1
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
2
|
Prava J, Pan A. In silico analysis of Leishmania proteomes and protein-protein interaction network: Prioritizing therapeutic targets and drugs for repurposing to treat leishmaniasis. Acta Trop 2022; 229:106337. [PMID: 35134348 DOI: 10.1016/j.actatropica.2022.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
Leishmaniasis is a serious world health problem and its current therapies have several limitations demanding to develop novel therapeutics for this disease. The present study aims to prioritize novel broad-spectrum targets using proteomics and protein-protein interaction network (PPIN) data for 11 Leishmania species. Proteome comparison and host non-homology analysis resulted in 3605 pathogen-specific conserved core proteins. Gene ontology analysis indicated their involvement in major molecular functions like DNA binding, transportation, dioxygenase, and catalytic activity. PPIN analysis of these core proteins identified eight hub proteins (viz., vesicle-trafficking protein (LBRM2903_190011800), ribosomal proteins S17 (LBRM2903_34004790) and L2 (LBRM2903_080008100), eukaryotic translation initiation factor 3 (LBRM2903_350086700), replication factor A (LBRM2903_150008000), U3 small nucleolar RNA-associated protein (LBRM2903_340025600), exonuclease (LBRM2903_200021800), and mitochondrial RNA ligase (LBRM2903_200074100)). Among the hub proteins, six were classified as drug targets and two as vaccine candidates. Further, druggability analysis indicated three hub proteins, namely eukaryotic translation initiation factor 3, ribosomal proteins S17 and L2 as druggable. Their three-dimensional structures were modelled and docked with the identified ligands (2-methylthio-N6-isopentenyl-adenosine-5'-monophosphate, artenimol and omacetaxine mepesuccinate). These ligands could be experimentally validated (in vitro and in vivo) and repurposed for the development of novel antileishmanial agents.
Collapse
|
3
|
Shafi MT, Bamra T, Das S, Kumar A, Abhishek K, Kumar M, Kumar V, Kumar A, Mukherjee R, Sen A, Das P. Mevalonate kinase of Leishmania donovani protects parasite against oxidative stress by modulating ergosterol biosynthesis. Microbiol Res 2021; 251:126837. [PMID: 34375804 DOI: 10.1016/j.micres.2021.126837] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/24/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Leishmaniasis comprises of a wide variety of diseases, caused by protozoan parasite belonging to the genus Leishmania. Leishmania parasites undergo different types of stress during their lifetime and have developed strategies to overcome this damage. Identifying the mechanistic approach used by the parasite in dealing with the stress is of immense importance for unfolding the survival strategy adopted by the parasite. Mevalonate kinase (MVK) is an important regulatory factor in the mevalonate pathway in both bacteria and eukaryotes. In this study, we explored the role of Leishmania donovani mevalonate kinase (LdMVK) in parasite survival under stress condition. Hydrogen peroxide (H2O2) and menadione, the two known oxidants were used to carry out the experiments. The MVK expression was found to be up regulated ∼2.1 fold and ∼2.3 fold under oxidative stress condition and under the effect of anti-Leishmania drug, AmBisome respectively. The cell viability declined under the effect of MVK inhibitor viz: vanadyl sulfate (VS). The level of intracellular ROS was also found to be increased under the effect of MVK inhibitor. To confirm the findings, LdMVK over expression (LdMVK OE) and LdMVK knockdown (LdMVK KD) parasites were generated. The level of ergosterol, an important component of plasma membrane in L. donovani, was observed and found to be reduced by nearly 60 % in LdMVK KD parasite and increased by nearly 30 % in LdMVK OE parasites as compared to wild type. However, the ergosterol content was found to be elevated under oxidative stress. Furthermore, LdMVK was also found to be associated with maintaining the plasma membrane integrity and also in preventing the peroxidation of cellular lipids when exposed to oxidative stress. The above data clearly suggests that MVK has a vital role in protecting the parasite from oxidative stress. These findings may also explore the contribution of LdMVK in drug unresponsiveness which may help in future rational drug designing for leishmaniasis.
Collapse
Affiliation(s)
- Md Taj Shafi
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Tanvir Bamra
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, 801 507, India
| | - Ashish Kumar
- Department of Biochemistry, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Kumar Abhishek
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Manjay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Vinod Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Ajay Kumar
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Rimi Mukherjee
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Abhik Sen
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India
| | - Pradeep Das
- Department of Molecular Biology, ICMR- Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, 800 007, India; Department of Microbiology, Indira Gandhi Institute of Medical Sciences, Sheikhpura, Patna, Bihar, 800 014, India.
| |
Collapse
|
4
|
Efstathiou A, Smirlis D. Leishmania Protein Kinases: Important Regulators of the Parasite Life Cycle and Molecular Targets for Treating Leishmaniasis. Microorganisms 2021; 9:microorganisms9040691. [PMID: 33801655 PMCID: PMC8066228 DOI: 10.3390/microorganisms9040691] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmania is a protozoan parasite of the trypanosomatid family, causing a wide range of diseases with different clinical manifestations including cutaneous, mucocutaneous and visceral leishmaniasis. According to WHO, one billion people are at risk of Leishmania infection as they live in endemic areas while there are 12 million infected people worldwide. Annually, 0.9-1.6 million new infections are reported and 20-50 thousand deaths occur due to Leishmania infection. As current chemotherapy for treating leishmaniasis exhibits numerous drawbacks and due to the lack of effective human vaccine, there is an urgent need to develop new antileishmanial therapy treatment. To this end, eukaryotic protein kinases can be ideal target candidates for rational drug design against leishmaniasis. Eukaryotic protein kinases mediate signal transduction through protein phosphorylation and their inhibition is anticipated to be disease modifying as they regulate all essential processes for Leishmania viability and completion of the parasitic life cycle including cell-cycle progression, differentiation and virulence. This review highlights existing knowledge concerning the exploitation of Leishmania protein kinases as molecular targets to treat leishmaniasis and the current knowledge of their role in the biology of Leishmania spp. and in the regulation of signalling events that promote parasite survival in the insect vector or the mammalian host.
Collapse
|
5
|
Martínez de Iturrate P, Sebastián-Pérez V, Nácher-Vázquez M, Tremper CS, Smirlis D, Martín J, Martínez A, Campillo NE, Rivas L, Gil C. Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3. J Enzyme Inhib Med Chem 2020; 35:199-210. [PMID: 31752556 PMCID: PMC6882465 DOI: 10.1080/14756366.2019.1693704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 01/06/2023] Open
Abstract
Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3β inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.
Collapse
Affiliation(s)
| | | | | | | | - Despina Smirlis
- Microbiology Department, Hellenic Pasteur Institute, Athens, Greece
| | - Julio Martín
- Global Health R&D, GlaxoSmithKline, Tres Cantos, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | | | - Luis Rivas
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Manzano-Román R, Fuentes M. Relevance and proteomics challenge of functional posttranslational modifications in Kinetoplastid parasites. J Proteomics 2020; 220:103762. [PMID: 32244008 DOI: 10.1016/j.jprot.2020.103762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Protozoan parasitic infections are health, social and economic issues impacting both humans and animals, with significant morbidity and mortality worldwide. Protozoan parasites have complicated life cycles with both intracellular and extracellular forms. As a consequence, protozoan adapt to changing environments in part through a dynamic enzyme-catalyzed process leading to reversible posttranslational modifications (PTMs). The characterization by proteomics approaches reveals the critical role of the PTMs of the proteins involved in host-pathogen interaction. The complexity of PTMs characterization is increased by the high diversity, stoichiometry, dynamic and also co-existence of several PTMs in the same moieties which crosstalk between them. Here, we review how to understand the complexity and the essential role of PTMs crosstalk in order to provide a new hallmark for vaccines developments, immunotherapies and personalized medicine. In addition, the importance of these motifs in the biology and biological cycle of kinetoplastid parasites is highlighted with key examples showing the potential to act as targets against protozoan diseases.
Collapse
Affiliation(s)
- R Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain..
| | - M Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.; Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| |
Collapse
|
7
|
Rastrojo A, Corvo L, Lombraña R, Solana JC, Aguado B, Requena JM. Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major. Sci Rep 2019; 9:6919. [PMID: 31061406 PMCID: PMC6502937 DOI: 10.1038/s41598-019-43354-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Besides their medical relevance, Leishmania is an adequate model for studying post-transcriptional mechanisms of gene expression. In this microorganism, mRNA degradation/stabilization mechanisms together with translational control and post-translational modifications of proteins are the major drivers of gene expression. Leishmania parasites develop as promastigotes in sandflies and as amastigotes in mammalians, and during host transmission, the parasite experiences a sudden temperature increase. Here, changes in the transcriptome of Leishmania major promastigotes after a moderate heat shock were analysed by RNA-seq. Several of the up-regulated transcripts code for heat shock proteins, other for proteins previously reported to be amastigote-specific and many for hypothetical proteins. Many of the transcripts experiencing a decrease in their steady-state levels code for transporters, proteins involved in RNA metabolism or translational factors. In addition, putative long noncoding RNAs were identified among the differentially expressed transcripts. Finally, temperature-dependent changes in the selection of the spliced leader addition sites were inferred from the RNA-seq data, and particular cases were further validated by RT-PCR and Northern blotting. This study provides new insights into the post-transcriptional mechanisms by which Leishmania modulate gene expression.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rodrigo Lombraña
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose C Solana
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Excelencia Internacional (CEI) UAM+CSIC, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Kumar A, Das S, Mandal A, Verma S, Abhishek K, Kumar A, Kumar V, Ghosh AK, Das P. Leishmania
infection activates host mTOR for its survival by M2 macrophage polarization. Parasite Immunol 2018; 40:e12586. [DOI: 10.1111/pim.12586] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Ajay Kumar
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Sushmita Das
- Department of Microbiology; All India Institute of Medical Sciences; Patna Bihar India
| | - Abhishek Mandal
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Sudha Verma
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Kumar Abhishek
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Ashish Kumar
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Vinod Kumar
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| | - Ayan Kumar Ghosh
- Department of Pediatrics; Johns Hopkins School of Medicine; Baltimore Maryland
| | - Pradeep Das
- Division of Molecular Biology; Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research); Patna Bihar India
| |
Collapse
|
9
|
Abhishek K, Das S, Kumar A, Kumar A, Kumar V, Saini S, Mandal A, Verma S, Kumar M, Das P. Leishmania donovani induced Unfolded Protein Response delays host cell apoptosis in PERK dependent manner. PLoS Negl Trop Dis 2018; 12:e0006646. [PMID: 30036391 PMCID: PMC6081962 DOI: 10.1371/journal.pntd.0006646] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/02/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
Background Endoplasmic reticulum (ER) stress generated unfolded stress response (UPR) is a basic survival mechanism which protects cell under unfavourable conditions. Leishmania parasite modulates host macrophages in various ways to ensure its survival. Modulation of PI3K-Akt pathway in delayed apoptotic induction of host; enables parasite to stabilize the infection for further propagation. Methodology Infected RAW macrophages were exposed to campothecin or thagsigargin and phosphorylation status of PERK, Akt, BAD and Cyt-C was determined through western blotting using phospho specific antibody. Expression at transcriptional level for cIAP1 &2, ATF4, CHOP, ATF3, HO-1 and sXBP1 was determined using real time PCR. For inhibition studies, RAW macrophages were pre-treated with PERK inhibitor GSK2606414 before infection. Findings Our studies in RAW macrophages showed that induction of host UPR against L.donovani infection activates Akt mediated pathway which delays apoptotic induction of the host. Moreover, Leishmania infection results in phosphorylation and activation of host PERK enzyme and increased transcription of genes of inhibitor of apoptosis gene family (cIAP) mRNA. In our inhibition studies, we found that inhibition of infection induced PERK phosphorylation under apoptotic inducers reduces the Akt phosphorylation and fails to activate further downstream molecules involved in protection against apoptosis. Also, inhibition of PERK phosphorylation under oxidative exposure leads to increased Nitric Oxide production. Simultaneously, decreased transcription of cIAP mRNA upon PERK phosphorylation fates the host cell towards apoptosis hence decreased infection rate. Conclusion Overall the findings from the study suggests that Leishmania modulated host UPR and PERK phosphorylation delays apoptotic induction in host macrophage, hence supports parasite invasion at early stages of infection. Visceral Leishmaniasis or Kala-azar is one of the severe tropical neglected parasitic diseases caused by Leishmania donovani in Indian subcontinent. Modulation of host in terms of delayed apoptotic induction is one of the aspects which favours disease establishment; however the mechanism is not clearly understood yet. In the present study, we tried to explore the connection between L.donovani infection induced UPR in host with delayed onset of apoptosis. We found that L.donovani infection phosphorylates the PERK and Akt molecule in host along with delayed apoptosis. Simultaneously, the levels of cellular IAP (cIAP1 & 2) genes were also up-regulated in infected macrophages. To assess the involvement of PERK in delayed apoptosis of host, we inhibited the phosphorylation of PERK under the exposure to apoptotic inducers. We found that PERK inhibition decreased the Akt phosphorylation and fails to activate other associated downstream molecules involved in delayed apoptosis of host. Also, a significant reduction in cIAP levels was observed. Under oxidative exposure, inhibition of PERK phosphorylation debilitates infected RAW cell’s ability to maintain redox homeostasis leading to higher nitric oxide production. Altogether, L.donovani infection modulates host apoptosis in a PERK dependent manner and favours infection.
Collapse
Affiliation(s)
- Kumar Abhishek
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Phulwarisharif, Patna Bihar, India
| | - Ashish Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Ajay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Vinod Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Savita Saini
- National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park, Hajipur, Vaishali, Bihar, India
| | - Abhishek Mandal
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Sudha Verma
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Manjay Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna, Bihar, India
- * E-mail:
| |
Collapse
|
10
|
Computational elucidation of novel antagonists and binding insights by structural and functional analyses of serine hydroxymethyltransferase and interaction with inhibitors. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Dikhit MR, Kumar A, Das S, Dehury B, Rout AK, Jamal F, Sahoo GC, Topno RK, Pandey K, Das VNR, Bimal S, Das P. Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis. Front Immunol 2017; 8:1763. [PMID: 29312304 PMCID: PMC5735068 DOI: 10.3389/fimmu.2017.01763] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Visceral leishmaniasis (VL) is one of the most neglected tropical diseases for which no vaccine exists. In spite of extensive efforts, no successful vaccine is available against this dreadful infectious disease. To support vaccine development, an immunoinformatics approach was applied to screen potential MHC class-II-restricted epitopes that can activate the immune cells. Initially, 37 epitopes derived from six stage-dependent, overexpressed antigens were predicted, which were presented by at least 26 diverse MHC class-II allele. Based on a population coverage analysis and human leukocyte antigen cross-presentation ability, six of the 37 epitopes were selected for further analysis. Stimulation with synthetic peptide alone or as a cocktail triggered intracellular IFN-γ production. Moreover, specific IgG antibodies were detected in the serum of active VL cases against P1, P4, P5, and P6 in order to evaluate the peptide effect on the humoral immune response. Additionally, most of the peptides, except P2, were found to be non-inducers of CD4+ IL-10 against both active VL as well as treated VL subjects. This finding suggests there is no role of these peptides in the pathogenesis of Leishmania. Peptide immunogenicity was validated in BALB/c mice immunized with a cocktail of synthetic peptide emulsified in complete Freund’s adjuvant/incomplete Freund’s adjuvant. The immunized splenocytes induced strong spleen cell proliferation upon parasite re-stimulation. Furthermore, increased IFN-γ, interleukin-12, IL-17, and IL-22 production augmented with elevated nitric oxide (NO) synthesis is thought to play a crucial role in macrophage activation. In this investigation, we identified six MHC class-II-restricted epitope hotspots of Leishmania antigens that induce CD4+ Th1 and Th17 responses, which could be used to potentiate a human universal T-epitope vaccine against VL.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India.,Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Odisha, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Kolkata, India
| | - Fauzia Jamal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ganesh Chandra Sahoo
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Roshan Kamal Topno
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
12
|
Peng F, Li H, Xiao H, Li L, Li Y, Wu Y. Identification of a three miRNA signature as a novel potential prognostic biomarker in patients with bladder cancer. Oncotarget 2017; 8:105553-105560. [PMID: 29285271 PMCID: PMC5739658 DOI: 10.18632/oncotarget.22318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
There is not a good biomaker that is closely related to survival time for bladder cancer(BLCA), The aim of the study is to identify a miRNA signature that could predict prognosis in BLCA patients according to the data from The Cancer Genome Atlas (TCGA). a total of 377 BLCA patients were finally enrolled in the study. The three miRNA signature was identified by Multivariate Cox proportional hazards analyses that common clinical variables were controled. The three microRNA signature showed greater predicting prognosis capacity for predicting 5-year survival in BLCA with an AUC of 0.664, 0.681 and 0.668 in Train set, Test set and Total set respectively. Furthermore, there was a significant difference between high score and low score in Total set(P=3e-05), Test set(P=0.00435) and Train set(P=0.00143), respectively. Therefore, these results provided a new prospect for prognostic biomarker of BLCA.
Collapse
Affiliation(s)
- Fei Peng
- Department of Laboratory, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China
| | - Hui Li
- Reproductive Department, Xiangya Hospital, Central South University, Changsha, China
| | - Hailang Xiao
- Nephrology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China
| | - Ling Li
- Nephrology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China
| | - Yan Li
- Department of Paediatrics, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China
| | - Yi Wu
- Department of Laboratory, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, China
| |
Collapse
|
13
|
Jain V, Jain K. Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov Today 2017; 23:161-170. [PMID: 28919438 DOI: 10.1016/j.drudis.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/28/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022]
Abstract
Visceral leishmaniasis (VL) represents the most severe form of the tropical disease, leishmaniasis. Treatment of VL is complicated because of the few clinically approved antileishmanial drugs available; emerging resistance to first-line drugs; need for a temperature-controlled 'cold' supply chain; serious toxicity concerns over drugs such as amphotericin B; high cost of medication; and unavailability of clinically approved antileishmanial vaccines. Attacking potential molecular targets, specific to the parasite, is a vital step in the treatment of this and other infectious diseases. As we discuss here, comprehensive investigation of these targets could provide a promising strategy for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Vineet Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, India
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, India.
| |
Collapse
|