1
|
Sasaki M, Kobayashi T. Transcription near arrested DNA replication forks triggers ribosomal DNA copy number changes. Nucleic Acids Res 2025; 53:gkaf014. [PMID: 39876709 PMCID: PMC11760980 DOI: 10.1093/nar/gkaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
DNA copy number changes via chromosomal rearrangements or the production of extrachromosomal circular DNA. Here, we demonstrate that the histone deacetylase Sir2 maintains the copy number of budding yeast ribosomal RNA gene [ribosomal DNA (rDNA)] by suppressing end resection of DNA double-strand breaks (DSBs) formed upon DNA replication fork arrest in the rDNA and their subsequent homologous recombination (HR)-mediated rDNA copy number changes during DSB repair. Sir2 represses transcription from the regulatory promoter E-pro located near the fork arresting site. When Sir2 is absent, this transcription is stimulated but terminated by arrested replication forks. This transcription-replication collision induces DSB formation, DSB end resection and the Mre11-Rad50-Xrs2 complex-dependent DSB repair that is prone to chromosomal rDNA copy number changes and the production of extrachromosomal rDNA circles. Therefore, repression of transcription near arrested replication forks is critical for the maintenance of rDNA stability by directing DSB repair into the HR-independent, rearrangement-free pathway.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Gene Quantity Biology, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan
| |
Collapse
|
2
|
Watase GJ, Yamashita YM. RNA polymerase II-mediated rDNA transcription mediates rDNA copy number expansion in Drosophila. PLoS Genet 2024; 20:e1011136. [PMID: 38758955 PMCID: PMC11139327 DOI: 10.1371/journal.pgen.1011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Ribosomal DNA (rDNA), which encodes ribosomal RNA, is an essential but unstable genomic element due to its tandemly repeated nature. rDNA's repetitive nature causes spontaneous intrachromatid recombination, leading to copy number (CN) reduction, which must be counteracted by a mechanism that recovers CN to sustain cells' viability. Akin to telomere maintenance, rDNA maintenance is particularly important in cell types that proliferate for an extended time period, most notably in the germline that passes the genome through generations. In Drosophila, the process of rDNA CN recovery, known as 'rDNA magnification', has been studied extensively. rDNA magnification is mediated by unequal sister chromatid exchange (USCE), which generates a sister chromatid that gains the rDNA CN by stealing copies from its sister. However, much remains elusive regarding how germ cells sense rDNA CN to decide when to initiate magnification, and how germ cells balance between the need to generate DNA double-strand breaks (DSBs) to trigger USCE vs. avoiding harmful DSBs. Recently, we identified an rDNA-binding Zinc-finger protein Indra as a factor required for rDNA magnification, however, the underlying mechanism of action remains unknown. Here we show that Indra is a negative regulator of rDNA magnification, balancing the need of rDNA magnification and repression of dangerous DSBs. Mechanistically, we show that Indra is a repressor of RNA polymerase II (Pol II)-dependent transcription of rDNA: Under low rDNA CN conditions, Indra protein amount is downregulated, leading to Pol II-mediated transcription of rDNA. This results in the expression of rDNA-specific retrotransposon, R2, which we have shown to facilitate rDNA magnification via generation of DBSs at rDNA. We propose that differential use of Pol I and Pol II plays a critical role in regulating rDNA CN expansion only when it is necessary.
Collapse
Affiliation(s)
- George J. Watase
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto-shi, Kumamoto, JAPAN
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yukiko M. Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
3
|
Murai T, Yanagi S, Hori Y, Kobayashi T. Replication fork blocking deficiency leads to a reduction of rDNA copy number in budding yeast. iScience 2024; 27:109120. [PMID: 38384843 PMCID: PMC10879690 DOI: 10.1016/j.isci.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
The ribosomal RNA genes are encoded as hundreds of tandem repeats, known as the rDNA, in eukaryotes. Maintaining these copies seems to be necessary, but copy number changes in an active manner have been reported in only frogs, flies, Neurospora, and yeast. In the best-studied system, yeast, a protein (Fob1) binds to the rDNA and unidirectionally blocks the replication fork. This block stimulates rDNA double-strand breaks (DSBs) leading to recombination and copy number change. To date, copy number maintenance and concerted evolution mediated by rDNA repeat turnover were the proposed benefits of Fob1-dependent replication fork arrest. In this study, we tested whether Fob1 provides these benefits and found that rDNA copy number decreases when FOB1 is deleted, suggesting that Fob1 is important for recovery from low copy number. We suppose that replication fork stalling at rDNA is necessary for recovering from rDNA copy number loss in other species as well.
Collapse
Affiliation(s)
- Taichi Murai
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaro Hori
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
4
|
Sasaki M, Kobayashi T. Regulatory processes that maintain or alter ribosomal DNA stability during the repair of programmed DNA double-strand breaks. Genes Genet Syst 2023; 98:103-119. [PMID: 35922917 DOI: 10.1266/ggs.22-00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Organisms have evolved elaborate mechanisms that maintain genome stability. Deficiencies in these mechanisms result in changes to the nucleotide sequence as well as copy number and structural variations in the genome. Genome instability has been implicated in numerous human diseases. However, genomic alterations can also be beneficial as they are an essential part of the evolutionary process. Organisms sometimes program genomic changes that drive genetic and phenotypic diversity. Therefore, genome alterations can have both positive and negative impacts on cellular growth and functions, which underscores the need to control the processes that restrict or induce such changes to the genome. The ribosomal RNA gene (rDNA) is highly abundant in eukaryotic genomes, forming a cluster where numerous rDNA copies are tandemly arrayed. Budding yeast can alter the stability of its rDNA cluster by changing the rDNA copy number within the cluster or by producing extrachromosomal rDNA circles. Here, we review the mechanisms that regulate the stability of the budding yeast rDNA cluster during repair of DNA double-strand breaks that are formed in response to programmed DNA replication fork arrest.
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
5
|
Yokoyama M, Sasaki M, Kobayashi T. Spt4 promotes cellular senescence by activating non-coding RNA transcription in ribosomal RNA gene clusters. Cell Rep 2023; 42:111944. [PMID: 36640349 DOI: 10.1016/j.celrep.2022.111944] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.
Collapse
Affiliation(s)
- Masaaki Yokoyama
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Sasaki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
6
|
Yanagi S, Iida T, Kobayashi T. RPS12 and UBC4 Are Related to Senescence Signal Production in the Ribosomal RNA Gene Cluster. Mol Cell Biol 2022; 42:e0002822. [PMID: 35384721 PMCID: PMC9119118 DOI: 10.1128/mcb.00028-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Genome instability causes cellular senescence in many organisms. The rRNA gene cluster (rDNA) is one of the most unstable regions in the genome and this instability might convey a signal that induces senescence in the budding yeast. The instability of rDNA mostly depends on replication fork blocking (RFB) activity which induces recombination and gene amplification. By overexpression of Fob1, responsible for the RFB activity, we found that unstable rDNA induces cell cycle arrest and restricts replicative life span. We isolated yeast mutants that grew normally while Fob1 was overexpressed, expecting that some of the mutated genes would be related to the production of a "senescence signal" that elongates cell cycle, stops cell division and finally restricts replicative life span. Our screen identified three suppressor genes, RPS12, UBC4, and CCR4. Replicative life spans of the rps12 and ubc4 mutants were longer than that of wild-type cells. An increase in the levels of extrachromosomal rDNA circles and noncoding transcripts, known to shorten replicative life span, was observed in ubc4 and rps12 respectively, while DNA double strand-breaks at the RFB that are triggers of rDNA instability were reduced in the rps12 mutant. Overall, our observations indicate that Rps12 and Ubc4 contribute to the connection between rDNA instability and replicative life span.
Collapse
Affiliation(s)
- Shuichi Yanagi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsushi Iida
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Vallabhaneni AR, Kabashi M, Haymowicz M, Bhatt K, Wayman V, Ahmed S, Conrad-Webb H. HSF1 induces RNA polymerase II synthesis of ribosomal RNA in S. cerevisiae during nitrogen deprivation. Curr Genet 2021; 67:937-951. [PMID: 34363098 PMCID: PMC8594204 DOI: 10.1007/s00294-021-01197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
The resource intensive process of accurate ribosome synthesis is essential for cell viability in all organisms. Ribosome synthesis regulation centers on RNA polymerase I (pol I) transcription of a 35S rRNA precursor that is processed into the mature 18S, 5.8S and 25S rRNAs. During nutrient deprivation or stress, pol I synthesis of rRNA is dramatically reduced. Conversely, chronic stress such as mitochondrial dysfunction induces RNA polymerase II (pol II) to transcribe functional rRNA using an evolutionarily conserved cryptic pol II rDNA promoter suggesting a universal phenomenon. However, this polymerase switches and its role in regulation of rRNA synthesis remain unclear. In this paper, we demonstrate that extended nitrogen deprivation induces the polymerase switch via components of the environmental stress response. We further show that the switch is repressed by Sch9 and activated by the stress kinase Rim15. Like stress-induced genes, the switch requires not only pol II transcription machinery, including the mediator, but also requires the HDAC, Rpd3 and stress transcription factor Hsf1. The current work shows that the constitutive allele, Hsf1PO4* displays elevated levels of induction in non-stress conditions while binding to a conserved site in the pol II rDNA promoter upstream of the pol I promoter. Whether the polymerase switch serves to provide rRNA when pol I transcription is inhibited or fine-tunes pol I initiation via RNA interactions is yet to be determined. Identifying the underlying mechanism for this evolutionary conserved phenomenon will help understand the mechanism of pol II rRNA synthesis and its role in stress adaptation.
Collapse
Affiliation(s)
- Arjuna Rao Vallabhaneni
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Merita Kabashi
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Matt Haymowicz
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Kushal Bhatt
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.,Department of Bioinformatics, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, Texas, 75390, USA
| | - Violet Wayman
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Shazia Ahmed
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA
| | - Heather Conrad-Webb
- Department of Biology, Texas Woman's University, 304 Administration Dr., Denton, TX, 76204, USA.
| |
Collapse
|
8
|
The S-Phase Cyclin Clb5 Promotes rRNA Gene (rDNA) Stability by Maintaining Replication Initiation Efficiency in rDNA. Mol Cell Biol 2021; 41:MCB.00324-20. [PMID: 33619126 PMCID: PMC8088266 DOI: 10.1128/mcb.00324-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Regulation of replication origins is important for complete duplication of the genome, but the effect of origin activation on the cellular response to replication stress is poorly understood. The budding yeast rRNA gene (rDNA) forms tandem repeats and undergoes replication fork arrest at the replication fork barrier (RFB), inducing DNA double-strand breaks (DSBs) and genome instability accompanied by copy number alterations. Regulation of replication origins is important for complete duplication of the genome, but the effect of origin activation on the cellular response to replication stress is poorly understood. The budding yeast rRNA gene (rDNA) forms tandem repeats and undergoes replication fork arrest at the replication fork barrier (RFB), inducing DNA double-strand breaks (DSBs) and genome instability accompanied by copy number alterations. Here, we demonstrate that the S-phase cyclin Clb5 promotes rDNA stability. Absence of Clb5 led to reduced efficiency of replication initiation in rDNA but had little effect on the number of replication forks arrested at the RFB, suggesting that arrival of the converging fork is delayed and forks are more stably arrested at the RFB. Deletion of CLB5 affected neither DSB formation nor its repair at the RFB but led to homologous recombination-dependent rDNA instability. Therefore, arrested forks at the RFB may be subject to DSB-independent, recombination-dependent rDNA instability. The rDNA instability in clb5Δ was not completely suppressed by the absence of Fob1, which is responsible for fork arrest at the RFB. Thus, Clb5 establishes the proper interval for active replication origins and shortens the travel distance for DNA polymerases, which may reduce Fob1-independent DNA damage.
Collapse
|
9
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|