1
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
2
|
Gómez V, Galazi M, Weitsman G, Monypenny J, Al-Salemee F, Barber PR, Ng K, Beatson R, Szokol B, Orfi L, Mullen G, Vanhaesebroeck B, Chowdhury S, Leung HY, Ng T. HER2 Mediates PSMA/mGluR1-Driven Resistance to the DS-7423 Dual PI3K/mTOR Inhibitor in PTEN Wild-type Prostate Cancer Models. Mol Cancer Ther 2022; 21:667-676. [PMID: 35086953 PMCID: PMC7612588 DOI: 10.1158/1535-7163.mct-21-0320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer remains a major cause of male mortality. Genetic alteration of the PI3K/AKT/mTOR pathway is one of the key events in tumor development and progression in prostate cancer, with inactivation of the PTEN tumor suppressor being very common in this cancer type. Extensive evaluation has been performed on the therapeutic potential of PI3K/AKT/mTOR inhibitors and the resistance mechanisms arising in patients with PTEN-mutant background. However, in patients with a PTEN wild-type phenotype, PI3K/AKT/mTOR inhibitors have not demonstrated efficacy, and this remains an area of clinical unmet need. In this study, we have investigated the response of PTEN wild-type prostate cancer cell lines to the dual PI3K/mTOR inhibitor DS-7423 alone or in combination with HER2 inhibitors or mGluR1 inhibitors. Upon treatment with the dual PI3K/mTOR inhibitor DS-7423, PTEN wild-type prostate cancer CWR22/22RV1 cells upregulate expression of the proteins PSMA, mGluR1, and the tyrosine kinase receptor HER2, while PTEN-mutant LNCaP cells upregulate androgen receptor and HER3. PSMA, mGluR1, and HER2 exert control over one another in a positive feedback loop that allows cells to overcome treatment with DS-7423. Concomitant targeting of PI3K/mTOR with either HER2 or mGluR1 inhibitors results in decreased cell survival and tumor growth in xenograft studies. Our results suggest a novel therapeutic possibility for patients with PTEN wild-type PI3K/AKT-mutant prostate cancer based in the combination of PI3K/mTOR blockade with HER2 or mGluR1 inhibitors.
Collapse
Affiliation(s)
- Valentí Gómez
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Myria Galazi
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Gregory Weitsman
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James Monypenny
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Paul R. Barber
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Kenrick Ng
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Richard Beatson
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | | | - László Orfi
- Vichem Chemie Ltd., Veszprém, Hungary
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| | - Greg Mullen
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | | | - Simon Chowdhury
- Guy's, King's, and St. Thomas' Hospitals, and Sarah Cannon Research Institute, London, United Kingdom
| | - Hing Y. Leung
- Cancer Research United Kingdom Beatson Institute, Bearsden, Glasgow, United Kingdom
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Tony Ng
- UCL Cancer Institute, University College London, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Abd-Elrahman KS, Ferguson SSG. Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease. Annu Rev Pharmacol Toxicol 2021; 62:235-254. [PMID: 34516293 DOI: 10.1146/annurev-pharmtox-021821-091747] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; email
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
4
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2020; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
5
|
Ledonne A, Mercuri NB. Insights on the Functional Interaction between Group 1 Metabotropic Glutamate Receptors (mGluRI) and ErbB Receptors. Int J Mol Sci 2020; 21:ijms21217913. [PMID: 33114459 PMCID: PMC7662933 DOI: 10.3390/ijms21217913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
It is well-appreciated that phosphorylation is an essential post-translational mechanism of regulation for several proteins, including group 1 metabotropic glutamate receptors (mGluRI), mGluR1, and mGluR5 subtypes. While contributions of various serine/threonine protein kinases on mGluRI modulation have been recognized, the functional role of tyrosine kinases (TKs) is less acknowledged. Here, while describing current evidence supporting that mGluRI are targets of TKs, we mainly focus on the modulatory roles of the ErbB tyrosine kinases receptors—activated by the neurotrophic factors neuregulins (NRGs)—on mGluRI function. Available evidence suggests that mGluRI activity is tightly dependent on ErbB signaling, and that ErbB’s modulation profoundly influences mGluRI-dependent effects on neurotransmission, neuronal excitability, synaptic plasticity, and learning and memory processes.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-50170-3160
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Systems Medicine, Università di Roma “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
6
|
Dresselhaus EC, Meffert MK. Cellular Specificity of NF-κB Function in the Nervous System. Front Immunol 2019; 10:1043. [PMID: 31143184 PMCID: PMC6520659 DOI: 10.3389/fimmu.2019.01043] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor Kappa B (NF-κB) is a ubiquitously expressed transcription factor with key functions in a wide array of biological systems. While the role of NF-κB in processes, such as host immunity and oncogenesis has been more clearly defined, an understanding of the basic functions of NF-κB in the nervous system has lagged behind. The vast cell-type heterogeneity within the central nervous system (CNS) and the interplay between cell-type specific roles of NF-κB contributes to the complexity of understanding NF-κB functions in the brain. In this review, we will focus on the emerging understanding of cell-autonomous regulation of NF-κB signaling as well as the non-cell-autonomous functional impacts of NF-κB activation in the mammalian nervous system. We will focus on recent work which is unlocking the pleiotropic roles of NF-κB in neurons and glial cells (including astrocytes and microglia). Normal physiology as well as disorders of the CNS in which NF-κB signaling has been implicated will be discussed with reference to the lens of cell-type specific responses.
Collapse
Affiliation(s)
- Erica C Dresselhaus
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mollie K Meffert
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Guthrie OW. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve. J Histochem Cytochem 2017; 65:173-184. [PMID: 28056182 DOI: 10.1369/0022155416683661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona (OWG).,Research Service-151, Loma Linda Veterans Affairs Medical Center, Loma Linda, California (OWG).,Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Loma Linda University Medical Center, Loma Linda, California (OWG)
| |
Collapse
|
8
|
Guthrie OW. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal. Acta Histochem 2015; 117:688-95. [PMID: 26493720 DOI: 10.1016/j.acthis.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022]
Abstract
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage.
Collapse
|
9
|
Cherry EM, Lee DW, Jung JU, Sitcheran R. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling. Mol Cancer 2015; 14:9. [PMID: 25622756 PMCID: PMC4320546 DOI: 10.1186/s12943-014-0273-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND High-grade gliomas are one of the most invasive and therapy-resistant cancers. We have recently shown that noncanonical NF-κB/RelB signaling is a potent driver of tumorigenesis and invasion in the aggressive, mesenchymal subtype of glioma. However, the relevant signals that induce activation of noncanonical NF-κB signaling in glioma and its function relative to the canonical NF-κB pathway remain elusive. METHODS The ability of tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) to regulate NF-κB signaling and promote tumor progression was investigated in both established and primary high-grade glioma tumor lines using a three-dimensional (3-D) collagen invasion assay. The roles of specific NF-κB proteins in regulating glioma cell invasion and expression of Matrix Metalloproteinase 9 (MMP9) in response to TWEAK were evaluated using shRNA-mediated loss-of-function studies. The ability of NF-κB-inducing kinase (NIK) to promote glioma growth in vivo was investigated using an orthotopic xenograft mouse model. RESULTS In glioma cells that display elevated noncanonical NF-κB signaling, loss of RelB attenuates invasion without affecting RelA expression or phosphorylation and RelB is sufficient to promote invasion in the absence of RelA. The cytokine TWEAK preferentially activates the noncanonical NF-κB pathway through induction of p100 processing to p52 and nuclear accumulation of both RelB and p52 without activating the canonical NF-κB pathway. Moreover, TWEAK, but not TNFα, significantly increases NIK mRNA levels. TWEAK also promotes noncanonical NFκB-dependent MMP9 expression and glioma cell invasion. Finally, expression of NIK is sufficient to increase gliomagenesis in vivo. CONCLUSIONS Our data establish a key role for NIK and noncanonical NF-κB in mediating TWEAK-induced, MMP-dependent glioma cell invasion. The findings also demonstrate that TWEAK induces noncanonical NF-κB signaling and signal-specific regulation of NIK mRNA expression. Together, these studies reveal the important role of noncanonical NF-κB signaling in regulating glioma invasiveness and highlight the therapeutic potential of targeting activation of NIK in this deadly disease.
Collapse
Affiliation(s)
- Evan M Cherry
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dong W Lee
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Ji-Ung Jung
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- Medical Science Graduate 588 Program, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Raquel Sitcheran
- Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
- The Texas Brain and Spine Institute, Bryan, TX, USA.
| |
Collapse
|
10
|
Teh JLF, Shah R, Shin SS, Wen Y, Mehnert JM, Goydos J, Chen S. Metabotropic glutamate receptor 1 mediates melanocyte transformation via transactivation of insulin-like growth factor 1 receptor. Pigment Cell Melanoma Res 2014; 27:621-9. [PMID: 24628914 DOI: 10.1111/pcmr.12237] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
Abstract
Our laboratory previously described the oncogenic properties of metabotropic glutamate receptor 1 (mGluR1) in melanocytes. mGluR1 transformed immortalized mouse melanocytes in vitro and induced vigorous tumor formation in vivo. Subsequently, we observed the activation of PI3K/AKT in mGluR1-mediated melanocytic tumorigenesis in vivo. In particular, we identified AKT2 being the predominant isoform contributing to the activation of AKT. Suppression of Grm1 or AKT2 using an inducible Tet-R siRNA system resulted in a 60 or 30% reduction, respectively, in in vivo tumorigenesis. We show that simultaneous downregulation of Grm1 plus AKT2 results in a reduction of approximately 80% in tumor volumes, suggesting that both mGluR1 and AKT2 contribute to the tumorigenic phenotype in vivo. The discrepancy between the mild in vitro transformation characteristics and the aggressive in vivo tumorigenic phenotypes of these stable mGluR1-melanocytic clones led us to investigate the possible involvement of other growth factors. Here, we highlight a potential crosstalk network between mGluR1 and tyrosine kinase, insulin-like growth factor 1 receptor (IGF-1R).
Collapse
Affiliation(s)
- Jessica L F Teh
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Heuser K, Szokol K, Taubøll E. The role of glial cells in epilepsy. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2014; 134:37-41. [PMID: 24429754 DOI: 10.4045/tidsskr.12.1344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Brain research in the last century was mainly directed at neurons, with the role of glia assumed to be limited to repair, supplying nutrients and above all acting as a packing material between neurons. In recent years, the importance of glial cells for normal brain function has been recognised. This article summarizes knowledge of glial cells of relevance to epilepsy. METHOD The article is based on a literature search in PubMed as well as the authors' clinical and research experience. RESULTS Astrocytes are the largest subgroup of glial cells and, in common with neurons, have diverse membrane transporters, ion channels and receptors. Among the most important roles of astrocytes are the uptake and redistribution of ions and water, glucose metabolism and communication with nerve cells. Disturbances in all of these functions have been associated with epilepsy. INTERPRETATION Epilepsy has previously been regarded as exclusively a disturbance in the functioning of neurons and especially of their contact points, the synapses. The mechanisms of action of today's anti-epileptic drugs are therefore primarily directed at neuronal channels and receptors. New knowledge of the role played by glial cells could increase our understanding of how epilepsy arises and could lead to new treatment strategies.
Collapse
|
12
|
Martínez D, García L, Aguilera J, Ortega A. An Acute Glutamate Exposure Induces Long-Term Down Regulation of GLAST/EAAT1 Uptake Activity in Cultured Bergmann Glia Cells. Neurochem Res 2013; 39:142-9. [DOI: 10.1007/s11064-013-1198-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023]
|
13
|
Zhou L, Huang Y, Zhang Y, Zhao Q, Zheng B, Lou Y, Zhu D. mGluR5 stimulating Homer-PIKE formation initiates icariin induced cardiomyogenesis of mouse embryonic stem cells by activating reactive oxygen species. Exp Cell Res 2013; 319:1505-14. [PMID: 23524143 DOI: 10.1016/j.yexcr.2013.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/25/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Icariin (ICA) has been reported to facilitate cardiac differentiation of mouse embryonic stem (ES) cells; however, the mechanism by which ICA induced cardiomyogenesis has not been fully elucidated yet. Here, an underlying signaling network including metabotropic glutamate receptor 5 (mGluR5), Homer, phosphatidylinositol 3-Kinase Enhancer (PIKE), phosphatidylinositol 3-Kinase (PI3K), reactive oxygen species (ROS) and nuclear factor-kappaB (NF-κB) was investigated in ICA induced cardiomyogenesis. Our results showed that the co-expression of mGluR5 together with α-actinin or Troponin T in embryoid bodies (EBs) treated with ICA was elevated to 10.86% and 9.62%, compared with the case in the control (4.04% and 3.45%, respectively). Exposure of EBs to ICA for 2 h remarkably increased the dimeric form of mGluR5, which was inhibited by small interfering RNA targeting mGluR5 (si-mGluR5). Moreover, the extracellular glutamate concentration in ICA treatment medium was elevated to 28.9±3.5 μM. Furthermore, the activation of mGluR5 by ICA triggered the formation of Homer-PIKE complex and activated PI3K, stimulating ROS generation and NF-κB nuclear translocation. Knockdown of mGluR5 or inhibition of PI3K by LY294002 blocked ICA induced cardiomyogenesis via repressing mGluR5 pathway, reducing ROS and NF-κB activation. These results revealed that the inducible mechanisms of ICA were related to activate mGluR5 pathway.
Collapse
Affiliation(s)
- Limin Zhou
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, No. 866, Yu Hang Tang Road, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang H, Zhuo M. Group I metabotropic glutamate receptor-mediated gene transcription and implications for synaptic plasticity and diseases. Front Pharmacol 2012; 3:189. [PMID: 23125836 PMCID: PMC3485740 DOI: 10.3389/fphar.2012.00189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/11/2012] [Indexed: 12/05/2022] Open
Abstract
Stimulation of group I metabotropic glutamate receptors (mGluRs) initiates a wide variety of signaling pathways. Group I mGluR activation can regulate gene expression at both translational and transcriptional levels, and induces translation or transcription-dependent synaptic plastic changes in neurons. The group I mGluR-mediated translation-dependent neural plasticity has been well reviewed. In this review, we will highlight group I mGluR-induced gene transcription and its role in synaptic plasticity. The signaling pathways (PKA, CaMKs, and MAPKs) which have been shown to link group I mGluRs to gene transcription, the relevant transcription factors (CREB and NF-κB), and target proteins (FMRP and ARC) will be documented. The significance and future direction for characterizing group I mGluR-mediated gene transcription in fragile X syndrome, schizophrenia, drug addiction, and other neurological disorders will also be discussed.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
15
|
Foss CA, Mease RC, Cho SY, Kim HJ, Pomper MG. GCPII imaging and cancer. Curr Med Chem 2012; 19:1346-59. [PMID: 22304713 DOI: 10.2174/092986712799462612] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 12/11/2022]
Abstract
Glutamate carboxypeptidase II (GCPII) in the central nervous system is referred to as the prostate-specific membrane antigen (PSMA) in the periphery. PSMA serves as a target for imaging and treatment of prostate cancer and because of its expression in solid tumor neovasculature has the potential to be used in this regard for other malignancies as well. An overview of GCPII/PSMA in cancer, as well as a discussion of imaging and therapy of prostate cancer using a wide variety of PSMA-targeting agents is provided.
Collapse
Affiliation(s)
- C A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical School, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
16
|
Atypical mechanism of NF-κB activation by TRE17/ubiquitin-specific protease 6 (USP6) oncogene and its requirement in tumorigenesis. Oncogene 2011; 31:3525-35. [PMID: 22081069 PMCID: PMC3297677 DOI: 10.1038/onc.2011.520] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The NF-κB transcription factor plays a central role in diverse processes, including inflammation, proliferation and cell survival, and its activity is dysregulated in diseases such as auto-immunity and cancer. We recently identified the TRE17/ubiquitin-specific protease 6 (USP6) oncogene as the first de-ubiquitinating enzyme to activate NF-κB. TRE17/USP6 is translocated and overexpressed in aneurysmal bone cyst (ABC), a pediatric tumor characterized by extensive bone degradation and inflammatory recruitment. In the current study, we explore the mechanism by which TRE17 induces activation of NF-κB, and find that it activates the classical NF-κB pathway through an atypical mechanism that does not involve IκB degradation. TRE17 co-precipitates with IκB kinase (IKK), and IKK activity is augmented in stable cell lines overexpressing TRE17, in a USP-dependent manner. Optimal activation of NF-κB by TRE17 requires both catalytic subunits of IKK, distinguishing its mechanism from the classical and non-canonical pathways, which require either IKKβ or IKKα, respectively. TRE17 stimulates phosphorylation of p65 at serine 536, a modification that has been associated with enhanced transcriptional activity and nuclear retention. Induction of S536 phosphorylation by TRE17 requires both IKKα and IKKβ, as well as the IKKγ/NEMO regulatory subunit of IKK. We further demonstrate that TRE17(long) is highly tumorigenic when overexpressed in NIH3T3 fibroblasts, and that inhibition of NF-κB significantly attenuates tumor formation. In summary, these studies uncover an unexpected signaling mechanism for activation of classical NF-κB by TRE17. They further reveal a critical role for NF-κB in TRE17-mediated tumorigenesis, and suggest that NF-κB inhibitors may function as effective therapeutic agents in the treatment of ABC.
Collapse
|
17
|
Kao TK, Ou YC, Lin SY, Pan HC, Song PJ, Raung SL, Lai CY, Liao SL, Lu HC, Chen CJ. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J Nutr Biochem 2011; 22:612-24. [PMID: 21036586 DOI: 10.1016/j.jnutbio.2010.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/14/2010] [Accepted: 01/25/2010] [Indexed: 12/30/2022]
|
18
|
Mizumoto Y, Kyo S, Kiyono T, Takakura M, Nakamura M, Maida Y, Mori N, Bono Y, Sakurai H, Inoue M. Activation of NF-kappaB is a novel target of KRAS-induced endometrial carcinogenesis. Clin Cancer Res 2011; 17:1341-50. [PMID: 21411444 DOI: 10.1158/1078-0432.ccr-10-2291] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although the KRAS mutation is one of critical genetic alterations in endometrial carcinogenesis, the downstream targets are not known. EXPERIMENTAL DESIGN In this study, we investigated the molecular targets of KRAS signals, using tumorigenic cells with oncogenic KRAS mutation established from telomerase reverse transcriptase (TERT)-immortalized endometrial epithelial cells. RESULTS We first confirmed that the RAF-ERK pathway, but not the PI3K-Akt pathway, was activated in KRAS tumorigenic cells. However, the introduction of constitutively active MAP/ERK kinase into immortalized cells to mimic RAF-ERK activation failed to obtain tumorigenic phenotypes, indicating the existence of other carcinogenic pathways triggered by KRAS. Recent evidence suggestive of linkage with KRAS signals prompted us to examine the involvement of NF-κB in endometrial carcinogenesis. We found that the DNA-binding activity of NF-κB was markedly elevated in KRAS tumorigenic cells compared with TERT-immortalized cells. Furthermore, the ability of NF-κB to activate the target gene promoters significantly increased in KRAS tumorigenic cells. Introduction of a mutant IκB that is resistant to degradation and thereby enhances the inhibitory effect on NF-κB largely abrogated the transformed phenotypes of KRAS tumorigenic cells. Thus, oncogenic KRAS signals contributed to the tumorigenic phenotypes of endometrial cells by activating the transcription function of NF-κB. CONCLUSIONS These findings clearly show that NF-κB activation is a novel target of oncogenic KRAS in endometrial carcinogenesis, implying the potential utility of NF-κB inhibitors for endometrial cancer chemoprevention, especially with KRAS mutation.
Collapse
Affiliation(s)
- Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gorbacheva L, Pinelis V, Ishiwata S, Strukova S, Reiser G. Activated protein C prevents glutamate- and thrombin-induced activation of nuclear factor-kappaB in cultured hippocampal neurons. Neuroscience 2010; 165:1138-46. [PMID: 19931359 DOI: 10.1016/j.neuroscience.2009.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/29/2022]
Abstract
Brain injury is associated with neuroinflammation, neurodegeneration, and also blood coagulation with thrombin formation and generation of activated protein C (APC). We have previously shown that APC, a serine protease of hemostasis, at very low concentrations has protective effects in rat hippocampal and cortical neurons at glutamate-induced excitotoxicity through protease-activated receptor-1 (PAR-1) or endothelial receptor of protein C (EPCR)/PAR-1. The transcription factor nuclear factor kappaB (NF-kappaB) takes part in regulating neuronal survival in several pathological conditions. To elucidate the impact of NF-kappaB in APC-mediated cell survival, we investigated nuclear translocation of NF-kappaB p65 at glutamate- or thrombin-induced toxicity in hippocampal neurons. We used immunoassay and immunostaining with confocal microscopy with anti-NF-kappaBp65 antibody. We show that APC at concentrations as low as 1-2 nM inhibits translocation of NF-kappaB p65 into the nucleus of cultured rat hippocampal neurons, induced by 100 muM glutamate or 50 nM thrombin (but not 10 nM). The blocking effect of APC on NF-kappaB p65 translocation was observed at 1 and 4 h after treatment of neurons with glutamate, when the NF-kappaBp 65 level in the nucleus was significantly above the basal level. Then we investigated whether the binding of APC to EPCR/PAR-1 is required to control NF-kappaB activation. Antibodies blocking PAR-1 (ATAP2) or EPCR (P-20) abolished the APC-induced decrease of nuclear level of NF-kappaB p65 at glutamate-induced toxicity, whereas control antibodies to PAR-1 (S-19) and EPCR (IgG) exerted no effect. Thus, we suggest that the activation of NF-kappaB in rat hippocampal neurons mediates the glutamate- and thrombin-activated cell death program, which is reduced by exposure of cells to APC. APC induces the reduction of the nuclear level of NF-kappaB p65 in hippocampal neurons at glutamate-induced excitotoxicity via binding to EPCR and subsequent PAR-1 activation and signaling.
Collapse
Affiliation(s)
- L Gorbacheva
- Lomonosov Moscow State University, Department of Human and Animal Physiology, Moscow, Russia
| | | | | | | | | |
Collapse
|
20
|
Xia W, Bacus S, Husain I, Liu L, Zhao S, Liu Z, Moseley MA, Thompson JW, Chen FL, Koch KM, Spector NL. Resistance to ErbB2 tyrosine kinase inhibitors in breast cancer is mediated by calcium-dependent activation of RelA. Mol Cancer Ther 2010; 9:292-9. [PMID: 20124457 DOI: 10.1158/1535-7163.mct-09-1041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The widespread clinical use of therapies targeting the ErbB2 receptor tyrosine kinase oncogene represents a significant advance in breast cancer treatment. However, the development of therapeutic resistance represents a dilemma limiting their clinical efficacy, particularly small-molecule tyrosine kinase inhibitors that block ErbB2 autophosphorylation and activation. Here, we show that lapatinib (GW572016), a highly selective, small-molecule inhibitor of the ErbB2 and epidermal growth factor receptor tyrosine kinases, which was recently approved for the treatment of advanced-stage ErbB2(+) breast cancer, unexpectedly triggered a cytoprotective stress response in ErbB2(+) breast cancer cell lines, which was mediated by the calcium-dependent activation of RelA, the prosurvival subunit of NF-kappaB. Abrogation of lapatinib-induced RelA activation using either small interfering RNA constructs or an intracellular calcium chelator enhanced the apoptotic effects of lapatinib in parental ErbB2(+) breast cancer cells and overcame therapeutic resistance to lapatinib in ErbB2(+) breast cancer lines that had been rendered resistant to lapatinib through chronic exposure to the drug, mimicking the clinical setting. In addition, analysis of changes in phospho-RelA expression in sequential clinical biopsies from ErbB2(+) breast cancers treated with lapatinib monotherapy revealed marginally statistically significant differences between responders and nonresponders, which was consistent with our preclinical findings. Elucidating the regulation of RelA by lapatinib in ErbB2(+) breast cancers, and showing its role in the development of therapeutic resistance to lapatinib, identifies another therapeutic target to overcome or prevent the onset of resistance to lapatinib in some women with ErbB2(+) breast cancers.
Collapse
Affiliation(s)
- Wenle Xia
- Duke University Medical Center, Hock Plaza, Suite 601, 2424 Erwin Road, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bird MK, Lawrence AJ. The promiscuous mGlu5 receptor--a range of partners for therapeutic possibilities? Trends Pharmacol Sci 2009; 30:617-23. [PMID: 19892412 DOI: 10.1016/j.tips.2009.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 01/20/2023]
Abstract
The issue of non-specific effects for potential therapeutics is particularly salient in neurological/psychiatric disorders, where adverse drug reactions could impair critical brain functions. The issue of specificity is not limited to candidate molecules, as receptor targets themselves often influence physiological as well as pathological outcomes. Metabotropic glutamate receptor 5 (mGlu5) is an example of a "promiscuous" receptor target that has been implicated in addiction, but also many other processes. However, if receptor modulation could be restricted to specific pathways/brain regions, mGlu5 may still prove to be a viable therapeutic target for various indications. Using this premise, a number of possible methods to refine drug development strategy are discussed, including exploiting specific interactions of mGlu5 with other receptors to narrow the influence of pharmacological agents, and also the use of RNA interference targeted to specific cells/regions of the brain.
Collapse
Affiliation(s)
- Michael K Bird
- Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | |
Collapse
|
22
|
Scalabrino G. The multi-faceted basis of vitamin B12 (cobalamin) neurotrophism in adult central nervous system: Lessons learned from its deficiency. Prog Neurobiol 2009; 88:203-20. [DOI: 10.1016/j.pneurobio.2009.04.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/03/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
23
|
Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 2009; 29:5536-45. [PMID: 19403821 DOI: 10.1523/jneurosci.0831-09.2009] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The central hypothesis of excitotoxicity is that excessive stimulation of neuronal NMDA-sensitive glutamate receptors is harmful to neurons and contributes to a variety of neurological disorders. Glial cells have been proposed to participate in excitotoxic neuronal loss, but their precise role is defined poorly. In this in vivo study, we show that NMDA induces profound nuclear factor kappaB (NF-kappaB) activation in Müller glia but not in retinal neurons. Intriguingly, NMDA-induced death of retinal neurons is effectively blocked by inhibitors of NF-kappaB activity. We demonstrate that tumor necrosis factor alpha (TNFalpha) protein produced in Müller glial cells via an NMDA-induced NF-kappaB-dependent pathway plays a crucial role in excitotoxic loss of retinal neurons. This cell loss occurs mainly through a TNFalpha-dependent increase in Ca(2+)-permeable AMPA receptors on susceptible neurons. Thus, our data reveal a novel non-cell-autonomous mechanism by which glial cells can profoundly exacerbate neuronal death following excitotoxic injury.
Collapse
|
24
|
Goetz CA, Baldwin AS. NF-kappaB pathways in the immune system: control of the germinal center reaction. Immunol Res 2009; 41:233-47. [PMID: 18670738 DOI: 10.1007/s12026-008-8033-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The NF-kappaB signaling pathway plays a critical role in regulating innate and adaptive immunity. This is clearly evident as mouse models deficient for numerous NF-kappaB subunits and upstream activators exhibit defects in the immune system ranging from impaired development of lymphocytes to defective adaptive immune responses. In this review, we focus on the role that NF-kappaB plays in the germinal center (GC) reaction. Specifically, we discuss the major NF-kappaB subunits and the IkappaB homolog, Bcl-3. Recent findings reveal that Bcl-6, an unrelated transcriptional repressor, is functionally similar to Bcl-3 as both factors may suppress p53 activity to allow for efficient GC formation to occur. We discuss potential mechanisms of action for Bcl-3 and Bcl-6 in this highly complex, but important process of B-cell affinity maturation.
Collapse
Affiliation(s)
- Christine A Goetz
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 405 West Dr., Room 213, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|