1
|
Dodds SG, Hubbard G, Choi YJ, Myung K, Elliot G, Garrett L, Kim TM, Hasty P. The RAD51 S181P mutation shortens lifespan of female mice. Mutat Res 2024; 829:111878. [PMID: 39151334 DOI: 10.1016/j.mrfmmm.2024.111878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
RAD51 is critical to the homologous recombination (HR) pathway that repairs DNA double strand breaks (DSBs) and protects replication forks (RFs). Previously, we showed that the S181P (SP) mutation in RAD51 causes defective RF maintenance but is proficient for DSB repair. Here we report that SP/SP female mice exhibit a shortened lifespan compared to +/+ females but not males. Histological analysis found that most mice in this study died from lymphoma, independent of genotype and sex. We propose that a potential cause for shortened lifespan in SP/SP females is due to the RF defect.
Collapse
Affiliation(s)
- Sherry G Dodds
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Gene Hubbard
- Department of Pathology, University of Texas Health San Antonio, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yong Jun Choi
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Gene Elliot
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Garrett
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tae Moon Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, Texas, USA; Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, Texas, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
2
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
3
|
Son MY, Belan O, Spirek M, Cibulka J, Nikulenkov F, Kim YY, Hwang S, Myung K, Montagna C, Kim TM, Krejci L, Hasty P. RAD51 separation of function mutation disables replication fork maintenance but preserves DSB repair. iScience 2024; 27:109524. [PMID: 38577109 PMCID: PMC10993188 DOI: 10.1016/j.isci.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ondrej Belan
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - You Young Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Tae Moon Kim
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Lumir Krejci
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Paul Hasty
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Muñoz S, Blanco-Romero E, González-Acosta D, Rodriguez-Acebes S, Megías D, Lopes M, Méndez J. RAD51 restricts DNA over-replication from re-activated origins. EMBO J 2024; 43:1043-1064. [PMID: 38360996 PMCID: PMC10942984 DOI: 10.1038/s44318-024-00038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Elena Blanco-Romero
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Daniel González-Acosta
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Advanced Optical Microscopy Unit, Central Core Facilities, Instituto de Salud Carlos III, Madrid, Spain
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
5
|
Marple T, Son MY, Cheng X, Ko JH, Sung P, Hasty P. TREX2 deficiency suppresses spontaneous and genotoxin-associated mutagenesis. Cell Rep 2024; 43:113637. [PMID: 38175749 PMCID: PMC10883656 DOI: 10.1016/j.celrep.2023.113637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
TREX2, a 3'-5' exonuclease, is a part of the DNA damage tolerance (DDT) pathway that stabilizes replication forks (RFs) by ubiquitinating PCNA along with the ubiquitin E3 ligase RAD18 and other DDT factors. Mismatch repair (MMR) corrects DNA polymerase errors, including base mismatches and slippage. Here we demonstrate that TREX2 deletion reduces mutations in cells upon exposure to genotoxins, including those that cause base lesions and DNA polymerase slippage. Importantly, we show that TREX2 generates most of the spontaneous mutations in MMR-mutant cells derived from mice and people. TREX2-induced mutagenesis is dependent on the nuclease and DNA-binding attributes of TREX2. RAD18 deletion also reduces spontaneous mutations in MMR-mutant cells, albeit to a lesser degree. Inactivation of both MMR and TREX2 additively increases RF stalls, while it decreases DNA breaks, consistent with a synthetic phenotype.
Collapse
Affiliation(s)
- Teresa Marple
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Xiaodong Cheng
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jun Ho Ko
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; The Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; The Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA; Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Antoniuk-Majchrzak J, Enkhbaatar T, Długajczyk A, Kaminska J, Skoneczny M, Klionsky DJ, Skoneczna A. Stability of Rad51 recombinase and persistence of Rad51 DNA repair foci depends on post-translational modifiers, ubiquitin and SUMO. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119526. [PMID: 37364618 DOI: 10.1016/j.bbamcr.2023.119526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.
Collapse
Affiliation(s)
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna Długajczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| |
Collapse
|
7
|
Ayala-Zambrano C, Yuste M, Frias S, Garcia-de-Teresa B, Mendoza L, Azpeitia E, Rodríguez A, Torres L. A Boolean network model of the double-strand break repair pathway choice. J Theor Biol 2023; 573:111608. [PMID: 37595867 DOI: 10.1016/j.jtbi.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Double strand break (DSB) repair is critical to maintaining the integrity of the genome. DSB repair deficiency underlies multiple pathologies, including cancer, chromosome instability syndromes, and, potentially, neurodevelopmental defects. DSB repair is mainly handled by two pathways: highly accurate homologous recombination (HR), which requires a sister chromatid for template-based repair, limited to S/G2 phases of the cell cycle, and canonical non-homologous end joining (c-NHEJ), available throughout the cell cycle in which minimum homology is sufficient for highly efficient yet error-prone repair. Some circumstances, such as cancer, require alternative highly mutagenic DSB repair pathways like microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA), which are triggered to attend to DNA damage. These non-canonical repair alternatives are emerging as prominent drivers of resistance in drug-based tumor therapies. Multiple DSB repair options require tight inter-pathway regulation to prevent unscheduled activities. In addition to this complexity, epigenetic modifications of the histones surrounding the DSB region are emerging as critical regulators of the DSB repair pathway choice. Modeling approaches to understanding DSBs repair pathway choice are advantageous to perform simulations and generate predictions on previously uncharacterized aspects of DSBs response. In this work, we present a Boolean network model of the DSB repair pathway choice that incorporates the knowledge, into a dynamic system, of the inter-pathways regulation involved in DSB repair, i.e., HR, c-NHEJ, SSA, and MMEJ. Our model recapitulates the well-characterized HR activity observed in wild-type cells in response to DSBs. It also recovers clinically relevant behaviors of BRCA1/FANCS mutants, and their corresponding drug resistance mechanisms ascribed to DNA repair gain-of-function pathogenic variants. Since epigenetic modifiers are dynamic and possible druggable targets, we incorporated them into our model to better characterize their involvement in DSB repair. Our model predicted that loss of the TIP60 complex and its corresponding histone acetylation activity leads to activation of SSA in response to DSBs. Our experimental validation showed that TIP60 effectively prevents activation of RAD52, a key SSA executor, and confirms the suitable use of Boolean network modeling for understanding DNA DSB repair.
Collapse
Affiliation(s)
- Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mariana Yuste
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | | | - Luis Mendoza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico
| | - Eugenio Azpeitia
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, Ciudad de México 04510, Mexico; Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico.
| |
Collapse
|
8
|
Mani C, Acharya G, Saamarthy K, Ochola D, Mereddy S, Pruitt K, Manne U, Palle K. Racial differences in RAD51 expression are regulated by miRNA-214-5P and its inhibition synergizes with olaparib in triple-negative breast cancer. Breast Cancer Res 2023; 25:44. [PMID: 37081516 PMCID: PMC10120249 DOI: 10.1186/s13058-023-01615-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/03/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) affects young women and is the most aggressive subtype of breast cancer (BC). TNBCs disproportionally affect women of African-American (AA) descent compared to other ethnicities. We have identified DNA repair gene RAD51 as a poor prognosis marker in TNBC and its posttranscriptional regulation through microRNAs (miRNAs). This study aims to delineate the mechanisms leading to RAD51 upregulation and develop novel therapeutic combinations to effectively treat TNBCs and reduce disparity in clinical outcomes. METHODS Analysis of TCGA data for BC cohorts using the UALCAN portal and PrognoScan identified the overexpression of RAD51 in TNBCs. miRNA sequencing identified significant downregulation of RAD51-targeting miRNAs miR-214-5P and miR-142-3P. RT-PCR assays were used to validate the levels of miRNAs and RAD51, and immunohistochemical and immunoblotting techniques were used similarly for RAD51 protein levels in TNBC tissues and cell lines. Luciferase assays were performed under the control of RAD51 3'-UTR to confirm that miR-214-5P regulates RAD51 expression. To examine the effect of miR-214-5P-mediated downregulation of RAD51 on homologous recombination (HR) in TNBC cells, Dr-GFP reporter assays were performed. To assess the levels of olaparib-induced DNA damage responses in miR-214-5P, transfected cells, immunoblots, and immunofluorescence assays were used. Furthermore, COMET assays were used to measure DNA lesions and colony assays were performed to assess the sensitivity of BRCA-proficient TNBC cells to olaparib. RESULTS In-silico analysis identified upregulation of RAD51 as a poor prognostic marker in TNBCs. miRNA-seq data showed significant downregulation of miR-214-5P and miR-142-3P in TNBC cell lines derived from AA women compared to Caucasian-American (CA) women. miR-214-5P mimics downregulated RAD51 expression and induces HR deficiency as measured by Dr-GFP assays in these cell lines. Based on these results, we designed a combination treatment of miR-214-5P and olaparib in HR-proficient AA TNBC cell lines using clonogenic survival assays. The combination of miR-214-5P and olaparib showed synergistic lethality compared to individual treatments in these cell lines. CONCLUSIONS Our studies identified a novel epigenetic regulation of RAD51 in TNBCs by miR-214-5P suggesting a novel combination therapies involving miR-214-5P and olaparib to treat HR-proficient TNBCs and to reduce racial disparity in therapeutic outcomes.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Ganesh Acharya
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Karunakar Saamarthy
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Damieanus Ochola
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Srinidhi Mereddy
- Department of Cellular and Molecular Biology, University of Washington, 1400 NE Campus Parkway, Seattle, WA, 98195, USA
| | - Kevin Pruitt
- Department of Immunology and Infectious Diseases, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Department of Surgery, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430, USA.
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
9
|
Chung HJ, Lee JR, Kim TM, Kim S, Park K, Kim MJ, Jung E, Kim S, Lee EA, Ra JS, Hwang S, Lee JY, Schärer OD, Kim Y, Myung K, Kim H. ZNF212 promotes genomic integrity through direct interaction with TRAIP. Nucleic Acids Res 2023; 51:631-649. [PMID: 36594163 PMCID: PMC9881131 DOI: 10.1093/nar/gkac1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.
Collapse
Affiliation(s)
| | | | | | | | | | - Myung-Jin Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eunyoung Jung
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea,Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yonghwan Kim
- Correspondence may also be addressed to Yonghwan Kim. Tel: +82 2 710 9552;
| | - Kyungjae Myung
- Correspondence may also be addressed to Kyungjae Myung. Tel: +82 52 217 5323; Fax: +82 52 217 5519;
| | - Hongtae Kim
- To whom correspondence should be addressed. Tel: +82 52 217 5404; Fax: +82 52 217 5519;
| |
Collapse
|
10
|
Špírek M, Taylor MRG, Belan O, Boulton SJ, Krejci L. Nucleotide proofreading functions by nematode RAD51 paralogs facilitate optimal RAD51 filament function. Nat Commun 2021; 12:5545. [PMID: 34545070 PMCID: PMC8452638 DOI: 10.1038/s41467-021-25830-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/02/2021] [Indexed: 12/30/2022] Open
Abstract
The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that ‘nucleotide proofreading’ activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR. A RAD51 paralog complex, RFS-1/RIP-1, is shown to control ssDNA binding and dissociation by RAD-51 differentially in the presence and absence of nucleotide cofactors. These nucleotide proofreading activities drive a preferential accumulation of RAD-51-ssDNA complexes with optimal nucleotide content.
Collapse
Affiliation(s)
- Mário Špírek
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic.,Department of Biology Masaryk University, 62500, Brno, Czech Republic
| | | | - Ondrej Belan
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Lumir Krejci
- International Clinical Research Center, St. Anne's University Hospital in Brno, 62500, Brno, Czech Republic. .,Department of Biology Masaryk University, 62500, Brno, Czech Republic. .,National Centre for Biomolecular Research, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
11
|
Kang K, Choi Y, Moon H, You C, Seo M, Kwon G, Yun J, Beck B, Kang K. Epigenomic Analysis of RAD51 ChIP-seq Data Reveals cis-regulatory Elements Associated with Autophagy in Cancer Cell Lines. Cancers (Basel) 2021; 13:cancers13112547. [PMID: 34067336 PMCID: PMC8196894 DOI: 10.3390/cancers13112547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary RAD51 is a key enzyme involved in homologous recombination during DNA double-strand break repair. However, recent studies suggest that non-canonical roles of RAD51 may exist. The aim of our study was to assess regulatory roles of RAD51 by reanalyzing RAD51 ChIP-seq data in GM12878, HepG2, K562, and MCF-7 cell lines. We identified 5137, 2611, 7192, and 3498 RAD51-associated cis-regulatory elements in GM12878, HepG2, K562, and MCF-7 cell lines, respectively. Intriguingly, gene ontology analysis revealed that promoters of the autophagy pathway-related genes were most significantly occupied by RAD51 in all four cell lines, predicting a non-canonical role of RAD51 in regulating autophagy-related genes. Abstract RAD51 is a recombinase that plays a pivotal role in homologous recombination. Although the role of RAD51 in homologous recombination has been extensively studied, it is unclear whether RAD51 can be involved in gene regulation as a co-factor. In this study, we found evidence that RAD51 may contribute to the regulation of genes involved in the autophagy pathway with E-box proteins such as USF1, USF2, and/or MITF in GM12878, HepG2, K562, and MCF-7 cell lines. The canonical USF binding motif (CACGTG) was significantly identified at RAD51-bound cis-regulatory elements in all four cell lines. In addition, genome-wide USF1, USF2, and/or MITF-binding regions significantly coincided with the RAD51-associated cis-regulatory elements in the same cell line. Interestingly, the promoters of genes associated with the autophagy pathway, such as ATG3 and ATG5, were significantly occupied by RAD51 and regulated by RAD51 in HepG2 and MCF-7 cell lines. Taken together, these results unveiled a novel role of RAD51 and provided evidence that RAD51-associated cis-regulatory elements could possibly be involved in regulating autophagy-related genes with E-box binding proteins.
Collapse
Affiliation(s)
- Keunsoo Kang
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
- Correspondence: (K.K.); (K.K.); Tel.: +82-41-550-3456 (K.K.); +82-43-261-2295 (K.K.)
| | - Yoonjung Choi
- Deargen Inc., 193, Munji-ro, Yuseong-gu, Daejeon 34051, Korea; (Y.C.); (B.B.)
| | - Hyeonjin Moon
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Chaelin You
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
| | - Minjin Seo
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Geunho Kwon
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
| | - Jahyun Yun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; (H.M.); (M.S.); (J.Y.)
| | - Boram Beck
- Deargen Inc., 193, Munji-ro, Yuseong-gu, Daejeon 34051, Korea; (Y.C.); (B.B.)
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Korea; (C.Y.); (G.K.)
- Correspondence: (K.K.); (K.K.); Tel.: +82-41-550-3456 (K.K.); +82-43-261-2295 (K.K.)
| |
Collapse
|
12
|
Abstract
Three prime Repair Exonuclease 2 (Trex2) alters replication fork (RF) stability and mutation levels in cells defective for homologous recombination (HR). Trex2 has multiple functions that can either cause or supress RF instability in cells with different HR-defects. Why does Trex2 have such diverse effects on RF maintenance?
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, The Cancer Therapy Research Center, Sam, Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
13
|
TREX2 Exonuclease Causes Spontaneous Mutations and Stress-Induced Replication Fork Defects in Cells Expressing RAD51 K133A. Cell Rep 2020; 33:108543. [PMID: 33357432 PMCID: PMC7896812 DOI: 10.1016/j.celrep.2020.108543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/23/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023] Open
Abstract
DNA damage tolerance (DDT) and homologous recombination (HR) stabilize replication forks (RFs). RAD18/UBC13/three prime repair exonuclease 2 (TREX2)-mediated proliferating cell nuclear antigen (PCNA) ubiquitination is central to DDT, an error-prone lesion bypass pathway. RAD51 is the recombinase for HR. The RAD51 K133A mutation increased spontaneous mutations and stress-induced RF stalls and nascent strand degradation. Here, we report in RAD51K133A cells that this phenotype is reduced by expressing a TREX2 H188A mutation that deletes its exonuclease activity. In RAD51K133A cells, knocking out RAD18 or overexpressing PCNA reduces spontaneous mutations, while expressing ubiquitination-incompetent PCNAK164R increases mutations, indicating DDT as causal. Deleting TREX2 in cells deficient for the RF maintenance proteins poly(ADP-ribose) polymerase 1 (PARP1) or FANCB increased nascent strand degradation that was rescued by TREX2H188A, implying that TREX2 prohibits degradation independent of catalytic activity. A possible explanation for this occurrence is that TREX2H188A associates with UBC13 and ubiquitinates PCNA, suggesting a dual role for TREX2 in RF maintenance.
Collapse
|
14
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|
15
|
Role of Rad51 and DNA repair in cancer: A molecular perspective. Pharmacol Ther 2020; 208:107492. [PMID: 32001312 DOI: 10.1016/j.pharmthera.2020.107492] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.
Collapse
|
16
|
Mani C, Jonnalagadda S, Lingareddy J, Awasthi S, Gmeiner WH, Palle K. Prexasertib treatment induces homologous recombination deficiency and synergizes with olaparib in triple-negative breast cancer cells. Breast Cancer Res 2019; 21:104. [PMID: 31492187 PMCID: PMC6729044 DOI: 10.1186/s13058-019-1192-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
Background Breast cancer remains as one of the most lethal types of cancer in women. Among various subtypes, triple-negative breast cancer (TNBC) is the most aggressive and hard to treat type of breast cancer. Mechanistically, increased DNA repair and cell cycle checkpoint activation remain as the foremost reasons behind TNBC tumor resistance to chemotherapy and disease recurrence. Methods We evaluated the mechanism of prexasertib-induced regulation of homologous recombination (HR) proteins using 20S proteasome inhibitors and RT-PCR. HR efficiency and DNA damages were evaluated using Dr-GFP and comet assays. DNA morphology and DNA repair focus studies were analyzed using immunofluorescence. UALCAN portal was used to evaluate the expression of RAD51 and survival probability based on tumor stage, subtype, and race in breast cancer patients. Results Our results show that prexasertib treatment promotes both post-translational and transcriptional mediated regulation of BRCA1 and RAD51 proteins. Additionally, prexasertib-treated TNBC cells revealed over 55% reduction in HR efficiency compared to control cells. Based on these results, we hypothesized that prexasertib treatment induced homologous recombination deficiency (HRD) and thus should synergize with PARP inhibitors (PARPi) in TNBC cells. As predicted, combined treatment of prexasertib and PARPi olaparib increased DNA strand breaks, γH2AX foci, and nuclear disintegration relative to single-agent treatment. Further, the prexasertib and olaparib combination was synergistic in multiple TNBC cell lines, as indicated by combination index (CI) values. Analysis of TCGA data revealed elevated RAD51 expression in breast tumors compared to normal breast tissues, especially in TNBC subtype. Interestingly, there was a discrepancy in RAD51 expression in racial groups, with African-American and Asian breast cancer patients showing elevated RAD51 expression compared to Caucasian breast cancer patients. Consistent with these observations, African-American and Asian TNBC patients show decreased survival. Conclusions Based on these data, RAD51 could be a biomarker for aggressive TNBC and for racial disparity in breast cancer. As positive correlation exists between RAD51 and CHEK1 expression in breast cancer, the in vitro preclinical data presented here provides additional mechanistic insights for further evaluation of the rational combination of prexasertib and olaparib for improved outcomes and reduced racial disparity in TNBC.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Shirisha Jonnalagadda
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - Jojireddy Lingareddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Present Address: Loyola Academic Degree PG College, Old Alwal, Secunderabad, Telangana, 500010, India
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA
| | - William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
17
|
Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, Krejci L. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res 2019; 46:3967-3980. [PMID: 29481689 PMCID: PMC5934667 DOI: 10.1093/nar/gky111] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an ‘open’ conformation when compared to a ‘closed’ structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
Collapse
Affiliation(s)
- Mário Špírek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Jarmila Mlcoušková
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Ondrej Belán
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor M Harami
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Eszter Molnár
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
18
|
Rees HA, Yeh WH, Liu DR. Development of hRad51-Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nat Commun 2019; 10:2212. [PMID: 31101808 PMCID: PMC6525190 DOI: 10.1038/s41467-019-09983-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
In mammalian cells, double-stranded DNA breaks (DSBs) are preferentially repaired through end-joining processes that generally lead to mixtures of insertions and deletions (indels) or other rearrangements at the cleavage site. In the presence of homologous DNA, homology-directed repair (HDR) can generate specific mutations, albeit typically with modest efficiency and a low ratio of HDR products:indels. Here, we develop hRad51 mutants fused to Cas9(D10A) nickase (RDN) that mediate HDR while minimizing indels. We use RDN to install disease-associated point mutations in HEK293T cells with comparable or better efficiency than Cas9 nuclease and a 2.7-to-53-fold higher ratio of desired HDR product:undesired byproducts. Across five different human cell types, RDN variants generally result in higher HDR:indel ratios and lower off-target activity than Cas9 nuclease, although HDR efficiencies remain strongly site- and cell type-dependent. RDN variants provide precision editing options in cell types amenable to HDR, especially when byproducts of DSBs must be minimized.
Collapse
Affiliation(s)
- Holly A Rees
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02142, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
19
|
Sutherland JH, Holloman WK. Characterization of a potent dominant negative mutant variant of Rad51 in Ustilago maydis. DNA Repair (Amst) 2019; 78:91-101. [PMID: 31005682 DOI: 10.1016/j.dnarep.2019.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/08/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022]
Abstract
Rad51 serves to maintain and protect integrity of the genome through its actions in DNA repair and replication fork protection. The active form of Rad51 is a nucleoprotein filament consisting of chains of protomer units arranged linearly along single-stranded DNA. In a mutant screen using Ustilago maydis as an experimental system we identified a novel variant of Rad51, in which an amino acid change near the protomer-protomer interaction interface confers a strong trans dominant inhibitory effect on resistance to DNA damaging agents and proficiency in homologous recombination. Modeling studies of the mutated residue D161Y suggested that steric interference with surrounding residues was the likely cause of the inhibitory effect. Changes of two nearby residues, predicted from the modeling to minimize steric clashes, mitigated the inhibition of DNA repair. Direct testing of purified Rad51D161Y protein in defined biochemical reactions revealed it to be devoid of DNA-binding activity itself, but capable of interfering with Rad51WT in formation and maintenance of nucleoprotein filaments on single-stranded DNA and in DNA strand exchange. Rad51D161Y protein appears to be unable to self-associate in solution and defective in forming complexes with the U. maydis BRCA2 ortholog.
Collapse
Affiliation(s)
- Jeanette H Sutherland
- Department of Microbiology and Immunology, Cornell University, Weill Medical College, New York, NY 10065, USA
| | - William K Holloman
- Department of Microbiology and Immunology, Cornell University, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
20
|
Son MY, Hasty P. Homologous recombination defects and how they affect replication fork maintenance. AIMS GENETICS 2019; 5:192-211. [PMID: 31435521 PMCID: PMC6690234 DOI: 10.3934/genet.2018.4.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/18/2019] [Indexed: 01/07/2023]
Abstract
Homologous recombination (HR) repairs DNA double strand breaks (DSBs) and stabilizes replication forks (RFs). RAD51 is the recombinase for the HR pathway. To preserve genomic integrity, RAD51 forms a filament on the 3' end of a DSB and on a single-stranded DNA (ssDNA) gap. But unregulated HR results in undesirable chromosomal rearrangements. This review describes the multiple mechanisms that regulate HR with a focus on those mechanisms that promote and contain RAD51 filaments to limit chromosomal rearrangements. If any of these pathways break down and HR becomes unregulated then disease, primarily cancer, can result.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, UT Health San Antonio, 15355 Lambda Drive, San Antonio, USA
- The Mays Cancer Center, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, USA
| |
Collapse
|
21
|
Pearson SJ, Roy Sarkar T, McQueen CM, Elswood J, Schmitt EE, Wall SW, Scribner KC, Wyatt G, Barhoumi R, Behbod F, Rijnkels M, Porter WW. ATM-dependent activation of SIM2s regulates homologous recombination and epithelial-mesenchymal transition. Oncogene 2019; 38:2611-2626. [PMID: 30531838 PMCID: PMC6450754 DOI: 10.1038/s41388-018-0622-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that genomic instability is a prerequisite for cancer progression. Here we show that SIM2s, a member of the bHLH/PAS family of transcription factors, regulates DNA damage repair through enhancement of homologous recombination (HR), and prevents epithelial-mesenchymal transitions (EMT) in an Ataxia-telangiectasia mutated (ATM)-dependent manner. Mechanistically, we found that SIM2s interacts with ATM and is stabilized through ATM-dependent phosphorylation in response to IR. Once stabilized, SIM2s interacts with BRCA1 and supports RAD51 recruitment to the site of DNA damage. Loss of SIM2s through the introduction of shSIM2 or the mutation of SIM2s at one of the predicted ATM phosphorylation sites (S115) reduces HR efficiency through disruption of RAD51 recruitment, resulting in genomic instability and induction of EMT. The EMT induced by the mutation of S115 is characterized by a decrease in E-cadherin and an induction of the basal marker, K14, resulting in increased invasion and metastasis. Together, these results identify a novel player in the DNA damage repair pathway and provides a link in ductal carcinoma in situ progression to invasive ductal carcinoma through loss of SIM2s, increased genomic instability, EMT, and metastasis.
Collapse
Affiliation(s)
- Scott J Pearson
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Tapasree Roy Sarkar
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Cole M McQueen
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Jessica Elswood
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Emily E Schmitt
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Steven W Wall
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Kelly C Scribner
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Garhett Wyatt
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Rola Barhoumi
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Monique Rijnkels
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston W Porter
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
- Veterinary Integrative Biosciences, Texas A&M University, College of Veterinary Medicine, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Choi JE, Heo SH, Kim MJ, Chung WH. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae. Free Radic Biol Med 2018; 129:97-106. [PMID: 30223018 DOI: 10.1016/j.freeradbiomed.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
A genetic analysis of synthetic lethal interactions in yeast revealed that the mutation of SOD1, encoding an antioxidant enzyme that scavenges superoxide anion radical, impaired the growth of a set of mutants defective in homologous recombination (HR) pathway. Hence, SOD1 inhibition has been proposed as a promising approach for the selective killing of HR-deficient cancer cells. However, we show that the deletion of RAD51 and SOD1 is not synthetic lethal but displays considerably slow growth and synergistic sensitivity to both reactive oxygen species (ROS)- and DNA double-strand break (DSB)-generating drugs in the budding yeast Saccharomyces cerevisiae. The function of Sod1 in regard to Rad51 is dependent on Ccs1, a copper chaperone for Sod1. Sod1 deficiency aggravates genomic instability in conjunction with the absence of Rad51 by inducing DSBs and an elevated mutation frequency. Inversely, lack of Rad51 causes a Sod1 deficiency-derived increase of intracellular ROS levels. Taken together, our results indicate that there is a significant and specific crosstalk between two major cellular damage response pathways, ROS signaling and DSB repair, for cell survival.
Collapse
Affiliation(s)
- Ji Eun Choi
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Seo-Hee Heo
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Myung Ju Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea; Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea.
| |
Collapse
|
23
|
Sutherland JH, Holloman WK. Loss of Cohesin Subunit Rec8 Switches Rad51 Mediator Dependence in Resistance to Formaldehyde Toxicity in Ustilago maydis. Genetics 2018; 210:559-572. [PMID: 30082279 PMCID: PMC6216591 DOI: 10.1534/genetics.118.301439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
DNA-protein cross-links (DPCs) are frequently occurring lesions that provoke continual threats to the integrity of the genome by interference with replication and transcription. Reactive aldehydes generated from endogenous metabolic processes or produced in the environment are sources that trigger cross-linking of DNA with associated proteins. DNA repair pathways in place for removing DPCs, or for bypassing them to enable completion of replication, include homologous recombination (HR) and replication fork remodeling (FR) systems. Here, we surveyed a set of mutants defective in known HR and FR components to determine their contribution toward maintaining resistance to chronic formaldehyde (FA) exposure in Ustilago maydis, a fungus that relies on the BRCA2-family member Brh2 as the principal Rad51 mediator in repair of DNA strand breaks. We found that, in addition to Brh2, Rad52 was also vital for resistance to FA. Deleting the gene for Rec8, a kleisin subunit of cohesin, eliminated the requirement for Brh2, but not Rad52, in FA resistance. The Rad51K133R mutant variant that is able to bind DNA but unable to dissociate from it was able to support resistance to FA. These findings suggest a model for DPC repair and tolerance that features a specialized role for Rad52, enabling Rad51 to access DNA in its noncanonical capacity of replication fork protection rather than DNA strand transfer.
Collapse
Affiliation(s)
- Jeanette H Sutherland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
24
|
Heumann A, Heinemann N, Hube-Magg C, Lang DS, Grupp K, Kluth M, Minner S, Möller-Koop C, Graefen M, Heinzer H, Tsourlakis MC, Wilczak W, Wittmer C, Jacobsen F, Huland H, Simon R, Schlomm T, Sauter G, Steurer S, Lebok P, Hinsch A. High BCAR1 expression is associated with early PSA recurrence in ERG negative prostate cancer. BMC Cancer 2018; 18:37. [PMID: 29304771 PMCID: PMC5756403 DOI: 10.1186/s12885-017-3956-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer anti-estrogen resistance 1 (BCAR1/p130cas) is a hub for diverse oncogenic signaling cascades and promotes tumor development and progression. METHODS To understand the effect of BCAR1 in prostate cancer, we analyzed its expression on more than 11,000 prostate cancer samples. BCAR1 expression levels were compared with clinical characteristics, PSA recurrence, molecular subtype defined by ERG status and 3p, 5q, 6q and PTEN deletion. RESULTS BCAR1 staining was barely detectable in normal prostate glands but seen in 77.6% of 9472 interpretable cancers, including strong expression in 38.5%, moderate in 23.2% and weak in 15.9% of cases. BCAR1 up regulation was associated with positive ERG status (p < 0.0001), high Gleason score (p < 0.0001), advanced pathological tumor stage (p = 0.0082), lower preoperative PSA level (p < 0.0001), increased cell proliferation (p < 0.0001), early PSA recurrence (p = 0.0008), and predicted prognosis independently from clinico-pathological parameters available at the time of the initial biopsy. However, subset analyses revealed that the prognostic impact of BCAR1 expression was limited to ERG-negative cancer. That BCAR1 up regulation was linked to almost all analyzed deletions (p < 0.0001 each for PTEN, 5q, 6q deletion) may suggest a functional link to genomic instability. CONCLUSION The results of our study identify BCAR1 as a prognostic biomarker with potential clinical value for risk stratification of ERG-negative prostate cancer.
Collapse
Affiliation(s)
- Asmus Heumann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Nina Heinemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Dagmar S Lang
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Katharina Grupp
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany.,Department of Urology, Section for translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
25
|
Lenart P, Zlámal F, Machal J, Hlinomaz O, Groch L, Bienertová-Vašků J. Increased age-adjusted hazard of death associated with a common single nucleotide polymorphism of the human RAD52 gene in a cardiovascular cohort. Mech Ageing Dev 2017; 167:56-63. [PMID: 29024686 DOI: 10.1016/j.mad.2017.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Aging may be characterized as the progressive increase of the risk of death caused by a decrease of almost all bodily functions. While a great number of model organism studies have established the role of DNA double strand breaks (DSBs) as one of the main causes of aging, few studies have examined whether common polymorphisms in human DSB repair genes influence aging and mortality. More importantly, to the best of our knowledge, no longitudinal study has thus far examined the link between polymorphisms in DSB repair and the risk of death. This longitudinal study thus analyses whether four common polymorphisms (rs2155209, rs7963551, rs17105278, rs2735383) in four selected DSB repair genes (MRE11A, RAD52, RAD51B, NBS1) influence the hazard of age-adjusted death in a cohort of patients with typical symptoms of ischemic heart disease. The results have shown that rs7963551 G/T heterozygotes exhibit a significantly increased hazard of death when compared with the combined GG and TT homozygotes (HR=1.42, 95% CI: 1.06-1.91, p=0.018). This study indicates that the SNP affecting efficiency of DSB repair may influence aging in humans.
Collapse
Affiliation(s)
- Peter Lenart
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic.
| | - Filip Zlámal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| | - Jan Machal
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ota Hlinomaz
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic; First Department of Internal Medicine-Cardioangiology, St. Anne's Hospital and Masaryk University, Pekařská 53, 656 91, Brno, Czech Republic
| | - Ladislav Groch
- International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic; First Department of Internal Medicine-Cardioangiology, St. Anne's Hospital and Masaryk University, Pekařská 53, 656 91, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, 625 00, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, Building A29, 625 00, Brno, Czech Republic
| |
Collapse
|
26
|
Chiche A, Le Roux I, von Joest M, Sakai H, Aguín SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, Tajbakhsh S, Li H. Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle. Cell Stem Cell 2016; 20:407-414.e4. [PMID: 28017795 DOI: 10.1016/j.stem.2016.11.020] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/26/2016] [Accepted: 11/29/2016] [Indexed: 12/22/2022]
Abstract
In vivo reprogramming is a promising approach for tissue regeneration in response to injury. Several examples of in vivo reprogramming have been reported in a variety of lineages, but some including skeletal muscle have so far proven refractory. Here, we show that acute and chronic injury enables transcription-factor-mediated reprogramming in skeletal muscle. Lineage tracing indicates that this response frequently originates from Pax7+ muscle stem cells. Injury is associated with accumulation of senescent cells, and advanced aging or local irradiation further enhanced in vivo reprogramming, while selective elimination of senescent cells reduced reprogramming efficiency. The effect of senescence appears to be, at least in part, due to the release of interleukin 6 (IL-6), suggesting a potential link with the senescence-associated secretory phenotype. Collectively, our findings highlight a beneficial paracrine effect of injury-induced senescence on cellular plasticity, which will be important for devising strategies for reprogramming-based tissue repair.
Collapse
Affiliation(s)
- Aurélie Chiche
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Isabelle Le Roux
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Mathieu von Joest
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Hiroshi Sakai
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Sabela Búa Aguín
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Coralie Cazin
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Rana Salam
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Laurence Fiette
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Olinda Alegria
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France
| | - Patricia Flamant
- Human Histopathology and Animal Models, Department of Infection & Epidemiology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Shahragim Tajbakhsh
- Stem Cells & Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France.
| | - Han Li
- Cellular Plasticity & Disease Modelling, Department of Developmental & Stem Cell Biology, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France; CNRS, UMR3738, Rue du Dr Roux, Paris 75015, France.
| |
Collapse
|
27
|
Kelso AA, Goodson SD, Chavan S, Say AF, Turchick A, Sharma D, Ledford LL, Ratterman E, Leskoske K, King AV, Attaway CC, Bandera Y, Foulger SH, Mazin AV, Temesvari LA, Sehorn MG. Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase. Mol Biochem Parasitol 2016; 210:71-84. [PMID: 27678398 DOI: 10.1016/j.molbiopara.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/10/2016] [Accepted: 09/02/2016] [Indexed: 11/29/2022]
Abstract
The protozoan parasite responsible for human amoebiasis is Entamoeba histolytica. An important facet of the life cycle of E. histolytica involves the conversion of the mature trophozoite to a cyst. This transition is thought to involve homologous recombination (HR), which is dependent upon the Rad51 recombinase. Here, a biochemical characterization of highly purified ehRad51 protein is presented. The ehRad51 protein preferentially binds ssDNA, forms a presynaptic filament and possesses ATP hydrolysis activity that is stimulated by the presence of DNA. Evidence is provided that ehRad51 catalyzes robust DNA strand exchange over at least 5.4 kilobase pairs. Although the homologous DNA pairing activity of ehRad51 is weak, it is strongly enhanced by the presence of two HR accessory cofactors, calcium and Hop2-Mnd1. The biochemical system described herein was used to demonstrate the potential for targeting ehRad51 with two small molecule inhibitors of human RAD51. We show that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) inhibited ehRad51 by interfering with DNA binding and attenuated encystation in Entamoeba invadens, while B02 had no effect on ehRad51 strand exchange activity. These results provide insight into the underlying mechanism of homology-directed DNA repair in E. histolytica.
Collapse
Affiliation(s)
- Andrew A Kelso
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Steven D Goodson
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA
| | - Suchitra Chavan
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Amanda F Say
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Audrey Turchick
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Deepti Sharma
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - LeAnna L Ledford
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Erin Ratterman
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Kristin Leskoske
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Ada V King
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Yura Bandera
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Department of Material Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Alexander V Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Lesly A Temesvari
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC 29634, USA; Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA
| | - Michael G Sehorn
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA; Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634, USA; Clemson University School of Health Research, Clemson, SC 29634, USA.
| |
Collapse
|
28
|
Son MY, Deng CX, Hoeijmarkers JH, Rebel VI, Hasty P. A mechanism for 1,4-Benzoquinone-induced genotoxicity. Oncotarget 2016; 7:46433-46447. [PMID: 27340773 PMCID: PMC5216808 DOI: 10.18632/oncotarget.10184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/22/2016] [Indexed: 12/30/2022] Open
Abstract
Benzene is a common environmental toxin and its metabolite, 1-4-Benzoquinone (BQ) causes hematopoietic cancers like myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). BQ has not been comprehensively assessed for its impact on genome maintenance, limiting our understanding of the true health risks associated with benzene exposure and our ability to identify people with increased sensitivity to this genotoxin. Here we analyze the impact BQ exposure has on wild type and DNA repair-defective mouse embryonic stem (ES) cells and wild type human cells. We find that double strand break (DSB) repair and replication fork maintenance pathways including homologous recombination (HR) and Fanconi anemia (FA) suppress BQ toxicity. BQ-induced damage efficiently stalls replication forks, yet poorly induces ATR/DNA-PKCS responses. Furthermore, the pattern of BQ-induced γH2AX and 53BP1foci is consistent with the formation of poly(ADP-ribose) polymerase 1 (PARP1)-stabilized regressed replication forks. At a biochemical level, BQ inhibited topoisomerase 1 (topo1)-mediated DNA ligation and nicking in vitro; thus providing mechanism for the cellular phenotype. These data are consistent with a model that proposes BQ interferes with type I topoisomerase's ability to maintain replication fork restart and progression leading to chromosomal instability that has the potential to cause hematopoietic cancers like MDS and AML.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR China
| | - Jan H. Hoeijmarkers
- Department of Genetics, Cancer Genomics Netherlands, Erasmus MC, The Netherlands
| | - Vivienne I. Rebel
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Cancer Therapy Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Barshop Center of Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Greehey Children's Cancer Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Current address: BioAffinity, San Antonio, Texas, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Cancer Therapy Research Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- The Barshop Center of Aging, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
29
|
Samadder P, Aithal R, Belan O, Krejci L. Cancer TARGETases: DSB repair as a pharmacological target. Pharmacol Ther 2016; 161:111-131. [PMID: 26899499 DOI: 10.1016/j.pharmthera.2016.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer is a disease attributed to the accumulation of DNA damages due to incapacitation of DNA repair pathways resulting in genomic instability and a mutator phenotype. Among the DNA lesions, double stranded breaks (DSBs) are the most toxic forms of DNA damage which may arise as a result of extrinsic DNA damaging agents or intrinsic replication stress in fast proliferating cancer cells. Accurate repair of DSBs is therefore paramount to the cell survival, and several classes of proteins such as kinases, nucleases, helicases or core recombinational proteins have pre-defined jobs in precise execution of DSB repair pathways. On one hand, the proper functioning of these proteins ensures maintenance of genomic stability in normal cells, and on the other hand results in resistance to various drugs employed in cancer therapy and therefore presents a suitable opportunity for therapeutic targeting. Higher relapse and resistance in cancer patients due to non-specific, cytotoxic therapies is an alarming situation and it is becoming more evident to employ personalized treatment based on the genetic landscape of the cancer cells. For the success of personalized treatment, it is of immense importance to identify more suitable targetable proteins in DSB repair pathways and also to explore new synthetic lethal interactions with these pathways. Here we review the various alternative approaches to target the various protein classes termed as cancer TARGETases in DSB repair pathway to obtain more beneficial and selective therapy.
Collapse
Affiliation(s)
- Pounami Samadder
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic
| | - Rakesh Aithal
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Belan
- Department of Biology, Masaryk University, 62500 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 60200 Brno, Czech Republic; Department of Biology, Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
30
|
Furgason JM, Koncar RF, Michelhaugh SK, Sarkar FH, Mittal S, Sloan AE, Barnholtz-Sloan JS, Bahassi EM. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma. Oncoscience 2015; 2:618-28. [PMID: 26328271 PMCID: PMC4549359 DOI: 10.18632/oncoscience.178] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Findings based on recent advances in next-generation sequence analysis suggest that, in some tumors, a single catastrophic event, termed chromothripsis, results in several simultaneous tumorigenic alterations. Previous studies have suggested that glioblastoma (GBM) may exhibit chromothripsis at a higher rate (39%) than other tumors (9%). Primary glioblastoma is an aggressive form of brain cancer that typically appears suddenly in older adults. With aggressive treatment, the median survival time is only 15 months. Their acute onset and widespread genomic instability indicates that chromothripsis may play a key role in their initiation and progression. GBMs are often characterized by EGFR amplification, CDKN2A and PTEN deletion, although approximately 20% of GBMs harbor additional amplifications in MDM2 or MDM4 with CDK4. METHODS We used the chromothripsis prediction tool, Shatterproof, in conjunction with a custom whole genome sequence analysis pipeline in order to generate putative regions of chromothripsis. The data derived from this study was further expanded on using fluorescence in situ hybridization (FISH) analysis and susceptibility studies with colony formation assays. RESULTS We show that primary GBMs are associated with higher chromothripsis scores and establish a link between chromothripsis and gene amplification of receptor tyrosine kinases (RTKs), as well as modulators of the TP53 and RB1 pathways. CONCLUSIONS Utilizing a newly introduced bioinformatic tool, we provide evidence that chromothripsis is associated with the formation of amplicons containing several oncogenes involved in key pathways that are likely essential for post-chromothriptic cell survival.
Collapse
Affiliation(s)
- John M Furgason
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Robert F Koncar
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| | - Sharon K Michelhaugh
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University College of Medicine, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA ; Department of Neurological Surgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology and UC Brain Tumor Center, University of Cincinnati, Cincinnati OH, USA
| |
Collapse
|
31
|
Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online 2015; 30:303-10. [DOI: 10.1016/j.rbmo.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022]
|
32
|
Predicting early brain metastases based on clinicopathological factors and gene expression analysis in advanced HER2-positive breast cancer patients. J Neurooncol 2015; 122:205-16. [PMID: 25559688 PMCID: PMC4353882 DOI: 10.1007/s11060-014-1704-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
The overexpression or amplification of the human epidermal growth factor receptor 2 gene (HER2/neu) is associated with high risk of brain metastasis (BM). The identification of patients at highest immediate risk of BM could optimize screening and facilitate interventional trials. We performed gene expression analysis using complementary deoxyribonucleic acid-mediated annealing, selection, extension and ligation and real-time quantitative reverse transcription PCR (qRT-PCR) in primary tumor samples from two independent cohorts of advanced HER2 positive breast cancer patients. Additionally, we analyzed predictive relevance of clinicopathological factors in this series. Study group included discovery Cohort A (84 patients) and validation Cohort B (75 patients). The only independent variables associated with the development of early BM in both cohorts were the visceral location of first distant relapse [Cohort A: hazard ratio (HR) 7.4, 95 % CI 2.4-22.3; p < 0.001; Cohort B: HR 6.1, 95 % CI 1.5-25.6; p = 0.01] and the lack of trastuzumab administration in the metastatic setting (Cohort A: HR 5.0, 95 % CI 1.4-10.0; p = 0.009; Cohort B: HR 10.0, 95 % CI 2.0-100.0; p = 0.008). A profile including 13 genes was associated with early (≤36 months) symptomatic BM in the discovery cohort. This was refined by qRT-PCR to a 3-gene classifier (RAD51, HDGF, TPR) highly predictive of early BM (HR 5.3, 95 % CI 1.6-16.7; p = 0.005; multivariate analysis). However, predictive value of the classifier was not confirmed in the independent validation Cohort B. The presence of visceral metastases and the lack of trastuzumab administration in the metastatic setting apparently increase the likelihood of early BM in advanced HER2-positive breast cancer.
Collapse
|
33
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
34
|
Kim TM, Son MY, Dodds S, Hu L, Luo G, Hasty P. RECQL5 and BLM exhibit divergent functions in cells defective for the Fanconi anemia pathway. Nucleic Acids Res 2015; 43:893-903. [PMID: 25520194 PMCID: PMC4333386 DOI: 10.1093/nar/gku1334] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 02/07/2023] Open
Abstract
Fanconi anemia (FA) patients exhibit bone marrow failure, developmental defects and cancer. The FA pathway maintains chromosomal stability in concert with replication fork maintenance and DNA double strand break (DSB) repair pathways including RAD51-mediated homologous recombination (HR). RAD51 is a recombinase that maintains replication forks and repairs DSBs, but also rearranges chromosomes. Two RecQ helicases, RECQL5 and Bloom syndrome mutated (BLM) suppress HR through nonredundant mechanisms. Here we test the impact deletion of RECQL5 and BLM has on mouse embryonic stem (ES) cells deleted for FANCB, a member of the FA core complex. We show that RECQL5, but not BLM, conferred resistance to mitomycin C (MMC, an interstrand crosslinker) and camptothecin (CPT, a type 1 topoisomerase inhibitor) in FANCB-defective cells. RECQL5 suppressed, while BLM caused, breaks and radials in FANCB-deleted cells exposed to CPT or MMC, respectively. RECQL5 protected the nascent replication strand from MRE11-mediated degradation and restarted stressed replication forks in a manner additive to FANCB. By contrast BLM restarted, but did not protect, replication forks in a manner epistatic to FANCB. RECQL5 also lowered RAD51 levels in FANCB-deleted cells at stressed replication sites implicating a rearrangement avoidance mechanism. Thus, RECQL5 and BLM impact FANCB-defective cells differently in response to replication stress with relevance to chemotherapeutic regimes.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine and Institute of Biotechnology, The Barshop Center of Aging, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Mi Young Son
- Department of Molecular Medicine and Institute of Biotechnology, The Barshop Center of Aging, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Sherry Dodds
- Department of Molecular Medicine and Institute of Biotechnology, The Barshop Center of Aging, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Lingchuan Hu
- Department of Molecular Medicine and Institute of Biotechnology, The Barshop Center of Aging, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | - Guangbin Luo
- Department of Genetics, Case Western Reserve University, BRB-720, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of Biotechnology, The Barshop Center of Aging, University of Texas Health Science Center, San Antonio, TX 78245, USA
| |
Collapse
|
35
|
Uringa EJ, Baldeyron C, Odijk H, Wassenaar E, van Cappellen WA, Maas A, Hoeijmakers JHJ, Baarends WM, Kanaar R, Essers J. A mRad51-GFP antimorphic allele affects homologous recombination and DNA damage sensitivity. DNA Repair (Amst) 2014; 25:27-40. [PMID: 25463395 DOI: 10.1016/j.dnarep.2014.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
Accurate DNA double-strand break repair through homologous recombination is essential for preserving genome integrity. Disruption of the gene encoding RAD51, the protein that catalyzes DNA strand exchange during homologous recombination, results in lethality of mammalian cells. Proteins required for homologous recombination, also play an important role during DNA replication. To explore the role of RAD51 in DNA replication and DSB repair, we used a knock-in strategy to express a carboxy-terminal fusion of green fluorescent protein to mouse RAD51 (mRAD51-GFP) in mouse embryonic stem cells. Compared to wild-type cells, heterozygous mRad51(+/wt-GFP) embryonic stem cells showed increased sensitivity to DNA damage induced by ionizing radiation and mitomycin C. Moreover, gene targeting was found to be severely impaired in mRad51(+/wt-GFP) embryonic stem cells. Furthermore, we found that mRAD51-GFP foci were not stably associated with chromatin. From these experiments we conclude that this mRad51-GFP allele is an antimorphic allele. When this allele is present in a heterozygous condition over wild-type mRad51, embryonic stem cells are proficient in DNA replication but display defects in homologous recombination and DNA damage repair.
Collapse
Affiliation(s)
- Evert-Jan Uringa
- Department of Reproduction and Development, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Céline Baldeyron
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Hanny Odijk
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Reproduction and Development, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alex Maas
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Reproduction and Development, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Surgical Oncology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Roy N, Bhattacharyya S, Chakrabarty S, Laskar S, Babu SM, Bhattacharyya MK. Dominant negative mutant of Plasmodium Rad51 causes reduced parasite burden in host by abrogating DNA double-strand break repair. Mol Microbiol 2014; 94:353-66. [PMID: 25145341 DOI: 10.1111/mmi.12762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2014] [Indexed: 01/05/2023]
Abstract
Malaria parasites survive through repairing a plethora of DNA double-stranded breaks (DSBs) experienced during their asexual growth. In Plasmodium Rad51 mediated homologous recombination (HR) mechanism and homology-independent alternative end-joining mechanism have been identified. Here we address whether loss of HR activity can be compensated by other DSB repair mechanisms. Creating a transgenic Plasmodium line defective in HR function, we demonstrate that HR is the most important DSB repair pathway in malarial parasite. Using mouse malaria model we have characterized the dominant negative effect of PfRad51(K143R) mutant on Plasmodium DSB repair and host-parasite interaction. Our work illustrates that Plasmodium berghei harbouring the mutant protein (PfRad51(K143R)) failed to repair DSBs as evidenced by hypersensitivity to DNA-damaging agent. Mice infected with mutant parasites lived significantly longer with markedly reduced parasite burden. To better understand the effect of mutant PfRad51(K143R) on HR, we used yeast as a surrogate model and established that the presence of PfRad51(K143R) completely inhibited DNA repair, gene conversion and gene targeting. Biochemical experiment confirmed that very low level of mutant protein was sufficient for complete disruption of wild-type PfRad51 activity. Hence our work provides evidence that HR pathway of Plasmodium could be efficiently targeted to curb malaria.
Collapse
Affiliation(s)
- Nabamita Roy
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
37
|
Yoon SW, Kim DK, Kim KP, Park KS. Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells. Stem Cells Dev 2014; 23:2700-11. [PMID: 24991985 DOI: 10.1089/scd.2014.0129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination (HR) maintains genomic integrity against DNA replication stress and deleterious lesions, such as double-strand breaks (DSBs). Rad51 recombinase is critical for HR events that mediate the exchange of genetic information between parental chromosomes in eukaryotes. Additionally, Rad51 and HR accessory factors may facilitate replication fork progression by preventing replication fork collapse and repair DSBs that spontaneously arise during the normal cell cycle. In this study, we demonstrated a novel role for Rad51 during the cell cycle in mouse embryonic stem cells (mESCs). In mESCs, Rad51 was constitutively expressed throughout the cell cycle, and the formation of Rad51 foci increased as the cells entered S phase. Suppression of Rad51 expression caused cells to accumulate at G2/M phase and activated the DNA damage checkpoint, but it did not affect the self-renewal or differentiation capacity of mESCs. Even though Rad51 suppression significantly inhibited the proliferation rate of mESCs, Rad51 suppression did not affect the replication fork progression and speed, indicating that Rad51 repaired DNA damage and promoted DNA replication in S phase through an independent mechanism. In conclusion, Rad51 may contribute to G2/M transition in mESCs, while preserving genomic integrity in global organization of DNA replication fork.
Collapse
Affiliation(s)
- Sang-Wook Yoon
- 1 Department of Life Science, Chung-Ang University , Seoul, Korea
| | | | | | | |
Collapse
|
38
|
Hasty P, Montagna C. Chromosomal Rearrangements in Cancer: Detection and potential causal mechanisms. Mol Cell Oncol 2014; 1:e29904. [PMID: 26203462 PMCID: PMC4507279 DOI: 10.4161/mco.29904] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/20/2014] [Accepted: 06/23/2014] [Indexed: 12/13/2022]
Abstract
Many cancers exhibit chromosomal rearrangements. These rearrangements can be simple with a single balanced fusion preserving the proper complement of genetic information or they can be complex with one or more fusions that distort this balance. A range of technological advances has improved our ability to detect and understand these rearrangements leading to speculation of causal mechanisms including defective DNA double strand break (DSB) repair and faulty DNA replication. A better understanding of these potential cancer-causing mechanisms will lead to novel therapeutic regimes to fight cancer. This review describes the technological advances used to detect simple and complex chromosomal rearrangements, cancers that exhibit these rearrangements, potential mechanisms that rearrange chromosomes and intervention strategies designed to specifically attack fusion gene products and causal DNA repair/synthesis pathways.
Collapse
Affiliation(s)
- Paul Hasty
- Department of Molecular Medicine/Institute of Biotechnology; The University of Texas Health Science Center at San Antonio; San Antonio, TX USA
| | - Cristina Montagna
- Department of Genetics and Pathology; Albert Einstein College of Medicine of Yeshiva University; Michael F. Price Center; Bronx, NY USA
| |
Collapse
|
39
|
Kim TM, Son MY, Dodds S, Hu L, Hasty P. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks. Mutat Res 2014; 766-767:66-72. [PMID: 25847274 DOI: 10.1016/j.mrfmmm.2014.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 11/30/2022]
Abstract
BRCA2 is a tumor suppressor that maintains genomic integrity through double strand break (DSB) repair and replication fork protection. The BRC motifs and an exon 27-encoded domain (Ex27) of BRCA2 interact with the recombinase RAD51 to, respectively, facilitate the formation and stability of a RAD51 filament on single strand DNA. The BRC-RAD51 associations enable DSB repair while the Ex27-RAD51 association protects the nascent replication strand from MRE11-mediated degradation. MRE11 is a nuclease that facilitates the generation of 3' overhangs needed for homologous recombination (HR)-mediated DSB repair. Here we report the dynamics of replication fork maintenance in mouse embryonic stem (ES) cells deleted for Ex27 (brca2(lex1/lex2)) after exposure to hydroxyurea (HU) that depletes nucleotides. HU conditions were varied from mild to severe. Mild conditions induce an ATR-response to replication fork stalling while severe conditions induce a DNA-PKCS-response to replication fork collapse and a DSB. These responses were differentiated by replication protein A (RPA) phosphorylation. We found that Ex27 deletion reduced MRE11 localization to stalled, but not collapsed, replication forks and that Ex27-deletion caused a proportionately more severe phenotype with HU dose. Therefore, the BRCA2 exon 27 domain maintains chromosomal integrity at both stalled and collapsed replication forks consistent with involvement in both replication fork maintenance and double strand break repair.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine, Institute of Biotechnology, The Barshop Center of Aging, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| | - Mi Young Son
- Department of Molecular Medicine, Institute of Biotechnology, The Barshop Center of Aging, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Sherry Dodds
- Department of Molecular Medicine, Institute of Biotechnology, The Barshop Center of Aging, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Lingchuan Hu
- Department of Molecular Medicine, Institute of Biotechnology, The Barshop Center of Aging, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, The Barshop Center of Aging, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
40
|
Abstract
All species continuously evolve to adapt to changing environments. The genetic variation that fosters such adaptation is caused by a plethora of mechanisms, including meiotic recombination that generates novel allelic combinations in the progeny of two parental lineages. However, a considerable number of eukaryotic species, including many fungi, do not have an apparent sexual cycle and are consequently thought to be limited in their evolutionary potential. As such organisms are expected to have reduced capability to eliminate deleterious mutations, they are often considered as evolutionary dead ends. However, inspired by recent reports we argue that such organisms can be as persistent as organisms with conventional sexual cycles through the use of other mechanisms, such as genomic rearrangements, to foster adaptation.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
41
|
Carvalho JFS, Kanaar R. Targeting homologous recombination-mediated DNA repair in cancer. Expert Opin Ther Targets 2014; 18:427-58. [PMID: 24491188 DOI: 10.1517/14728222.2014.882900] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION DNA is the target of many traditional non-specific chemotherapeutic drugs. New drugs or therapeutic approaches with a more rational and targeted component are mandatory to improve the success of cancer therapy. The homologous recombination (HR) pathway is an attractive target for the development of inhibitors because cancer cells rely heavily on HR for repair of DNA double-strand breaks resulting from chemotherapeutic treatments. Additionally, the discovery that poly(ADP)ribose polymerase-1 inhibitors selectively kill cells with genetic defects in HR has spurned an even greater interest in inhibitors of HR. AREAS COVERED HR drives the repair of broken DNA via numerous protein-mediated sequential DNA manipulations. Due to extensive number of steps and proteins involved, the HR pathway provides a rich pool of potential drug targets. This review discusses the latest developments concerning the strategies being explored to inhibit HR. Particular attention is given to the identification of small molecule inhibitors of key HR proteins, including the BRCA proteins and RAD51. EXPERT OPINION Current HR inhibitors are providing the basis for pharmaceutical development of more potent and specific inhibitors to be applied in mono- or combinatorial therapy regimes, while novel targets will be uncovered by experiments aimed to gain a deeper mechanistic understanding of HR and its subpathways.
Collapse
Affiliation(s)
- João F S Carvalho
- Erasmus MC Cancer Institute, Department of Genetics, Department of Radiation Oncology, Cancer Genomics Netherlands , PO Box 2040, 3000 CA Rotterdam , The Netherlands
| | | |
Collapse
|
42
|
Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 2013; 501:569-72. [PMID: 24013173 PMCID: PMC3805358 DOI: 10.1038/nature12500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/22/2013] [Indexed: 12/27/2022]
Abstract
Replication fork (RF) maintenance pathways preserve chromosomes, but their faulty application at nonallelic repeats could generate rearrangements causing cancer, genomic disorders and speciation1-3. Potential causal mechanisms are homologous recombination (HR) and error-free postreplication repair (EF-PRR). HR repairs damage induced DNA double strand breaks (DSBs) and single-ended DSBs within replication. To facilitate HR, the recombinase RAD51 and mediator BRCA2 form a filament on the 3’ DNA strand at a break to enable annealing to the complementary sister chromatid4 while the RecQ helicase, BLM (Bloom syndrome mutated) suppresses crossing over to prevent recombination5. HR also stabilizes6,7 and restarts8,9 RFs without a DSB10,11. EF-PRR bypasses DNA incongruities that impede replication by ubiquitinating PCNA (proliferating cell nuclear antigen) using the RAD6/RAD18 and UBC13/MMS2/RAD5 ubiquitin ligase complexes12. Some components are common to both HR and EF-PRR like RAD51 and RAD1813,14. Here we delineate two pathways that spontaneously fuse inverted repeats to generate unstable chromosomal rearrangements in wild type mouse embryonic stem (ES) cells. Gamma-radiation induced a BLM-regulated pathway that selectively fused identical, but not mismatched repeats. By contrast, UV light induced a RAD18-dependent pathway that efficiently fused mismatched repeats. Furthermore, TREX2 (a 3’→5’ exonuclease) suppressed identical repeat fusion but enhanced mismatched repeat fusion, clearly separating these pathways. TREX2 associated with UBC13 and enhanced PCNA ubiquitination in response to UV light, consistent with it being a novel member of EF-PRR. RAD18 and TREX2 also suppressed RF stalling in response to nucleotide depletion. Interestingly, RF stalling induced fusion for identical and mismatched repeats implicating faulty replication as a causal mechanism for both pathways.
Collapse
|
43
|
Kim TM, Rebel VI, Hasty P. Defining a genotoxic profile with mouse embryonic stem cells. Exp Biol Med (Maywood) 2013; 238:285-93. [PMID: 23598974 DOI: 10.1177/1535370213480700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many genotoxins are found in the environment from synthetic to natural, yet very few have been studied in depth. This means we fail to understand many molecules that damage DNA, we do not understand the type of damage they cause and the repair pathways required to correct their lesions. It is surprising so little is known about the vast majority of genotoxins since they have potential to cause disease from developmental defects to cancer to degenerative ailments. By contrast, some of these molecules have commercial and medical potential and some can be weaponized. Therefore, we need a systematic method to efficiently generate a genotoxic profile for these agents. A genotoxic profile would include the type of damage the genotoxin causes, the pathways used to repair the damage and the resultant mutations if repair fails. Mouse embryonic stem (ES) cells are well suited for identifying pathways and mutations. Mouse ES cells are genetically tractable and many DNA repair mutant cells are available. ES cells have a high mitotic index and form colonies so experiments can be completed quickly and easily. Furthermore, ES cells have robust DNA repair pathways to minimize genetic mutations at a particularly vulnerable time in life, early development when a mutation in a single cell could ultimately contribute to a large fraction of the individual. After an initial screen, other types of cells and mouse models can be used to complement the analysis. This review discusses the merging field of genotoxic screens in mouse ES cells that can be used to discover and study potential genotoxic activity for chemicals commonly found in our environment.
Collapse
Affiliation(s)
- Tae Moon Kim
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | |
Collapse
|
44
|
Verma S, Rao BJ. p53 suppresses BRCA2-stimulated ATPase and strand exchange functions of human RAD51. J Biochem 2013; 154:237-48. [PMID: 23678008 DOI: 10.1093/jb/mvt040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although homologous recombination (HR) is an important pathway for DNA repair, it can also be a cause for deleterious genomic rearrangements leading to carcinogenesis. Therefore, cells have evolved elaborate mechanisms to regulate HR, positively as well as negatively. Among many molecular components that regulate HR are tumour suppressors p53, a negative regulator and breast cancer early-onset (BRCA)2, a positive regulator. Both the players not only interact with each other but also directly interact with human RAD51 (hRAD51), the key recombinase in HR. Here, for the first time we studied HR regulation by the combined action of p53 and BRCA2, in vitro. While BRC4 peptide inhibits ATP hydrolysis by hRAD51, BRCA2(BRC1-8) stimulates DNA-independent and double-stranded DNA-dependent ATPase several fold and only marginally single-stranded DNA-dependent ATPase. Pull down assays demonstrated the occurrence of complex comprising of all three proteins and DNA, where p53 tends to compete out hRAD51 and BRCA2(BRC1-8), leading to not only the decline in ATP hydrolysis but also the strand exchange function of hRAD51 that was stimulated by BRCA2(BRC1-8). Our findings suggest a rigorous p53-mediated regulation on hRAD51 functions in HR even in the presence of BRCA2.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India
| | | |
Collapse
|
45
|
Francis JC, Kolomeyevskaya N, Mach CM, Dietrich JE, Anderson ML. MicroRNAs and Recent Insights into Pediatric Ovarian Cancers. Front Oncol 2013; 3:95. [PMID: 23641362 PMCID: PMC3639433 DOI: 10.3389/fonc.2013.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/07/2013] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most common pediatric gynecologic malignancy. When diagnosed in children, ovarian cancers present unique challenges that differ dramatically from those faced by adults. Here, we review the spectrum of ovarian cancers found in young women and girls and discuss the biology of these diseases. A number of advances have recently shed significant new understanding on the potential causes of ovarian cancer in this unique population. Particular emphasis is placed on understanding how altered expression of non-coding RNA transcripts known as microRNAs play a key role in the etiology of ovarian germ cell and sex cord-stromal tumors. Emerging transgenic models for these diseases are also reviewed. Lastly, future challenges and opportunities for understanding pediatric ovarian cancers, delineating clinically useful biomarkers, and developing targeted therapies are discussed.
Collapse
Affiliation(s)
- Jessica C Francis
- Department of Obstetrics and Gynecology, Baylor College of Medicine Houston, TX, USA
| | | | | | | | | |
Collapse
|
46
|
Sage JM, Knight KL. Human Rad51 promotes mitochondrial DNA synthesis under conditions of increased replication stress. Mitochondrion 2013; 13:350-6. [PMID: 23591384 DOI: 10.1016/j.mito.2013.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 01/05/2023]
Abstract
Homologous recombination is essential for productive DNA replication particularly under stress conditions. We previously demonstrated a stress-induced recruitment of Rad51 to mitochondria and a critical need for its activity in the maintenance of mitochondrial DNA (mtDNA) copy number. Using the human osteosarcoma cell line U20S, we show in the present study that recruitment of Rad51 to mitochondria under stress conditions requires ongoing mtDNA replication. Additionally, Rad51 levels in mitochondria increase in cells recovering from mtDNA depletion. Our findings highlight an important new role for Rad51 in supporting mtDNA replication, and further promote the idea that recombination is indispensable for sustaining DNA synthesis under conditions of replication stress.
Collapse
Affiliation(s)
- Jay M Sage
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655-4321, USA
| | | |
Collapse
|