, miR-106b and miR-222 as endoplasmic reticulum stress-related potential biomarkers in circulation of patients with atherosclerosis. Mol Biol Rep 2021; 48:3503-3513. [PMID: 33860430 DOI: 10.1007/s11033-021-06352-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Atherosclerosis and related cardiovascular diseases are among the most common causes of death worldwide. Unfolded protein response, also known as Endoplasmic reticulum stress, has a critical role in many diseases including atherosclerosis. Small non-coding microRNAs (miRNA), which generally suppress gene expression, regulate UPR signalling and they may also be involved in the progression of atherosclerosis. We aim to investigate the expression levels of miR-17, miR-21, miR-27a, miR-106b, miR-222 and CHOP gene in circulation of atherosclerosis patients compared to healthy controls to establish a link between ER stress and atherosclerosis. miRNA containing whole RNA was isolated from blood samples of 25 patients with atherosclerosis and 26 healthy controls. Expression levels of miRNAs and CHOP were measured via Real Time PCR method. miR-17 and miR-106b were significantly increased while miR-21, miR-27a, and miR-222 were significantly decreased in patients compared to controls. CHOP gene was also dramatically and significantly induced in patient samples. miR-17, miR-21, miR-27a, miR-106b, miR-222 and CHOP were significantly differentially expressed in patients with atherosclerosis. Each miRNA and CHOP might regulate atherosclerotic plaque progression and they can be used as a biomarker in the diagnosis and follow-up of atherosclerosis-related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Dilek Cevik
- Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, Ankara, Turkey
| |
Collapse
|
6
|
Shorrocks AMK, Jones SE, Tsukada K, Morrow CA, Belblidia Z, Shen J, Vendrell I, Fischer R, Kessler BM, Blackford AN. The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nat Commun 2021; 12:585. [PMID: 33500419 PMCID: PMC7838300 DOI: 10.1038/s41467-020-20818-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.
Collapse
Affiliation(s)
- Ann-Marie K Shorrocks
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Samuel E Jones
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Kaima Tsukada
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Carl A Morrow
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zoulikha Belblidia
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Johanna Shen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Iolanda Vendrell
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew N Blackford
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
7
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|