1
|
Dong J, Scott TG, Mukherjee R, Guertin MJ. ZNF143 binds DNA and stimulates transcripstion initiation to activate and repress direct target genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594008. [PMID: 38798607 PMCID: PMC11118474 DOI: 10.1101/2024.05.13.594008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Transcription factors bind to sequence motifs and act as activators or repressors. Transcription factors interface with a constellation of accessory cofactors to regulate distinct mechanistic steps to regulate transcription. We rapidly degraded the essential and ubiquitously expressed transcription factor ZNF143 to determine its function in the transcription cycle. ZNF143 facilitates RNA Polymerase initiation and activates gene expression. ZNF143 binds the promoter of nearly all its activated target genes. ZNF143 also binds near the site of genic transcription initiation to directly repress a subset of genes. Although ZNF143 stimulates initiation at ZNF143-repressed genes (i.e. those that increase expression upon ZNF143 depletion), the molecular context of binding leads to cis repression. ZNF143 competes with other more efficient activators for promoter access, physically occludes transcription initiation sites and promoter-proximal sequence elements, and acts as a molecular roadblock to RNA Polymerases during early elongation. The term context specific is often invoked to describe transcription factors that have both activation and repression functions. We define the context and molecular mechanisms of ZNF143-mediated cis activation and repression.
Collapse
Affiliation(s)
- Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rudradeep Mukherjee
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
2
|
Dejosez M, Dall'Agnese A, Ramamoorthy M, Platt J, Yin X, Hogan M, Brosh R, Weintraub AS, Hnisz D, Abraham BJ, Young RA, Zwaka TP. Regulatory architecture of housekeeping genes is driven by promoter assemblies. Cell Rep 2023; 42:112505. [PMID: 37182209 PMCID: PMC10329844 DOI: 10.1016/j.celrep.2023.112505] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.
Collapse
Affiliation(s)
- Marion Dejosez
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Alessandra Dall'Agnese
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mahesh Ramamoorthy
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Jesse Platt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Xing Yin
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Megan Hogan
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Ran Brosh
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Abraham S Weintraub
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Denes Hnisz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brian J Abraham
- St. Jude Research Children's Hospital, Memphis, TN 38105, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thomas P Zwaka
- Black Family Stem Cell Institute, Huffington Center for Cell-based Research in Parkinson's Disease, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA.
| |
Collapse
|
3
|
Saddeek S, Almassabi R, Mobashir M. Role of ZNF143 and Its Association with Gene Expression Patterns, Noncoding Mutations, and the Immune System in Human Breast Cancer. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010027. [PMID: 36675976 PMCID: PMC9865137 DOI: 10.3390/life13010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022]
Abstract
The function of noncoding sequence variations at ZNF143 binding sites in breast cancer cells is currently not well understood. Distal elements and promoters, also known as cis-regulatory elements, control the expression of genes. They may be identified by functional genomic techniques and sequence conservation, and they frequently show cell- and tissue-type specificity. The creation, destruction, or modulation of TF binding and function may be influenced by genetic modifications at TF binding sites that affect the binding affinity. Therefore, noncoding mutations that affect the ZNF143 binding site may be able to alter the expression of some genes in breast cancer. In order to understand the relationship among ZNF143, gene expression patterns, and noncoding mutations, we adopted an integrative strategy in this study and paid close attention to putative immunological signaling pathways. The immune system-related pathways ErbB, HIF1a, NF-kB, FoxO, JAK-STAT, Wnt, Notch, cell cycle, PI3K-AKT, RAP1, calcium signaling, cell junctions and adhesion, actin cytoskeleton regulation, and cancer pathways are among those that may be significant, according to the overall analysis.
Collapse
Affiliation(s)
- Salma Saddeek
- Department of Chemistry, Faculty of Sciences, Universty of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Rehab Almassabi
- Department of Biochemistry, Faculty of Sciences, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohammad Mobashir
- SciLifeLab, Department of Oncology and Pathology, Karolinska Institutet, P.O. Box 1031, 17121 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
4
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
5
|
Kiessling E, Peters F, Ebner LJ, Merolla L, Samardzija M, Baumgartner MR, Grimm C, Froese DS. HIF1 and DROSHA are involved in MMACHC repression in hypoxia. Biochim Biophys Acta Gen Subj 2022; 1866:130175. [DOI: 10.1016/j.bbagen.2022.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
|
6
|
Chern T, Achilleos A, Tong X, Hill MC, Saltzman AB, Reineke LC, Chaudhury A, Dasgupta SK, Redhead Y, Watkins D, Neilson JR, Thiagarajan P, Green JBA, Malovannaya A, Martin JF, Rosenblatt DS, Poché RA. Mutations in Hcfc1 and Ronin result in an inborn error of cobalamin metabolism and ribosomopathy. Nat Commun 2022; 13:134. [PMID: 35013307 PMCID: PMC8748873 DOI: 10.1038/s41467-021-27759-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Combined methylmalonic acidemia and homocystinuria (cblC) is the most common inborn error of intracellular cobalamin metabolism and due to mutations in Methylmalonic Aciduria type C and Homocystinuria (MMACHC). Recently, mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) were shown to result in cellular phenocopies of cblC. Since HCFC1/RONIN jointly regulate MMACHC, patients with mutations in these factors suffer from reduced MMACHC expression and exhibit a cblC-like disease. However, additional de-regulated genes and the resulting pathophysiology is unknown. Therefore, we have generated mouse models of this disease. In addition to exhibiting loss of Mmachc, metabolic perturbations, and developmental defects previously observed in cblC, we uncovered reduced expression of target genes that encode ribosome protein subunits. We also identified specific phenotypes that we ascribe to deregulation of ribosome biogenesis impacting normal translation during development. These findings identify HCFC1/RONIN as transcriptional regulators of ribosome biogenesis during development and their mutation results in complex syndromes exhibiting aspects of both cblC and ribosomopathies. Combined methylmalonic acidemia (MMA) and hyperhomocysteinemias are inborn errors of vitamin B12 metabolism, and mutations in the transcriptional regulators HCFC1 and RONIN (THAP11) underlie some forms of these disorders. Here the authors generated mouse models of a human syndrome due to mutations in RONIN (THAP11) and HCFC1, and show that this syndrome is both an inborn error of vitamin B12 metabolism and displays some features of ribosomopathy.
Collapse
Affiliation(s)
- Tiffany Chern
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Annita Achilleos
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus.
| | - Xuefei Tong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew C Hill
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander B Saltzman
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lucas C Reineke
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swapan K Dasgupta
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Yushi Redhead
- The Francis Crick Institute, London, NW1 1AT, UK.,Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - David Watkins
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Perumal Thiagarajan
- Department of Pathology, Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeremy B A Green
- Centre for Craniofacial Biology and Regeneration, King's College London, London, SE1 9RT, UK
| | - Anna Malovannaya
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, 77030, USA
| | - David S Rosenblatt
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Division of Medical Biochemistry, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ross A Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Xiang P, Li F, Ma Z, Yue J, Lu C, You Y, Hou L, Yin B, Qiang B, Shu P, Peng X. HCF-1 promotes cell cycle progression by regulating the expression of CDC42. Cell Death Dis 2020; 11:907. [PMID: 33097698 PMCID: PMC7584624 DOI: 10.1038/s41419-020-03094-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/09/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
The eukaryotic cell cycle involves a highly orchestrated series of events in which the cellular genome is replicated during a synthesis (S) phase and each of the two resulting copies are segregated properly during mitosis (M). Host cell factor-1 (HCF-1) is a transcriptional co-regulator that is essential for and has been implicated in basic cellular processes, such as transcriptional regulation and cell cycle progression. Although a series of HCF-1 transcriptional targets have been identified, few functional clues have been provided, especially for chromosome segregation. Our results showed that HCF-1 activated CDC42 expression by binding to the −881 to −575 region upstream of the CDC42 transcription start site, and the regulation of CDC42 expression by HCF-1 was correlated with cell cycle progression. The overexpression of a spontaneously cycling and constitutively active CDC42 mutant (CDC42F28L) rescued G1 phase delay and multinucleate defects in mitosis upon the loss of HCF-1. Therefore, these results establish that HCF-1 ensures proper cell cycle progression by regulating the expression of CDC42, which indicates a possible mechanism of cell cycle coordination and the regulation mode of typical Rho GTPases.
Collapse
Affiliation(s)
- Pan Xiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fei Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhihua Ma
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiping Yue
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Cailing Lu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuangang You
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Lin Hou
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengcheng Shu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China. .,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China.
| |
Collapse
|
8
|
Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene 2020; 769:145205. [PMID: 33031894 DOI: 10.1016/j.gene.2020.145205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
Zinc Finger Protein 143 (ZNF143) is a pervasive C2H2 zinc-finger transcriptional activator protein regulating the efficiency of eukaryotic promoter regions. ZNF143 is able to activate transcription at both protein coding genes and small RNA genes transcribed by either RNA polymerase II or RNA polymerase III. Target genes regulated by ZNF143 are involved in an array of different cellular processes including both cancer and development. Although a key player in regulating eukaryotic genes, the molecular mechanism by with ZNF143 binds and activates genes transcribed by two different polymerases is still relatively unknown. In addition to its role as a transcriptional regulator, recent genomics experiments have implicated ZNF143 as a potential co-factor involved in chromatin looping and establishing higher order structure within the genome. This review focuses primarily on possible activation mechanisms of promoters by ZNF143, with less emphasis on the role of ZNF143 in cancer and development, and its function in establishing higher order chromatin contacts within the genome.
Collapse
Affiliation(s)
- Laura Huning
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Gary R Kunkel
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| |
Collapse
|
9
|
Castro VL, Reyes JF, Reyes-Nava NG, Paz D, Quintana AM. Hcfc1a regulates neural precursor proliferation and asxl1 expression in the developing brain. BMC Neurosci 2020; 21:27. [PMID: 32522152 PMCID: PMC7288482 DOI: 10.1186/s12868-020-00577-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized. Methods Here we created a zebrafish harboring mutations in the hcfc1a gene (the hcfc1aco60/+ allele), one ortholog of HCFC1, and utilized immunohistochemistry and RNA-sequencing technology to understand the function of hcfc1a during neural development. Results The hcfc1aco60/+ allele results in an increased number of NPCs and increased expression of neuronal and glial markers. These neural developmental deficits are associated with larval hypomotility and the abnormal expression of asxl1, a polycomb transcription factor, which we identified as a downstream effector of hcfc1a. Inhibition of asxl1 activity and/or expression in larvae harboring the hcfc1aco60/+ allele completely restored the number of NPCs to normal levels. Conclusion Collectively, our data demonstrate that hcfc1a regulates NPC number, NPC proliferation, motor behavior, and brain development.
Collapse
Affiliation(s)
- Victoria L Castro
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Joel F Reyes
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - David Paz
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Anita M Quintana
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
10
|
Ye B, Yang G, Li Y, Zhang C, Wang Q, Yu G. ZNF143 in Chromatin Looping and Gene Regulation. Front Genet 2020; 11:338. [PMID: 32318100 PMCID: PMC7154149 DOI: 10.3389/fgene.2020.00338] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/20/2020] [Indexed: 01/02/2023] Open
Abstract
ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type protein consisting of seven zinc finger domains. As a transcription factor (TF), ZNF143 is sequence specifically binding to chromatin and activates the expression of protein-coding and non-coding genes on a genome scale. Although it is ubiquitous expressed, its expression in cancer cells and tissues is usually higher than that in normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting that new small molecules can be designed by targeting ZNF143 as it may be a good potential biomarker and therapeutic target for related cancers. However, the mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently, with the development of chromatin conformation capture (3C) and its derivatives, and high-throughput sequencing technology, new findings have been obtained in the study of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters and contributes to chromatin interactions connecting promoters to distal regulatory elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with cohesin and other partners. These results indicate that ZNF143 is a key loop formation factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in early G1 phase. In the future, researchers could further clarify the fine mechanism of ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C technology. Thus, in this review, we summarize the research progress of TF ZNF143 in detail and also predict the potential functions of ZNF143 in cell fate and identity based on our recent discoveries.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Ganggang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Yuanmeng Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Qiwen Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang, China.,College of Life Sciences, Henan Normal University, Xinxiang, China.,Institute of Biomedical Science, Henan Normal University, Xinxiang, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Ziaei S, Rezaei-Tavirani M, Ardeshirylajimi A, Arefian E, Soleimani M. Induced Overexpression of THAP11 in Human Fibroblast Cells Enhances Expression of Key Pluripotency Genes. Galen Med J 2019; 8:e1308. [PMID: 34466492 PMCID: PMC8344061 DOI: 10.31661/gmj.v8i0.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/22/2018] [Indexed: 11/17/2022] Open
Abstract
Background: THAP11 is a recently discovered pluripotency factor and described as an important gene that involved in embryonic stem cells self-renewal and embryo development, which works independently with other known pluripotency factors. We aimed to overexpressed the THAP11 gene in primary fibroblast cells to determine the effects of the THAP11 on these cells. Materials and Methods: The THAP11 gene was amplified using PCR followed by ligation into pCDH vector and lentiviral particle production in HEK293T cells by using psPAX2 and pMD2.G helper vectors. The human fibroblast cells were transduced using viral particles and after confirmation overexpression, the key pluripotency factors were estimated using real-time PCR and changes in proliferation rate was measured by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide (MTT) test. Results: The overexpression of THAP11 in fibroblast cells leads to increase the expression level of Sox2, Oct4, Nanog and Klf4 as key pluripotency genes and a decrease in proliferation rate according to MTT results. Conclusion: Our results confirm that we are faced with a molecule with double features, which could be involved in pluripotency and proliferation suppressor simultaneously. It seems that the roles of THAP11 in pluripotency are so complex and attributed to other regulatory molecules.
Collapse
Affiliation(s)
- Saeid Ziaei
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Correspondence to: Mostafa Rezaei-Tavirani, Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Telephone Number: +98 (21) 22714248 Email Address:
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Stem Cell Technology Research Center, Tehran, Iran
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
12
|
Paek AR, Mun JY, Jo MJ, Choi H, Lee YJ, Cheong H, Myung JK, Hong DW, Park J, Kim KH, You HJ. The Role of ZNF143 in Breast Cancer Cell Survival Through the NAD(P)H Quinone Dehydrogenase 1⁻p53⁻Beclin1 Axis Under Metabolic Stress. Cells 2019; 8:cells8040296. [PMID: 30935019 PMCID: PMC6523662 DOI: 10.3390/cells8040296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Autophagy is a cellular process that disrupts and uses unnecessary or malfunctioning components for cellular homeostasis. Evidence has shown a role for autophagy in tumor cell survival, but the molecular determinants that define sensitivity against autophagic regulation in cancers are not clear. Importantly, we found that breast cancer cells with low expression levels of a zinc-finger protein, ZNF143 (MCF7 sh-ZNF143), showed better survival than control cells (MCF7 sh-Control) under starvation, which was compromised with chloroquine, an autophagy inhibitor. In addition, there were more autophagic vesicles in MCF7 sh-ZNF143 cells than in MCF7 sh-Control cells, and proteins related with the autophagic process, such as Beclin1, p62, and ATGs, were altered in cells with less ZNF143. ZNF143 knockdown affected the stability of p53, which showed a dependence on MG132, a proteasome inhibitor. Data from proteome profiling in breast cancer cells with less ZNF143 suggest a role of NAD(P)H quinone dehydrogenase 1(NQO1) for p53 stability. Taken together, we showed that a subset of breast cancer cells with low expression of ZNF143 might exhibit better survival via an autophagic process by regulating the p53–Beclin1 axis, corroborating the necessity of blocking autophagy for the best therapy.
Collapse
Affiliation(s)
- A Rome Paek
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu 41068, Korea.
| | - Mun Jeong Jo
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Hyosun Choi
- BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea.
| | - Yun Jeong Lee
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Heesun Cheong
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
- Division of Cancer Biology, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Jae Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Dong Wan Hong
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Jongkeun Park
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Kyung-Hee Kim
- Proteogenomic Analysis Team, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| | - Hye Jin You
- Division of Translational Science, Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, Gyeonggi 10408, Korea.
| |
Collapse
|
13
|
Vaché C, Torriano S, Faugère V, Erkilic N, Baux D, Garcia-Garcia G, Hamel CP, Meunier I, Zanlonghi X, Koenig M, Kalatzis V, Roux AF. Pathogenicity of novel atypical variants leading to choroideremia as determined by functional analyses. Hum Mutat 2018; 40:31-35. [DOI: 10.1002/humu.23671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Christel Vaché
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Simona Torriano
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - Valérie Faugère
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Nejla Erkilic
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - David Baux
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Gema Garcia-Garcia
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Christian P. Hamel
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
- Centre de Référence Maladies Sensorielles Génétiques; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Isabelle Meunier
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
- Centre de Référence Maladies Sensorielles Génétiques; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Xavier Zanlonghi
- Centre de Compétence Maladie Rares; Clinique Pluridisciplinaire Jules Verne; Nantes France
| | - Michel Koenig
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| | - Vasiliki Kalatzis
- Institut des Neurosciences de Montpellier; INSERM; Université de Montpellier; Montpellier France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire; CHU de Montpellier; Université de Montpellier; Montpellier France
| |
Collapse
|
14
|
Wen Z, Huang ZT, Zhang R, Peng C. ZNF143 is a regulator of chromatin loop. Cell Biol Toxicol 2018; 34:471-478. [PMID: 30120652 DOI: 10.1007/s10565-018-9443-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022]
Abstract
It is known that transcription factor ZNF143 frequently co-binds with CTCF-Cohesin complex in the anchor regions of chromatin loops. However, there is currently no genome-wide experiment to explore the functional roles of ZNF143 in chromatin loops. In this work, we used both computational and experimental analyses to investigate the regulatory effect of ZNF143 on chromatin loops. By jointly analyzing the ZNF143 and CTCF motifs underlying the isolated ZNF143-binding sites, ZNF143-CTCF co-binding sites and ZNF143-CTCF-RAD21 co-binding sites, our result shows that the ZNF143-CTCF-RAD21 co-binding sites are enriched with CTCF motifs but depleted of Znf143 motifs, implying that the CTCF but not ZNF143 may directly binds to the genome and thus ZNF143 may act as a cofactor instead of pioneer factor of ZNF143-CTCF-Cohesin complex. To explore the regulatory effect of ZNF143 on chromatin loops, we conducted siRNA experiment to knock down the expression level of ZNF143 in HEK293T cell line, and then performed in situ Hi-C on the negative control and ZNF143-silenced HEK293T cells. Comparison shows that the majority of chromatin loops are lost or at least weakened in the ZNF143-silenced HEK293T cells. However, a small proportion of chromatin loops are gained or strengthened, indicating the complicated roles of ZNF143 reduction in regulating chromatin loops. To further validate the loop analyses, we thoroughly investigated the chromatin loop changes between negative control and ZNF143-silenced cells by using aggregate peak analysis. The calculation shows that the lost and gained chromatin loops do undergo loop strength changes after ZNF143 silencing. Altogether, our work shows that ZNF143 can regulate chromatin loops by acting as a cofactor of CTCF-Cohesin complex, and knocking down ZNF143 expression level mainly eliminates or destabilizes chromatin loops.
Collapse
Affiliation(s)
- Zi Wen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Tao Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Cheng Peng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ. Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep 2018; 50:621-627. [PMID: 29065970 PMCID: PMC5749908 DOI: 10.5483/bmbrep.2017.50.12.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.
Collapse
Affiliation(s)
- A Rome Paek
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science (Seongnam campus) Eulji University, Seongnam 13135, Korea; BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea
| | - Kyeong-Man Hong
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jongkeun Lee
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Dong Wan Hong
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hye Jin You
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
16
|
Radziwon A, Arno G, K Wheaton D, McDonagh EM, Baple EL, Webb-Jones K, G Birch D, Webster AR, MacDonald IM. Single-base substitutions in the CHM promoter as a cause of choroideremia. Hum Mutat 2017; 38:704-715. [PMID: 28271586 DOI: 10.1002/humu.23212] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/13/2017] [Accepted: 02/25/2017] [Indexed: 12/18/2022]
Abstract
Although over 150 unique mutations affecting the coding sequence of CHM have been identified in patients with the X-linked chorioretinal disease choroideremia (CHM), no regulatory mutations have been reported, and indeed the promoter has not been defined. Here, we describe two independent families affected by CHM bearing a mutation outside the gene's coding region at position c.-98: C>A and C>T, which segregated with the disease. The male proband of family 1 was found to lack CHM mRNA and its gene product Rab escort protein 1, whereas whole-genome sequencing of an affected male in family 2 excluded the involvement of any other known retinal genes. Both mutations abrogated luciferase activity when inserted into a reporter construct, and by further employing the luciferase reporter system to assay sequences 5' to the gene, we identified the CHM promoter as the region encompassing nucleotides c.-119 to c.-76. These findings suggest that the CHM promoter region should be examined in patients with CHM who lack coding sequence mutations, and reveals, for the first time, features of the gene's regulation.
Collapse
Affiliation(s)
- Alina Radziwon
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | | | | | - Emma L Baple
- Genomics England, Queen Mary University of London, London, UK.,Medical Research (Level 4), RILD Wellcome Wolfson Centre, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Exeter, UK
| | | | | | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital, London, UK
| | - Ian M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
17
|
Ye BY, Shen WL, Wang D, Li P, Zhang Z, Shi ML, Zhang Y, Zhang FX, Zhao ZH. ZNF143 is involved in CTCF-mediated chromatin interactions by cooperation with cohesin and other partners. Mol Biol 2016. [DOI: 10.1134/s0026893316030031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|