1
|
Peng Y, Long XD. The role of the ceRNA network mediated by lncRNA SNHG3 in the progression of cancer. Discov Oncol 2024; 15:514. [PMID: 39349640 PMCID: PMC11442963 DOI: 10.1007/s12672-024-01184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are a distinct class of RNAs with longer than 200 base pairs that are not translated into proteins. Small Nucleolar RNA Host Gene 3 (SNHG3) is a lncRNA and frequently dysregulated in various human cancers. OBJECTIVE This review provides a comprehensive analysis of current research on lncRNA SNHG3, focusing on its role within the competitive endogenous RNA (ceRNA) network and its implications in cancer. METHODS A systematic literature review was conducted using PubMed up to October 2023. The search strategy included keywords such as "lncRNA SNHG3", "competitive endogenous RNA", "cancer", and related terms. Studies were selected based on relevance to SNHG3's involvement in cancer pathogenesis and progression. RESULTS Disruptions in the ceRNA network involving lncRNA SNHG3 can impair normal cell growth and differentiation, significantly contributing to disease pathogenesis, particularly cancer. This review highlights SNHG3's substantial impact on various cancer processes and its potential as a diagnostic and therapeutic tool for aggressive cancers. CONCLUSION The findings underscore SNHG3's pivotal role in cancer prevention, diagnosis, and treatment, laying a foundation for future research in cancer management. Insights from this review emphasize the necessity for further exploration and development of SNHG3-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ying Peng
- Department of Pathology, the First Affiliated Hospital, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China
- Department of Pathology, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, 518000, Guangdong, People's Republic of China
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, Baise, 533000, People's Republic of China.
- Department of Tumor Pathology, Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Guangxi Zhuang Autonomous Region, Baise, 533000, China.
| |
Collapse
|
2
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Gibbs LC, Oviedo JM, Ondigo BN, Fairfax KC. Maternal infection causes dysfunctional BCR signaling in male offspring due to aberrant Xist expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528357. [PMID: 36824836 PMCID: PMC9948949 DOI: 10.1101/2023.02.13.528357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Infections during pregnancy with pathogens such as helminths correlate with altered immune responses to common childhood immunizations. However, the molecular mechanisms that underlie this remain unknown. Using our murine model of maternal schistosomiasis, when immunized, males from infected mothers had a lower frequency of antigen-specific germinal center B cells and downregulation of transcripts downstream of BCR signaling compared to males from uninfected mothers. This is driven by a reduction in developing B cell populations within the bone marrow of pups from infected mothers. Males from infected mothers were impacted to a greater extent than their female littermate counterparts. We found this defect to be caused by aberrant expression of the long non-coding RNA Xist in males leading to dysregulated Igα expression on developing B cells. This, for the first time, links dysfunctional BCR signaling with Xist expression, while also proposing a detrimental function for Xist expression in males.
Collapse
Affiliation(s)
- Lisa C. Gibbs
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | - Juan M. Oviedo
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | | | - Keke C. Fairfax
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| |
Collapse
|
4
|
Somatic XIST activation and features of X chromosome inactivation in male human cancers. Cell Syst 2022; 13:932-944.e5. [PMID: 36356577 DOI: 10.1016/j.cels.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/09/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Expression of the non-coding RNA XIST is essential for initiating X chromosome inactivation (XCI) during early development in female mammals. As the main function of XCI is to enable dosage compensation of chromosome X genes between the sexes, XCI and XIST expression are generally absent in male normal tissues, except in germ cells and in individuals with supernumerary X chromosomes. Via a systematic analysis of public sequencing data of both cancerous and normal tissues, we report that XIST is somatically activated in a subset of male human cancers across diverse lineages. Some of these cancers display hallmarks of XCI, including silencing of gene expression, reduced chromatin accessibility, and increased DNA methylation across chromosome X, suggesting that the developmentally restricted, female-specific program of XCI can be somatically accessed in male cancers.
Collapse
|
5
|
Dossin F, Heard E. The Molecular and Nuclear Dynamics of X-Chromosome Inactivation. Cold Spring Harb Perspect Biol 2022; 14:a040196. [PMID: 34312245 PMCID: PMC9121902 DOI: 10.1101/cshperspect.a040196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In female eutherian mammals, dosage compensation of X-linked gene expression is achieved during development through transcriptional silencing of one of the two X chromosomes. Following X chromosome inactivation (XCI), the inactive X chromosome remains faithfully silenced throughout somatic cell divisions. XCI is dependent on Xist, a long noncoding RNA that coats and silences the X chromosome from which it is transcribed. Xist coating triggers a cascade of chromosome-wide changes occurring at the levels of transcription, chromatin composition, chromosome structure, and spatial organization within the nucleus. XCI has emerged as a paradigm for the study of such crucial nuclear processes and the dissection of their functional interplay. In the past decade, the advent of tools to characterize and perturb these processes have provided an unprecedented understanding into their roles during XCI. The mechanisms orchestrating the initiation of XCI as well as its maintenance are thus being unraveled, although many questions still remain. Here, we introduce key aspects of the XCI process and review the recent discoveries about its molecular basis.
Collapse
Affiliation(s)
- François Dossin
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Unit, 69117 Heidelberg, Germany
| |
Collapse
|
6
|
Abstract
The last decade has seen an enormous increase in long non-coding RNA (lncRNA) research within rheumatology. LncRNAs are arbitrarily classed as non-protein encoding RNA transcripts that exceed 200 nucleotides in length. These transcripts have tissue and cell specific patterns of expression and are implicated in a variety of biological processes. Unsurprisingly, numerous lncRNAs are dysregulated in rheumatoid conditions, correlating with disease activity and cited as potential biomarkers and targets for therapeutic intervention. In this chapter, following an introduction into each condition, we discuss the lncRNAs involved in rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. These inflammatory joint conditions share several inflammatory signalling pathways and therefore not surprisingly many commonly dysregulated lncRNAs are shared across these conditions. In the interest of translational research only those lncRNAs which are strongly conserved have been addressed. The lncRNAs discussed here have diverse roles in regulating inflammation, proliferation, migration, invasion and apoptosis. Understanding the molecular basis of lncRNA function in rheumatology will be crucial in fully determining the inflammatory mechanisms that drive these conditions.
Collapse
|
7
|
Robert-Finestra T, Tan BF, Mira-Bontenbal H, Timmers E, Gontan C, Merzouk S, Giaimo BD, Dossin F, van IJcken WFJ, Martens JWM, Borggrefe T, Heard E, Gribnau J. SPEN is required for Xist upregulation during initiation of X chromosome inactivation. Nat Commun 2021; 12:7000. [PMID: 34853312 PMCID: PMC8636516 DOI: 10.1038/s41467-021-27294-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
At initiation of X chromosome inactivation (XCI), Xist is monoallelically upregulated from the future inactive X (Xi) chromosome, overcoming repression by its antisense transcript Tsix. Xist recruits various chromatin remodelers, amongst them SPEN, which are involved in silencing of X-linked genes in cis and establishment of the Xi. Here, we show that SPEN plays an important role in initiation of XCI. Spen null female mouse embryonic stem cells (ESCs) are defective in Xist upregulation upon differentiation. We find that Xist-mediated SPEN recruitment to the Xi chromosome happens very early in XCI, and that SPEN-mediated silencing of the Tsix promoter is required for Xist upregulation. Accordingly, failed Xist upregulation in Spen-/- ESCs can be rescued by concomitant removal of Tsix. These findings indicate that SPEN is not only required for the establishment of the Xi, but is also crucial in initiation of the XCI process.
Collapse
Affiliation(s)
- Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Beatrice F Tan
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Erika Timmers
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Cristina Gontan
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | - Sarra Merzouk
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands
| | | | - François Dossin
- European Molecular Biology Laboratory, Director's Research, 69117, Heidelberg, Germany
| | - Wilfred F J van IJcken
- Center for Biomics, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute and Cancer Genomics Netherlands, Erasmus University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, 35392, Giessen, Germany
| | - Edith Heard
- European Molecular Biology Laboratory, Director's Research, 69117, Heidelberg, Germany
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Oncode Institute, 3015GD, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Ganguly P, Roy D, Das T, Kundu A, Cartieaux F, Ghosh Z, DasGupta M. The Natural Antisense Transcript DONE40 Derived from the lncRNA ENOD40 Locus Interacts with SET Domain Protein ASHR3 During Inception of Symbiosis in Arachis hypogaea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1057-1070. [PMID: 33934615 DOI: 10.1094/mpmi-12-20-0357-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The long noncoding RNA ENOD40 is required for cortical cell division during root nodule symbiosis (RNS) of legumes, though it is not essential for actinorhizal RNS. Our objective was to understand whether ENOD40 was required for aeschynomenoid nodule formation in Arachis hypogaea. AhENOD40 express from chromosome 5 (chr5) (AhENOD40-1) and chr15 (AhENOD40-2) during symbiosis, and RNA interference of these transcripts drastically affected nodulation, indicating the importance of ENOD40 in A. hypogaea. Furthermore, we demonstrated several distinct characteristics of ENOD40. (i) Natural antisense transcript (NAT) of ENOD40 was detected from the AhENOD40-1 locus (designated as NAT-AhDONE40). (ii) Both AhENOD40-1 and AhENOD40-2 had two exons, whereas NAT-AhDONE40 was monoexonic. Reverse-transcription quantitative PCR analysis indicated both sense and antisense transcripts to be present in both cytoplasm and nucleus, and their expression increased with the progress of symbiosis. (iii) RNA pull-down from whole cell extracts of infected roots at 4 days postinfection indicated NAT-AhDONE40 to interact with the SET (Su(var)3-9, enhancer of Zeste and Trithorax) domain containing absent small homeotic disc (ASH) family protein AhASHR3 and this interaction was further validated using RNA immunoprecipitation and electrophoretic mobility shift assay. (iv) Chromatin immunoprecipitation assays indicate deposition of ASHR3-specific histone marks H3K36me3 and H3K4me3 in both of the ENOD40 loci during the progress of symbiosis. ASHR3 is known for its role in optimizing cell proliferation and reprogramming. Because both ASHR3 and ENOD40 from legumes cluster away from those in actinorhizal plants and other nonlegumes in phylogenetic distance trees, we hypothesize that the interaction of DONE40 with ASHR3 could have evolved for adapting the nodule organogenesis program for legumes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pritha Ganguly
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Dipan Roy
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Fabienne Cartieaux
- LSTM, Université de Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, West Bengal, 700054, India
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|
10
|
Mutzel V, Schulz EG. Dosage Sensing, Threshold Responses, and Epigenetic Memory: A Systems Biology Perspective on Random X-Chromosome Inactivation. Bioessays 2021; 42:e1900163. [PMID: 32189388 DOI: 10.1002/bies.201900163] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/27/2020] [Indexed: 02/06/2023]
Abstract
X-chromosome inactivation ensures dosage compensation between the sexes in mammals by randomly choosing one out of the two X chromosomes in females for inactivation. This process imposes a plethora of questions: How do cells count their X chromosome number and ensure that exactly one stays active? How do they randomly choose one of two identical X chromosomes for inactivation? And how do they stably maintain this state of monoallelic expression? Here, different regulatory concepts and their plausibility are evaluated in the context of theoretical studies that have investigated threshold behavior, ultrasensitivity, and bistability through mathematical modeling. It is discussed how a twofold difference between a single and a double dose of X-linked genes might be converted to an all-or-nothing response and how mutually exclusive expression can be initiated and maintained. Finally, candidate factors that might mediate the proposed regulatory principles are reviewed.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, 14195, Germany
| |
Collapse
|
11
|
Cerase A, Young AN, Ruiz NB, Buness A, Sant GM, Arnold M, Di Giacomo M, Ascolani M, Kumar M, Hierholzer A, Trigiante G, Marzi SJ, Avner P. Chd8 regulates X chromosome inactivation in mouse through fine-tuning control of Xist expression. Commun Biol 2021; 4:485. [PMID: 33859315 PMCID: PMC8050208 DOI: 10.1038/s42003-021-01945-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/25/2021] [Indexed: 01/22/2023] Open
Abstract
Female mammals achieve dosage compensation by inactivating one of their two X chromosomes during development, a process entirely dependent on Xist, an X-linked long non-coding RNA (lncRNA). At the onset of X chromosome inactivation (XCI), Xist is up-regulated and spreads along the future inactive X chromosome. Contextually, it recruits repressive histone and DNA modifiers that transcriptionally silence the X chromosome. Xist regulation is tightly coupled to differentiation and its expression is under the control of both pluripotency and epigenetic factors. Recent evidence has suggested that chromatin remodelers accumulate at the X Inactivation Center (XIC) and here we demonstrate a new role for Chd8 in Xist regulation in differentiating ES cells, linked to its control and prevention of spurious transcription factor interactions occurring within Xist regulatory regions. Our findings have a broader relevance, in the context of complex, developmentally-regulated gene expression.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Alexander N Young
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nerea Blanes Ruiz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andreas Buness
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Core Unit for Bioinformatics Data Analysis Universitätsklinikum Bonn, Bonn, Germany
| | - Gabrielle M Sant
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Mirjam Arnold
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory, Berlin, Germany
| | | | - Michela Ascolani
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
| | - Manish Kumar
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Allied Health Science, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE, Vijaypura, Karnataka, India
| | - Andreas Hierholzer
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Giuseppe Trigiante
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Philip Avner
- EMBL-Rome, Epigenetics and Neurobiology Unit, Monterotondo, Italy.
| |
Collapse
|
12
|
Galupa R, Nora EP, Worsley-Hunt R, Picard C, Gard C, van Bemmel JG, Servant N, Zhan Y, El Marjou F, Johanneau C, Diabangouaya P, Le Saux A, Lameiras S, Pipoli da Fonseca J, Loos F, Gribnau J, Baulande S, Ohler U, Giorgetti L, Heard E. A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Mol Cell 2020; 77:352-367.e8. [PMID: 31759823 PMCID: PMC6964159 DOI: 10.1016/j.molcel.2019.10.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/08/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
cis-Regulatory communication is crucial in mammalian development and is thought to be restricted by the spatial partitioning of the genome in topologically associating domains (TADs). Here, we discovered that the Xist locus is regulated by sequences in the neighboring TAD. In particular, the promoter of the noncoding RNA Linx (LinxP) acts as a long-range silencer and influences the choice of X chromosome to be inactivated. This is independent of Linx transcription and independent of any effect on Tsix, the antisense regulator of Xist that shares the same TAD as Linx. Unlike Tsix, LinxP is well conserved across mammals, suggesting an ancestral mechanism for random monoallelic Xist regulation. When introduced in the same TAD as Xist, LinxP switches from a silencer to an enhancer. Our study uncovers an unsuspected regulatory axis for X chromosome inactivation and a class of cis-regulatory effects that may exploit TAD partitioning to modulate developmental decisions.
Collapse
Affiliation(s)
- Rafael Galupa
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Elphège Pierre Nora
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Rebecca Worsley-Hunt
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christel Picard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Chris Gard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Joke Gerarda van Bemmel
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Nicolas Servant
- Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, PSL Research University, INSERM U900, Paris, France; MINES ParisTech, PSL Research University, Centre for Computational Biology (CBIO), Paris, France
| | - Yinxiu Zhan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland
| | | | | | - Patricia Diabangouaya
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Agnès Le Saux
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France
| | - Sonia Lameiras
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Friedemann Loos
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Biology, Humboldt University, Berlin, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Edith Heard
- Mammalian Developmental Epigenetics Group, Genetics and Developmental Biology Unit, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France; Collège de France, Paris, France.
| |
Collapse
|
13
|
Posynick BJ, Brown CJ. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:241. [PMID: 31696116 PMCID: PMC6817483 DOI: 10.3389/fcell.2019.00241] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, or female advantage to escape. The conservation of some escape genes across multiple species and the ability of the mouse inactive X to recapitulate human escape status both suggest that escape from XCI is controlled by conserved processes. Evolutionary pressures to minimize dosage imbalances have led to the accumulation of genetic elements that favor either silencing or escape; lack of dosage sensitivity might also allow for the escape of flanking genes near another escapee, if a boundary element is not present between them. Delineation of the elements involved in escape is progressing, but mechanistic understanding of how they interact to allow escape from XCI is still lacking. Although increasingly well-studied in humans and mice, non-trivial challenges to studying escape have impeded progress in other species. Mouse models that can dissect the role of the sex chromosomes distinct from sex of the organism reveal an important contribution for escape genes to multiple diseases. In humans, with their elevated number of escape genes, the phenotypic consequences of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the importance of escape genes.
Collapse
Affiliation(s)
- Bronwyn J Posynick
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Sci Rep 2019; 9:6068. [PMID: 30988473 PMCID: PMC6465393 DOI: 10.1038/s41598-019-42246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.
Collapse
|
15
|
Mutzel V, Okamoto I, Dunkel I, Saitou M, Giorgetti L, Heard E, Schulz EG. A symmetric toggle switch explains the onset of random X inactivation in different mammals. Nat Struct Mol Biol 2019; 26:350-360. [PMID: 30962582 PMCID: PMC6558282 DOI: 10.1038/s41594-019-0214-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
Gene-regulatory networks control establishment and maintenance of alternative gene expression states during development. A particular challenge is the acquisition of opposing states by two copies of the same gene, as it is the case in mammals for Xist at the onset of random X-chromosome inactivation (XCI). The regulatory principles that lead to stable mono-allelic expression of Xist remain unknown. Here, we uncovered the minimal Xist regulatory network, by combining mathematical modeling and experimental validation of central model predictions. We identified a symmetric toggle switch as the basis for random mono-allelic Xist up-regulation, which reproduces data from several mutant, aneuploid and polyploid murine cell lines with various Xist expression patterns. Moreover, this toggle switch explains the diversity of strategies employed by different species at the onset of XCI. In addition to providing a unifying conceptual framework to explore X-chromosome inactivation across mammals, our study sets the stage for identifying the molecular mechanisms required to initiate random XCI.
Collapse
Affiliation(s)
- Verena Mutzel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Japan Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France.,European Molecular Biology Laboratory (EMBL), Directors' research unit, Heidelberg, Germany
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
16
|
Choosing the Active X: The Human Version of X Inactivation. Trends Genet 2017; 33:899-909. [PMID: 28988701 DOI: 10.1016/j.tig.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 01/30/2023]
Abstract
Humans and rodents differ in how they carry out X inactivation (XI), the mammalian method to compensate for the different number of X chromosomes in males and females. Evolutionary changes in staging embryogenesis and in mutations within the XI center alter the process among mammals. The mouse model of XI is predicated on X counting and subsequently choosing the X to 'inactivate'. However, new evidence suggests that humans initiate XI by protecting one X in both sexes from inactivation by XIST, the noncoding RNA that silences the inactive X. This opinion article explores the question of how the active X is protected from silencing by its own Xist locus, and the possibility of different solutions for mouse and human.
Collapse
|
17
|
Li WX, Qi F, Liu JQ, Li GH, Dai SX, Zhang T, Cheng F, Liu D, Zheng SG. Different impairment of immune and inflammation functions in short and long-term after ischemic stroke. Am J Transl Res 2017; 9:736-745. [PMID: 28337302 PMCID: PMC5340709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Ischemic stroke therapy and prognosis outcomes largely depend on the time periods after symptom onset. This study aims to explore the difference of global gene expression profiles and impairment of biological functions between short-term and long-term after stroke onset. We compared three short-term (3 h, 5 h and 24 h) and a long-term (6-month) gene expression levels by a multi-platform microarray data integration method. RankProd was used to calculate the differentially expressed genes between stroke patients and controls. DAVID Bioinformatics Resources was utilized to determine affected biological functions. Consensus cluster and hierarchical cluster methods were employed to compare the gene expression patterns of the commonly biological functions among these four time course groups. The results showed that severe impairment of inflammation and immune related functions in 5 h and 24 h after symptom onset. However, these functions were less affected in the 3 h and the 6-month groups. In addition, several key genes (CCL20, THBS1, EREG, and IL6 et al.) were dramatically down-regulated in 5 h and 24 h groups, whereas these genes showed no change or even a slight contrary expression in 3 h or 6-month groups. This study has identified the large differences of altered immune and inflammation functions based on gene levels between short and long-term after stroke onset. The findings provide valuable insight into the clinical practice and prognosis evaluation of ischemic stroke.
Collapse
Affiliation(s)
- Wen-Xing Li
- Institute of Health Sciences, Anhui UniversityHefei 230601, Anhui, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunming 650223, Yunnan, China
| | - Fei Qi
- Department of Respiratory Medicine, Guizhou Medical UniversityGuiyang 550004, Guizhou, China
| | - Jia-Qian Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunming 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of SciencesKunming 650204, Yunnan, China
| | - Gong-Hua Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunming 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of SciencesKunming 650204, Yunnan, China
| | - Shao-Xing Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of SciencesKunming 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of SciencesKunming 650204, Yunnan, China
| | - Tao Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, Anhui, China
| | - Fei Cheng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, Anhui, China
| | - Dahai Liu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui UniversityHefei 230601, Anhui, China
| | - Song Guo Zheng
- Division of Rheumatology, Department of Medicine, Milton S. Hershey Medical Center at Penn State UnversityHershey, 17036, USA
| |
Collapse
|