1
|
Fregulia P, Park T, Li W, Cersosimo LM, Zanton GI. Microbial inoculum effects on the rumen epithelial transcriptome and rumen epimural metatranscriptome in calves. Sci Rep 2024; 14:16914. [PMID: 39043743 PMCID: PMC11266570 DOI: 10.1038/s41598-024-65685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Manipulation of the rumen microbial ecosystem in early life may affect ruminal fermentation and enhance the productive performance of dairy cows. The objective of this experiment was to evaluate the effects of dosing three different types of microbial inoculum on the rumen epithelium tissue (RE) transcriptome and the rumen epimural metatranscriptome (REM) in dairy calves. For this objective, 15 Holstein bull calves were enrolled in the study at birth and assigned to three different intraruminal inoculum treatments dosed orally once weekly from three to six weeks of age. The inoculum treatments were prepared from rumen contents collected from rumen fistulated lactating cows and were either autoclaved (control; ARF), processed by differential centrifugation to create the bacterial-enriched inoculum (BE), or through gravimetric separation to create the protozoal-enriched inoculum (PE). Calves were fed 2.5 L/d pasteurized waste milk 3x/d from 0 to 7 weeks of age and texturized starter until euthanasia at 9 weeks of age, when the RE tissues were collected for transcriptome and microbial metatranscriptome analyses, from four randomly selected calves from each treatment. The different types of inoculum altered the RE transcriptome and REM. Compared to ARF, 9 genes were upregulated in the RE of BE and 92 in PE, whereas between BE and PE there were 13 genes upregulated in BE and 114 in PE. Gene ontology analysis identified enriched GO terms in biological process category between PE and ARF, with no enrichment between BE and ARF. The RE functional signature showed different KEGG pathways related to BE and ARF, and no specific KEGG pathway for PE. We observed a lower alpha diversity index for RE microbiome in ARF (observed genera and Chao1 (p < 0.05)). Five microbial genera showed a significant correlation with the changes in host gene expression: Roseburia (25 genes), Entamoeba (two genes); Anaerosinus, Lachnospira, and Succiniclasticum were each related to one gene. sPLS-DA analysis showed that RE microbial communities differ among the treatments, although the taxonomic and functional microbial profiles show different distributions. Co-expression Differential Network Analysis indicated that both BE and PE had an impact on the abundance of KEGG modules related to acyl-CoA synthesis, type VI secretion, and methanogenesis, while PE had a significant impact on KEGGs related to ectoine biosynthesis and D-xylose transport. Our study indicated that artificial dosing with different microbial inocula in early life alters not only the RE transcriptome, but also affects the REM and its functions.
Collapse
Affiliation(s)
- P Fregulia
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - T Park
- Tansol Park, Department of Animal Science and Technology, Chung-Ang University, Anseong, South Korea
| | - W Li
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA.
| | - L M Cersosimo
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
- Laura Cersosimo, Brigham and Women's Hospital, Boston, MA, USA
| | - G I Zanton
- United States Department of Agriculture (USDA) - Agricultural Research Service, Dairy Forage Research Center, Madison, WI, USA
| |
Collapse
|
2
|
Støle TP, Lunde M, Gehmlich K, Christensen G, Louch WE, Carlson CR. Exploring Syndecan-4 and MLP and Their Interaction in Primary Cardiomyocytes and H9c2 Cells. Cells 2024; 13:947. [PMID: 38891079 PMCID: PMC11172336 DOI: 10.3390/cells13110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The transmembrane proteoglycan syndecan-4 is known to be involved in the hypertrophic response to pressure overload. Although multiple downstream signaling pathways have been found to be involved in this response in a syndecan-4-dependent manner, there are likely more signaling components involved. As part of a larger syndecan-4 interactome screening, we have previously identified MLP as a binding partner to the cytoplasmic tail of syndecan-4. Interestingly, many human MLP mutations have been found in patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM). To gain deeper insight into the role of the syndecan-4-MLP interaction and its potential involvement in MLP-associated cardiomyopathy, we have here investigated the syndecan-4-MLP interaction in primary adult rat cardiomyocytes and the H9c2 cell line. The binding of syndecan-4 and MLP was analyzed in total lysates and subcellular fractions of primary adult rat cardiomyocytes, and baseline and differentiated H9c2 cells by immunoprecipitation. MLP and syndecan-4 localization were determined by confocal microscopy, and MLP oligomerization was determined by immunoblotting under native conditions. Syndecan-4-MLP binding, as well as MLP self-association, were also analyzed by ELISA and peptide arrays. Our results showed that MLP-WT and syndecan-4 co-localized in many subcellular compartments; however, their binding was only detected in nuclear-enriched fractions of isolated adult cardiomyocytes. In vitro, syndecan-4 bound to MLP at three sites, and this binding was reduced in some HCM-associated MLP mutations. While MLP and syndecan-4 also co-localized in many subcellular fractions of H9c2 cells, these proteins did not bind at baseline or after differentiation into cardiomyocyte-resembling cells. Independently of syndecan-4, mutated MLP proteins had an altered subcellular localization in H9c2 cells, compared to MLP-WT. The DCM- and HCM-associated MLP mutations, W4R, L44P, C58G, R64C, Y66C, K69R, G72R, and Q91L, affected the oligomerization of MLP with an increase in monomeric at the expense of trimeric and tetrameric recombinant MLP protein. Lastly, two crucial sites for MLP self-association were identified, which were reduced in most MLP mutations. Our data indicate that the syndecan-4-MLP interaction was present in nuclear-enriched fractions of isolated adult cardiomyocytes and that this interaction was disrupted by some HCM-associated MLP mutations. MLP mutations were also linked to changes in MLP oligomerization and self-association, which may be essential for its interaction with syndecan-4 and a critical molecular mechanism of MLP-associated cardiomyopathy.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Katja Gehmlich
- Institute for Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
- K.G. Jebsen Center for Cardiac Research, University of Oslo, 0313 Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway; (M.L.); (G.C.); (W.E.L.); (C.R.C.)
| |
Collapse
|
3
|
Qi T, Zhang J, Zhang K, Zhang W, Song Y, Lian K, Kan C, Han F, Hou N, Sun X. Unraveling the role of the FHL family in cardiac diseases: Mechanisms, implications, and future directions. Biochem Biophys Res Commun 2024; 694:149468. [PMID: 38183876 DOI: 10.1016/j.bbrc.2024.149468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Heart diseases are a major cause of morbidity and mortality worldwide. Understanding the molecular mechanisms underlying these diseases is essential for the development of effective diagnostic and therapeutic strategies. The FHL family consists of five members: FHL1, FHL2, FHL3, FHL4, and FHL5/Act. These members exhibit different expression patterns in various tissues including the heart. FHL family proteins are implicated in cardiac remodeling, regulation of metabolic enzymes, and cardiac biomechanical stress perception. A large number of studies have explored the link between FHL family proteins and cardiac disease, skeletal muscle disease, and ovarian metabolism, but a comprehensive and in-depth understanding of the specific molecular mechanisms targeting FHL on cardiac disease is lacking. The aim of this review is to explore the structure and function of FHL family members, to comprehensively elucidate the mechanisms by which they regulate the heart, and to explore in depth the changes in FHL family members observed in different cardiac disorders, as well as the effects of mutations in FHL proteins on heart health.
Collapse
Affiliation(s)
- Tongbing Qi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Wenqiang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Yixin Song
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Lian
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
4
|
Tian S, Guo L, Song Y, Miao J, Peng M, Fang X, Bai M, Miao M. Transcriptomic analysis the mechanisms of anti-osteoporosis of desert-living Cistanche herb in ovariectomized rats of postmenopausal osteoporosis. Funct Integr Genomics 2023; 23:237. [PMID: 37439895 DOI: 10.1007/s10142-023-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Desert-living Cistanche herb (DC), as a traditional Chinese medicine for tonifying kidney yang, is often used to treat postmenopausal osteoporosis (PMOP). Total phenylethanoid glycosides are instruction ingredients for discrimination and assay according to the China pharmacopoeia for DC. This research aimed to reveal the anti-osteoporosis mechanism of total phenylethanoid glycosides of DC (PGC) by transcriptomic analysis of ovariectomized rats. Serum levels of BGP were evaluated by ELISA, the bone weight was measured, and transmission electron microscopy was used to examine the ultrastructure of osteoblasts in rats. In addition, micro-CT was used to detect the bone volume (Tb.BS/BV), bone mineral density (Tb.BMD), and bone mineral content (Tb.BMC) in trabecular bone, and the ratio of cortical bone area to total area (Ct.ar/Tt.ar), and the level of bone mineral content (Ct.BMC) in cortical bone. Differential expressed genes (DEGs) after PGC treatment were analyzed by transcriptomics. Then, a bioinformatics analysis of DEGs was carried out through GO enrichment, KEGG enrichment, and selection of the nucleus gene through the protein-protein interaction network. Through qRT-PCR analysis, the DEGs were verified. The analysis results indicated that PGC increased the secretion of osteogenic markers, and ultrastructural characterization of osteoblasts and bone morphology were improved in ovariectomized rats. A total of 269 genes were differentially expressed, including 201 genes that were downregulated and 68 genes that were upregulated between the model group and the PGC group. Bioinformation analysis results prompt the conclusion that PGC could promote the bone metabolism by muscle cell development, myofibril assembly, etc. In addition, our study also found that PGC has a good effect on osteoporosis complicated with cardiomyopathy, and it also provided evidence for the correlation between sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Shuo Tian
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Zheng Zhou, 450046, China
| | - Lin Guo
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mengfan Peng
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoyan Fang
- Department of Pharmacology, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ming Bai
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Chauhan PK, Sowdhamini R. Computational analysis of the flexibility in the disordered linker region connecting LIM domains in cysteine–glycine-rich protein. Front Genet 2023; 14:1134509. [PMID: 37065494 PMCID: PMC10090389 DOI: 10.3389/fgene.2023.1134509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
One of the key proteins that are present in the Z-disc of cardiac tissues, CSRP3, has been implicated in dilated and hypertrophic cardiomyopathy leading to heart failure. Although multiple cardiomyopathy-related mutations have been reported to reside on the two LIM domains and the disordered regions connecting the domains in this protein, the exact role of the disordered linker region is not clear. The linker harbors a few post-translational modification sites and is expected to be a regulatory site. We have carried out evolutionary studies on 5614 homologs spanning across taxa. We also performed molecular dynamics simulations of full-length CSRP3 to show that the length variations and conformational flexibility of the disordered linker could provide additional levels of functional modulation. Finally, we show that the CSRP3 homologs with widely different lengths of the linker regions could display diversity in their functional specifications. The present study provides a useful perspective to our understanding of the evolution of the disordered region between CSRP3 LIM domains.
Collapse
Affiliation(s)
- Pankaj Kumar Chauhan
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
| | - R. Sowdhamini
- National Centre for Biological Sciences Tata Institute of Fundamental Research, Bangalore Karnataka, India
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: R. Sowdhamini,
| |
Collapse
|
6
|
Wishard R, Jayaram M, Ramesh SR, Nongthomba U. Spatial and temporal requirement of Mlp60A isoforms during muscle development and function in Drosophila melanogaster. Exp Cell Res 2023; 422:113430. [PMID: 36423661 DOI: 10.1016/j.yexcr.2022.113430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Many myofibrillar proteins undergo isoform switching in a spatio-temporal manner during muscle development. The biological significance of the variants of several of these myofibrillar proteins remains elusive. One such myofibrillar protein, the Muscle LIM Protein (MLP), is a vital component of the Z-discs. In this paper, we show that one of the Drosophila MLP encoding genes, Mlp60A, gives rise to two isoforms: a short (279 bp, 10 kDa) and a long (1461 bp, 54 kDa) one. The short isoform is expressed throughout development, but the long isoform is adult-specific, being the dominant of the two isoforms in the indirect flight muscles (IFMs). A concomitant, muscle-specific knockdown of both isoforms leads to partial developmental lethality, with most of the surviving flies being flight defective. A global loss of both isoforms in a Mlp60A-null background also leads to developmental lethality, with muscle defects in the individuals that survive to the third instar larval stage. This lethality could be rescued partially by a muscle-specific overexpression of the short isoform. Genetic perturbation of only the long isoform, through a P-element insertion in the long isoform-specific coding sequence, leads to defective flight, in around 90% of the flies. This phenotype was completely rescued when the P-element insertion was precisely excised from the locus. Hence, our data show that the two Mlp60A isoforms are functionally specialized: the short isoform being essential for normal embryonic muscle development and the long isoform being necessary for normal adult flight muscle function.
Collapse
Affiliation(s)
- Rohan Wishard
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| | - Mohan Jayaram
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India; Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India
| | - Saraf R Ramesh
- Department of Studies in Zoology, University of Mysore, Manasgangotri, Mysuru, 570006, India; Department of Life Sciences, Pooja Bhagvat Memorial Mahajana Education Center, K. R. S. Road, Mysuru, 570016, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics; Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
7
|
LIM domain-wide comprehensive virtual mutagenesis provides structural rationale for cardiomyopathy mutations in CSRP3. Sci Rep 2022; 12:3562. [PMID: 35241752 PMCID: PMC8894373 DOI: 10.1038/s41598-022-07553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiomyopathies are a severe and chronic cardiovascular burden worldwide, affecting a large cohort in the general population. Cysteine and glycine-rich protein 3 (CSRP3) is one of key proteins implicated in dominant dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). In this study, we device a rapid in silico screening protocol that creates a mutational landscape map for all possible allowed and disallowed substitutions in the protein of interest. This map provides the structural and functional insights on the stability of LIM domains of CSRP3. Further, the sequence analysis delineates the eukaryotic CSRP3 protein orthologs which complements the mutational map, but provide limited information of amino acid exchanges. Next, we also evaluated the effect of HCM/DCM mutations on these domains. One of highly destabilising mutations—L44P (also disease causing) and a neutral mutation—L44M were further subjected to molecular dynamics (MD) simulations. The results establish that L44P substitution affects the LIM domain structure by altering secondary structure and due to loss of hydrophobic interaction with Phenylananine 35. The present study provides a useful perspective to our understanding of the role of mutations in the CSRP3 LIM domains and their evolution. This study provides a novel computational screening method for quick identification of key mutation sites for specific protein structures that can reduce the burden on experimental research.
Collapse
|
8
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
9
|
Hong M, Ebana Y, Shim J, Choi EK, Lim HE, Hwang I, Yu HT, Kim TH, Uhm JS, Joung B, Oh S, Lee MH, Kim YH, Jee SH, Pak HN. Ethnic similarities in genetic polymorphisms associated with atrial fibrillation: Far East Asian vs European populations. Eur J Clin Invest 2021; 51:e13584. [PMID: 33990960 DOI: 10.1111/eci.13584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In European ancestry, 111 genetic loci were identified as associated with atrial fibrillation (AF). We explored the reproducibility of those single nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS) meta-analysis of Far East Asian populations. METHODS We performed a meta-analysis of the Korean AF network and Japanese AF data sets (9118 cases and 33 467 controls) by an inverse-variance fixed-effects model. We compared the results with 111 previously reported SNPs proven in Europeans after excluding 36 missing loci and a locus with a minor allelic frequency (MAF) < 0.01 in the European population. RESULTS Among remaining 74 loci, 29 loci were replicated at a P < .05, and 17 of those loci were newly found in the Far East Asian population: 3 loci with a P < 5×10-8 (METTL11B at 1q24, KCNN2 at 5q22 and LRMDA at 10q22), 4 loci at the threshold of the Bonferroni correction of P = 4.5 × 10-4 ~ 5×10-8 (KIF3C at 2p23, REEP3, NRBF2 at 10q21, SIRT1, MYPN at 10q21 and CFL2 at 14q13) and 10 SNPs with a P = .05 ~ 4.5 × 10-4 . Among 18 AF loci with a MAF< 0.01 in the Far East Asian populations, 2 loci (GATA4 at 8q23 and SGCG at 13q12) were replicated after a fine mapping. Twenty-seven AF loci, including a locus, which had a sufficient sample size to get a power of over 80% (with a type 1 error α = 4.5 × 10-4 ), were not replicated in the Far East Asian populations. CONCLUSIONS We newly replicated 19 AF-associated genetic loci in the European descent among the Far East Asian populations. It highlights the extensive sharing of AF genetic risks across Far East Asian populations.
Collapse
Affiliation(s)
- Myunghee Hong
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Yusuke Ebana
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jaemin Shim
- Division of Cardiology, Korea University Cardiovascular Center, Seoul, Korea
| | - Eue-Keun Choi
- Division of Cardiology, Seoul National University Hospital, Seoul, Korea
| | - Hong Euy Lim
- Division of Cardiology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Inseok Hwang
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Hee Tae Yu
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Tae-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Seil Oh
- Division of Cardiology, Seoul National University Hospital, Seoul, Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| | - Young-Hoon Kim
- Division of Cardiology, Korea University Cardiovascular Center, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
10
|
Mani I. Genome editing in cardiovascular diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:289-308. [PMID: 34127197 DOI: 10.1016/bs.pmbts.2021.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic modification at the molecular level in somatic cells, germline, and animal models requires for different purposes, such as introducing desired mutation, deletion of alleles, and insertion of novel genes in the genome. Various genome-editing tools are available to accomplish these alterations, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated (Cas) system. CRISPR-Cas system is an emerging technology, which is being used in biological and medical sciences, including in the cardiovascular field. It assists to identify the mechanism of various cardiovascular disease occurrence, such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM). Furthermore, it has been advantages to edit various genes simultaneously and can also be used to treat and prevent several human diseases. This chapter explores the use of the scientific and therapeutic potential of a CRISPR-Cas system to edit the various cardiovascular disease-associated genes to understand the pathways involved in disease progression and treatment.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
11
|
The Cardioprotective PKA-Mediated Hsp20 Phosphorylation Modulates Protein Associations Regulating Cytoskeletal Dynamics. Int J Mol Sci 2020; 21:ijms21249572. [PMID: 33339131 PMCID: PMC7765622 DOI: 10.3390/ijms21249572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
The cytoskeleton has a primary role in cardiomyocyte function, including the response to mechanical stimuli and injury. The small heat shock protein 20 (Hsp20) conveys protective effects in cardiac muscle that are linked to serine-16 (Ser16) Hsp20 phosphorylation by stress-induced PKA, but the link between Hsp20 and the cytoskeleton remains poorly understood. Herein, we demonstrate a physical and functional interaction of Hsp20 with the cytoskeletal protein 14-3-3. We show that, upon phosphorylation at Ser16, Hsp20 translocates from the cytosol to the cytoskeleton where it binds to 14-3-3. This leads to dissociation of 14-3-3 from the F-actin depolymerization regulator cofilin-2 (CFL2) and enhanced F-actin depolymerization. Importantly, we demonstrate that the P20L Hsp20 mutation associated with dilated cardiomyopathy exhibits reduced physical interaction with 14-3-3 due to diminished Ser16 phosphorylation, with subsequent failure to translocate to the cytoskeleton and inability to disassemble the 14-3-3/CFL2 complex. The topological sequestration of Hsp20 P20L ultimately results in impaired regulation of F-actin dynamics, an effect implicated in loss of cytoskeletal integrity and amelioration of the cardioprotective functions of Hsp20. These findings underscore the significance of Hsp20 phosphorylation in the regulation of actin cytoskeleton dynamics, with important implications in cardiac muscle physiology and pathophysiology.
Collapse
|
12
|
Boycott HE, Nguyen MN, Vrellaku B, Gehmlich K, Robinson P. Nitric Oxide and Mechano-Electrical Transduction in Cardiomyocytes. Front Physiol 2020; 11:606740. [PMID: 33384614 PMCID: PMC7770138 DOI: 10.3389/fphys.2020.606740] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
The ability§ of the heart to adapt to changes in the mechanical environment is critical for normal cardiac physiology. The role of nitric oxide is increasingly recognized as a mediator of mechanical signaling. Produced in the heart by nitric oxide synthases, nitric oxide affects almost all mechano-transduction pathways within the cardiomyocyte, with roles mediating mechano-sensing, mechano-electric feedback (via modulation of ion channel activity), and calcium handling. As more precise experimental techniques for applying mechanical stresses to cells are developed, the role of these forces in cardiomyocyte function can be further understood. Furthermore, specific inhibitors of different nitric oxide synthase isoforms are now available to elucidate the role of these enzymes in mediating mechano-electrical signaling. Understanding of the links between nitric oxide production and mechano-electrical signaling is incomplete, particularly whether mechanically sensitive ion channels are regulated by nitric oxide, and how this affects the cardiac action potential. This is of particular relevance to conditions such as atrial fibrillation and heart failure, in which nitric oxide production is reduced. Dysfunction of the nitric oxide/mechano-electrical signaling pathways are likely to be a feature of cardiac pathology (e.g., atrial fibrillation, cardiomyopathy, and heart failure) and a better understanding of the importance of nitric oxide signaling and its links to mechanical regulation of heart function may advance our understanding of these conditions.
Collapse
Affiliation(s)
- Hannah E. Boycott
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - My-Nhan Nguyen
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Besarte Vrellaku
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Sun L, Li J, Li E, Niu S, Qin Z, Zhi Q, Zhao J, Xiong H, Li Y, Jian L, Zhang L. CRISPR/Cas9 mediated establishment of a human CSRP3 compound heterozygous knockout hESC line to model cardiomyopathy and heart failure. Stem Cell Res 2020; 49:102077. [PMID: 33176267 DOI: 10.1016/j.scr.2020.102077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022] Open
Abstract
The role of muscle LIM protein (MLP), encoded by CSRP3, is not well understood in humans. CSRP3 knockout mice developed dilated cardiomyopathy with hypertrophy and heart failure after birth. Using CRISPR/Cas9, we generated an MLP deficient human ESC line WAe009-A-41 carrying a compound heterozygous 13 bp deletion/1 bp insertion in the CSRP3 gene. The WAe009-A-41 line exhibited a normal female karyotype (46, XX), expressed pluripotency markers and exhibited capability to differentiate into the three germ layers in vitro. MLP expression was not detectable in WAe009-A-41 line. This cell line can be a useful tool for studying the role of CSRP3 in cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Liqiang Sun
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Li
- Department of Nuclear Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - En Li
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shaohui Niu
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhiping Qin
- Department of Doppler Ultrasonic, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qing Zhi
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiajia Zhao
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyan Xiong
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan Li
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liguo Jian
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Lihua Zhang
- Department of Cardiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
14
|
Common Regulatory Pathways Mediate Activity of MicroRNAs Inducing Cardiomyocyte Proliferation. Cell Rep 2020; 27:2759-2771.e5. [PMID: 31141697 PMCID: PMC6547019 DOI: 10.1016/j.celrep.2019.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/03/2018] [Accepted: 04/30/2019] [Indexed: 01/04/2023] Open
Abstract
Loss of functional cardiomyocytes is a major determinant of heart failure after myocardial infarction. Previous high throughput screening studies have identified a few microRNAs (miRNAs) that can induce cardiomyocyte proliferation and stimulate cardiac regeneration in mice. Here, we show that all of the most effective of these miRNAs activate nuclear localization of the master transcriptional cofactor Yes-associated protein (YAP) and induce expression of YAP-responsive genes. In particular, miR-199a-3p directly targets two mRNAs coding for proteins impinging on the Hippo pathway, the upstream YAP inhibitory kinase TAOK1, and the E3 ubiquitin ligase β-TrCP, which leads to YAP degradation. Several of the pro-proliferative miRNAs (including miR-199a-3p) also inhibit filamentous actin depolymerization by targeting Cofilin2, a process that by itself activates YAP nuclear translocation. Thus, activation of YAP and modulation of the actin cytoskeleton are major components of the pro-proliferative action of miR-199a-3p and other miRNAs that induce cardiomyocyte proliferation. A few microRNAs can stimulate cardiac myocyte proliferation The most effective of these microRNAs activate YAP Several pro-proliferative microRNAs also inhibit actin depolymerization miR-199a-3p directly targets TAOK1, b-TrCP, and Cofilin2 to achieve its effects
Collapse
|
15
|
Zhang X, Antonelo D, Hendrix J, To V, Campbell Y, Von Staden M, Li S, Suman SP, Zhai W, Chen J, Zhu H, Schilling W. Proteomic Characterization of Normal and Woody Breast Meat from Broilers of Five Genetic Strains. MEAT AND MUSCLE BIOLOGY 2020. [DOI: 10.22175/mmb.8759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Woody breast (WB) is an emergent broiler myopathy that is macroscopically characterized by hardened areas of the Pectoralis major muscle. Five genetic strains (strains 1–5) of mixed-sex broilers were fed either a control or an amino acid (AA)-reduced diet (20% reduction of digestible lysine, total sulfur AAs, and threonine) for 8 wk. Differences between whole-muscle proteome profiles of normal breast (NB; n = 6 gels) and WB tissue (n = 6 gels) were characterized for (1) broiler strains 1–5 that were fed with a control diet and collected at 0 min; (2) strain 5 (control diet) that were collected at 15 min, 4 h, and 24 h; (3) strain 5 (0 min) that were fed with a control and an AA-reduced diet. Birds that yielded WB were heavier and had a greater pH at death (pH0min) than normal birds. Results indicated that 21 proteins were more abundant (P < 0.05) and 3 proteins were less abundant (P < 0.05) in WB compared with NB. The differentially abundant proteins in each comparison were consistently upregulated or downregulated in WB tissue although the different protein profiles were noticed for each comparison. Strains 2 and 5 had more protein profile differences between WB and NB meat than strains 1, 3, and 4, which potentially indicates a stronger genetic component for strains 2 and 5 with respect to WB formation. The proteins that were more abundant in WB compared to NB are involved in carbohydrate metabolism, oxidative stress, cytoskeleton structure, and transport and signaling. Ingenuity Pathway Analysis indicated that regulated pathways in WB were mainly related to carbohydrate metabolism, cellular repair, cellular organization and maintenance, and cell death and survival. The results support the potential causes of WB myopathy, including the presence of hypoxia, oxidative stress, increased apoptosis, misfolded proteins, and inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wes Schilling
- Mississippi State University Department of Food Science, Nutrition and Health Promotion
| |
Collapse
|
16
|
Levin E, Leibinger M, Gobrecht P, Hilla A, Andreadaki A, Fischer D. Muscle LIM Protein Is Expressed in the Injured Adult CNS and Promotes Axon Regeneration. Cell Rep 2020; 26:1021-1032.e6. [PMID: 30673598 DOI: 10.1016/j.celrep.2018.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023] Open
Abstract
Muscle LIM protein (MLP) has long been regarded as a muscle-specific protein. Here, we report that MLP expression is induced in adult rat retinal ganglion cells (RGCs) upon axotomy, and its expression is correlated with their ability to regenerate injured axons. Specific knockdown of MLP in RGCs compromises axon regeneration, while overexpression in vivo facilitates optic nerve regeneration and regrowth of sensory neurons without affecting neuronal survival. MLP accumulates in the cell body, the nucleus, and in axonal growth cones, which are significantly enlarged by its overexpression. Only the MLP fraction in growth cones is relevant for promoting axon extension. Additional data suggest that MLP acts as an actin cross-linker, thereby facilitating filopodia formation and increasing growth cone motility. Thus, MLP-mediated effects on actin could become a therapeutic strategy for promoting nerve repair.
Collapse
Affiliation(s)
- Evgeny Levin
- Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Marco Leibinger
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Philipp Gobrecht
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Alexander Hilla
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Anastasia Andreadaki
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | - Dietmar Fischer
- Department of Cell Physiology, Ruhr University of Bochum, Universitätsstraße 150, 44780 Bochum, Germany; Division of Experimental Neurology, Medical Faculty, Heinrich Heine University, Merowingerplatz 1a, 40225 Düsseldorf, Germany.
| |
Collapse
|
17
|
Cui C, Han S, Tang S, He H, Shen X, Zhao J, Chen Y, Wei Y, Wang Y, Zhu Q, Li D, Yin H. The Autophagy Regulatory Molecule CSRP3 Interacts with LC3 and Protects Against Muscular Dystrophy. Int J Mol Sci 2020; 21:ijms21030749. [PMID: 31979369 PMCID: PMC7037376 DOI: 10.3390/ijms21030749] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/22/2022] Open
Abstract
CSRP3/MLP (cysteine-rich protein 3/muscle Lim protein), a member of the cysteine-rich protein family, is a muscle-specific LIM-only factor specifically expressed in skeletal muscle. CSRP3 is critical in maintaining the structure and function of normal muscle. To investigate the mechanism of disease in CSRP3 myopathy, we performed siRNA-mediated CSRP3 knockdown in chicken primary myoblasts. CSRP3 silencing resulted in the down-regulation of the expression of myogenic genes and the up-regulation of atrophy-related gene expressions. We found that CSRP3 interacted with LC3 protein to promote the formation of autophagosomes during autophagy. CSRP3-silencing impaired myoblast autophagy, as evidenced by inhibited autophagy-related ATG5 and ATG7 mRNA expression levels, and inhibited LC3II and Beclin-1 protein accumulation. In addition, impaired autophagy in CSRP3-silenced cells resulted in increased sensitivity to apoptosis cell death. CSRP3-silenced cells also showed increased caspase-3 and caspase-9 cleavage. Moreover, apoptosis induced by CSRP3 silencing was alleviated after autophagy activation. Together, these results indicate that CSRP3 promotes the correct formation of autophagosomes through its interaction with LC3 protein, which has an important role in skeletal muscle remodeling and maintenance.
Collapse
|
18
|
Li X, Lu WJ, Li Y, Wu F, Bai R, Ma S, Dong T, Zhang H, Lee AS, Wang Y, Lan F. MLP-deficient human pluripotent stem cell derived cardiomyocytes develop hypertrophic cardiomyopathy and heart failure phenotypes due to abnormal calcium handling. Cell Death Dis 2019; 10:610. [PMID: 31406109 PMCID: PMC6690906 DOI: 10.1038/s41419-019-1826-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Muscle LIM protein (MLP, CSRP3) is a key regulator of striated muscle function, and its mutations can lead to both hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) in patients. However, due to lack of human models, mechanisms underlining the pathogenesis of MLP defects remain unclear. In this study, we generated a knockout MLP/CSRP3 human embryonic stem cell (hESC) H9 cell line using CRISPR/Cas9 mediated gene disruption. CSRP3 disruption had no impact on the cardiac differentiation of H9 cells and led to confirmed MLP deficiency in hESC-derived cardiomyocytes (ESC-CMs). MLP-deficient hESC-CMs were found to develop phenotypic features of HCM early after differentiation, such as enlarged cell size, multinucleation, and disorganized sarcomeric ultrastructure. Cellular phenotypes of MLP-deficient hESC-CMs subsequently progressed to mimic heart failure (HF) by 30 days post differentiation, including exhibiting mitochondrial damage, increased ROS generation, and impaired Ca2+ handling. Pharmaceutical treatment with beta agonist, such as isoproterenol, was found to accelerate the manifestation of HCM and HF, consistent with transgenic animal models of MLP deficiency. Furthermore, restoration of Ca2+ homeostasis by verapamil prevented the development of HCM and HF phenotypes, suggesting that elevated intracellular Ca2+ concentration is a central mechanism for pathogenesis of MLP deficiency. In summary, MLP-deficient hESC-CMs recapitulate the pathogenesis of HCM and its progression toward HF, providing an important human model for investigation of CSRP3/MLP-associated disease pathogenesis. More importantly, correction of the autonomous dysfunction of Ca2+ handling was found to be an effective method for treating the in vitro development of cardiomyopathy disease phenotype.
Collapse
Affiliation(s)
- Xiaowei Li
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Wen-Jing Lu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Ya'nan Li
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Fujian Wu
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Shuhong Ma
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Tao Dong
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China
| | - Hongjia Zhang
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Andrew S Lee
- Center for Clinical Translation and Innovation, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Yongming Wang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision Medicine, The Key Laboratory of Remodeling-Related Cardiovascular Disease, The Key Laboratory of Biomedical Engineering for Cardiovascular Disease Research, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Anzhen Hospital, Capital Medical University, 100029, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, 100029, Beijing, China.
| |
Collapse
|
19
|
VanHecke GC, Abeywardana MY, Ahn YH. Proteomic Identification of Protein Glutathionylation in Cardiomyocytes. J Proteome Res 2019; 18:1806-1818. [PMID: 30831029 DOI: 10.1021/acs.jproteome.8b00986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species (ROS) are important signaling molecules, but their overproduction is associated with many cardiovascular diseases, including cardiomyopathy. ROS induce various oxidative modifications, among which glutathionylation is one of the significant protein oxidations that occur under oxidative stress. Despite previous efforts, direct and site-specific identification of glutathionylated proteins in cardiomyocytes has been limited. In this report, we used a clickable glutathione approach in a HL-1 mouse cardiomyocyte cell line under exposure to hydrogen peroxide, finding 1763 glutathionylated peptides with specific Cys modification sites, which include many muscle-specific proteins. Bioinformatic and cluster analyses found 125 glutathionylated proteins, whose mutations or dysfunctions are associated with cardiomyopathy, many of which include sarcomeric structural and contractile proteins, chaperone, and other signaling or regulatory proteins. We further provide functional implication of glutathionylation for several identified proteins, including CSRP3/MLP and complex I, II, and III, by analyzing glutathionylated sites in their structures. Our report establishes a chemoselective method for direct identification of glutathionylated proteins and provides potential target proteins whose glutathionylation may contribute to muscle diseases.
Collapse
Affiliation(s)
- Garrett C VanHecke
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | | | - Young-Hoon Ahn
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
20
|
Zhu H, Yang H, Zhao W, Su Y, Tian Y. Associations of the expression levels of genes involved in CFL2b and MyHC isoform type changes in longissimus dorsi muscle of HeBao and Large White pigs ( Sus scrofa) during postnatal growth. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2016-0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to compare the patterns of postnatal transformation of myosin heavy chain (MyHC) isoform types in the longissimus dorsi (LD) muscle between HeBao (HB) and Large White (LW) pigs, and assess the association of porcine cofilin2b (CFL2b) mRNA abundance with changes of myofiber type composition. The four MyHC isoforms (MyHC-1, -2a, -2b, and -2x) of the LD muscle were assessed for mRNA levels in 28 HB and 28 LW pigs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The associations of CFL2b mRNA expression and myofiber type (MyHC-1, -2a, -2b, and -2x) changes were analyzed by RT-qPCR. Although the mRNA expression patterns of MyHCs were different between the two breeds, they had similar expression levels. During postnatal growth, relative CFL2b abundance was gradually increased, with dramatic changes observed after 90 d between the two breeds (P < 0.01). Further analysis revealed significant positive correlations of CFL2b gene expression with MyHC-1/slow (HB: r = 0.871), MyHC-2b [LW: r = 0.881 (P < 0.01)], and MyHC-2x (HB: r = 0.795, LW: r = 0.814), and a significant negative correlation with MyHC-1/slow [r = −0.938 (P < 0.01)] in LW. No significant associations of CFL2b expression with MyHC-2a (HB: r = −0. 195, r = −0.697) and MyHC-2b (HB: r = 0.493) were found. Our findings suggested that HB pigs had different muscle development mechanisms in the LD muscle compared with LW, and the CFL2b expression difference could affect the levels of myofiber types which could account for meat quality differences. HB pigs possessed less glycolytic, with more oxidative metabolism and better meat quality traits compared with LW pigs at different growth stages.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| | - Huixin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210000, People’s Republic of China
| | - Wei Zhao
- College of Basic Medicine Science, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
| | - Yuhong Su
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| | - Yumin Tian
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, People’s Republic of China
- Key Laboratory of Quality and Safety Engineering of Animal Products of Liaoning Province, Jinzhou 121001, People’s Republic of China
| |
Collapse
|
21
|
Abstract
Polymerase δ-interacting protein 2 (Poldip2) is a multifunctional protein originally described as a binding partner of the p50 subunit of DNA polymerase δ and proliferating cell nuclear antigen. In addition to its role in DNA replication and damage repair, Poldip2 has been implicated in mitochondrial function, extracellular matrix regulation, cell cycle progression, focal adhesion turnover, and cell migration. However, Poldip2 functions are incompletely understood. In this review, we discuss recent literature on Poldip2 tissue distribution, subcellular localization, and function. We also address the putative function of Poldip2 in cardiovascular disease, neurodegenerative conditions and in renal pathophysiology.
Collapse
|
22
|
Muscle Lim Protein and myosin binding protein C form a complex regulating muscle differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2308-2321. [DOI: 10.1016/j.bbamcr.2017.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/10/2023]
|
23
|
Zhu H, Yang H, Zhao S, Zhang J, Liu D, Tian Y, Shen Z, Su Y. Role of the cofilin 2 gene in regulating the myosin heavy chain genes in mouse myoblast C2C12 cells. Int J Mol Med 2017; 41:1096-1102. [PMID: 29207028 DOI: 10.3892/ijmm.2017.3272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 11/15/2017] [Indexed: 11/06/2022] Open
Abstract
The cofilin 2 (CFL2) and myosin heavy chain (MyHC) genes play a key role in muscle development and myofibrillar formation. The aim of the present study was to investigate the effect of CFL2 on genes involved in fiber formation and the mechanisms underlying this process. Undifferentiated and differentiated C2C12 cells (UDT and DT, respectively) were transfected with CFL2 small interfering RNA (siRNA). CFL2 mRNA and protein levels were assessed using reverse transcription polymerase chain reaction (RT-PCR) and western blotting, respectively. MyHC gene expression in UDT and signaling pathway-related factors were observed with quantitative PCR (RT‑qPCR) and western blotting. Fluorescence microscopy was used to analyze the cytoskeletal effects of CFL2. The mRNA and protein expressions of CFL2, four MyHC isoforms (MyHC-I, MyHC-IIa, MyHC-IIb and MyHC-IIx), p38 mitogen-activated protein kinase, cAMP-response element-binding protein, AMP-activated protein kinase α1, and myocyte enhancer factor 2C, were significantly decreased in UDT. However, extracellular signal-regulated kinase 2 expression was significantly increased. Slightly decreased CFL2 protein and mRNA expression was observed in DT C2C12 cells transfected with CFL2 siRNA. Fluorescence microscopy revealed a significant decrease of CFL2 in the cytoplasm, but not the nucleus, of UDT, compared with normal cells. These results indicated that the mouse CFL2 gene may be involved in the regulation of MyHC via the key signaling molecules of CFL2-related signaling pathways.
Collapse
Affiliation(s)
- Hongyan Zhu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Huixin Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210000, P.R. China
| | - Song Zhao
- Central Laboratary, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Junfeng Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dan Liu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yumin Tian
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhiyi Shen
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuhong Su
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
24
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Nagai-Okatani C, Minamino N. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure. PLoS One 2016; 11:e0150210. [PMID: 27281159 PMCID: PMC4900630 DOI: 10.1371/journal.pone.0150210] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/20/2016] [Indexed: 11/21/2022] Open
Abstract
Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.
Collapse
Affiliation(s)
- Chiaki Nagai-Okatani
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
26
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
27
|
Schwickert A, Weghake E, Brüggemann K, Engbers A, Brinkmann BF, Kemper B, Seggewiß J, Stock C, Ebnet K, Kiesel L, Riethmüller C, Götte M. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements. PLoS One 2015; 10:e0143993. [PMID: 26657485 PMCID: PMC4675527 DOI: 10.1371/journal.pone.0143993] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3’-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer.
Collapse
Affiliation(s)
- Alexander Schwickert
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Esther Weghake
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Kathrin Brüggemann
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Annika Engbers
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Benjamin F. Brinkmann
- Institute-associated Research Group "Cell adhesion and cell polarity”, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Muenster, Muenster, Germany
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jochen Seggewiß
- Institute for Human Genetics, Medical Faculty of the University of Münster, Münster, Germany
| | - Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity”, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
- * E-mail:
| |
Collapse
|
28
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
29
|
Tackling proteome changes in the longissimus thoracis bovine muscle in response to pre-slaughter stress. J Proteomics 2015; 122:73-85. [DOI: 10.1016/j.jprot.2015.03.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/14/2015] [Accepted: 03/27/2015] [Indexed: 12/27/2022]
|
30
|
Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration. PLoS One 2015; 10:e0123829. [PMID: 25874796 PMCID: PMC4395318 DOI: 10.1371/journal.pone.0123829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/07/2015] [Indexed: 12/19/2022] Open
Abstract
Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2) have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.
Collapse
|
31
|
Chaillou T, Jackson JR, England JH, Kirby TJ, Richards-White J, Esser KA, Dupont-Versteegden EE, McCarthy JJ. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth. J Appl Physiol (1985) 2014; 118:86-97. [PMID: 25554798 DOI: 10.1152/japplphysiol.00351.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.
Collapse
Affiliation(s)
- Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Janna R Jackson
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jonathan H England
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Jena Richards-White
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Karyn A Esser
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Esther E Dupont-Versteegden
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky; Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky; Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
32
|
Wang JM, Lang B, Zhu HY, Du HT, Tian YM, Su YH. Cloning and transcriptional activity analysis of the porcine cofilin 2 gene promoter. Gene 2014; 547:280-7. [PMID: 24976171 DOI: 10.1016/j.gene.2014.06.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022]
Abstract
Cofilins (CFL), including CFL1 and CFL2, are members of the family of actin-binding proteins in eukaryote. CFL2 is predominantly expressed in mammalian skeletal muscle and heart and is important to muscle fiber formation and muscular regeneration. To study transcriptional regulation of porcine CFL2, a 2.5 kb upstream sequence starting from the major CFL2 transcriptional start site was cloned by genome walking. Twelve DNA fragments of the 5' flank region of the porcine CFL2 gene were further isolated from porcine genomic DNA via PCR and inserted into the luciferase reporter vector pGL4.10 to make 12 CFL2 reporter constructs. All reporter vectors were transfected into C2C12, NIH3T3, or Hela cells and their relative luciferase activity measured after 48 h, respectively. Bioinformatics analysis suggested that there were two TATA-boxes at the -508 bp and -453 bp, as well as a GC-box and a CAAT-box in this sequence. Additional transcription factor binding sites including SP1, AP1, AP2, and GATA-1 sites were also predicted. The transcriptional activity of pGL4.10-1554 (1502 bp to +51 bp) was the strongest, and the promoter's active region was mapped to a region from -1502 bp to -1317 bp. Our data provide a foundation for future studies into transcriptional regulation of CFL2.
Collapse
Affiliation(s)
- Jia-Mei Wang
- Basic Medical College of Liaoning Medical University, Liaoning, China.
| | - Bin Lang
- Basic Medical College of Liaoning Medical University, Liaoning, China
| | - Hong-yan Zhu
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China
| | - Hai-ting Du
- Basic Medical College of Liaoning Medical University, Liaoning, China
| | - Yu-min Tian
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China
| | - Yu-hong Su
- Animal Science and Veterinary Medicine College of Liaoning Medical University, Liaoning, China.
| |
Collapse
|
33
|
Levin E, Leibinger M, Andreadaki A, Fischer D. Neuronal expression of muscle LIM protein in postnatal retinae of rodents. PLoS One 2014; 9:e100756. [PMID: 24945278 PMCID: PMC4063954 DOI: 10.1371/journal.pone.0100756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023] Open
Abstract
Muscle LIM protein (MLP) is a member of the cysteine rich protein family and has so far been regarded as a muscle-specific protein that is mainly involved in myogenesis and the organization of cytoskeletal structure in myocytes, respectively. The current study demonstrates for the first time that MLP expression is not restricted to muscle tissue, but is also found in the rat naive central nervous system. Using quantitative PCR, Western blot and immunohistochemical analyses we detected MLP in the postnatal rat retina, specifically in the somas and dendritic arbors of cholinergic amacrine cells (AC) of the inner nuclear layer and the ganglion cell layer (displaced AC). Induction of MLP expression started at embryonic day 20 and peaked between postnatal days 7 and 14. It subsequently decreased again to non-detectable protein levels after postnatal day 28. MLP was identified in the cytoplasm and dendrites but not in the nucleus of AC. Thus, retinal MLP expression correlates with the morphologic and functional development of cholinergic AC, suggesting a potential role of this protein in postnatal maturation and making MLP a suitable marker for these neurons.
Collapse
Affiliation(s)
- Evgeny Levin
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Marco Leibinger
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anastasia Andreadaki
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dietmar Fischer
- Division of Experimental Neurology, Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
34
|
Human muscle LIM protein dimerizes along the actin cytoskeleton and cross-links actin filaments. Mol Cell Biol 2014; 34:3053-65. [PMID: 24934443 DOI: 10.1128/mcb.00651-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking.
Collapse
|
35
|
Vafiadaki E, Arvanitis DA, Papalouka V, Terzis G, Roumeliotis TI, Spengos K, Garbis SD, Manta P, Kranias EG, Sanoudou D. Muscle lim protein isoform negatively regulates striated muscle actin dynamics and differentiation. FEBS J 2014; 281:3261-79. [PMID: 24860983 DOI: 10.1111/febs.12859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Muscle lim protein (MLP) has emerged as a critical regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, have been directly associated with human cardiomyopathies, whereas aberrant expression patterns are reported in human cardiac and skeletal muscle diseases. Increasing evidence suggests that MLP has an important role in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles has not been delineated. We report the discovery of an alternative splice variant of MLP, designated as MLP-b, showing distinct expression in neuromuscular disease and direct roles in actin dynamics and muscle differentiation. This novel isoform originates by alternative splicing of exons 3 and 4. At the protein level, it contains the N-terminus first half LIM domain of MLP and a unique sequence of 22 amino acids. Physiologically, it is expressed during early differentiation, whereas its overexpression reduces C2C12 differentiation and myotube formation. This may be mediated through its inhibition of MLP/cofilin-2-mediated F-actin dynamics. In differentiated striated muscles, MLP-b localizes to the sarcomeres and binds directly to Z-disc components, including α-actinin, T-cap and MLP. The findings of the present study unveil a novel player in muscle physiology and pathophysiology that is implicated in myogenesis as a negative regulator of myotube formation, as well as in differentiated striated muscles as a contributor to sarcomeric integrity.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gurniak CB, Chevessier F, Jokwitz M, Jönsson F, Perlas E, Richter H, Matern G, Boyl PP, Chaponnier C, Fürst D, Schröder R, Witke W. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur J Cell Biol 2014; 93:252-66. [PMID: 24598388 DOI: 10.1016/j.ejcb.2014.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.
Collapse
Affiliation(s)
| | | | - Melanie Jokwitz
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Friederike Jönsson
- Institut Pasteur, Département d'Immunologie, Laboratoire Anticorps en Thérapie et Pathologie, Inserm, U.760, 75015 Paris, France
| | | | - Hendrik Richter
- University of Bonn, Institute of Cellular and Molecular Botany, Germany
| | - Gabi Matern
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | - Pietro Pilo Boyl
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany
| | | | - Dieter Fürst
- University of Bonn, Institute of Cell Biology, Germany
| | - Rolf Schröder
- University of Erlangen, Institute of Neuropathology, Germany
| | - Walter Witke
- University of Bonn, Institute of Genetics, Cell Migration Unit, Germany.
| |
Collapse
|
37
|
Prasad V, Lorenz JN, Lasko VM, Nieman ML, Al Moamen NJ, Shull GE. Loss of the AE3 Cl(-)/HCO(-) 3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart. Front Physiol 2013; 4:399. [PMID: 24427143 PMCID: PMC3875869 DOI: 10.3389/fphys.2013.00399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 01/12/2023] Open
Abstract
Cl(-)/HCO(-) 3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO(-) 3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl(-)/HCO(-) 3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO(-) 3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca(2+)-handling were observed, but Ca(2+)-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca(2+)-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure.
Collapse
Affiliation(s)
- Vikram Prasad
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - John N Lorenz
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Valerie M Lasko
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Michelle L Nieman
- Departments of Cellular and Molecular Physiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Nabeel J Al Moamen
- Genetic Laboratory, Department of Pathology, Salmaniya Medical Complex Manama, Bahrain
| | - Gary E Shull
- Departments of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| |
Collapse
|
38
|
Congenital myopathy caused by a novel missense mutation in the CFL2 gene. Neuromuscul Disord 2012; 22:632-9. [PMID: 22560515 DOI: 10.1016/j.nmd.2012.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/27/2012] [Accepted: 03/20/2012] [Indexed: 01/01/2023]
Abstract
Nemaline myopathy and myofibrillar myopathy are heterogeneous myopathies that both comprise early-onset forms. We present two sisters from a consanguineous Iraqi Kurdish family with predominant axial and limb girdle weakness. Muscle biopsies showed features of both nemaline myopathy and myofibrillar myopathy. We performed homozygosity mapping in both siblings using an Affymetrix 250K Nspl SNP array. One of the overlapping homozygous regions harbored the gene CFL2. Because a mutation in CFL2 was identified in a family with nemaline myopathy, we performed sequence analysis of the gene and a novel homozygous missense mutation in exon 2 (c.19G>A, p.Val7Met) of CFL2 was identified in both siblings. CFL2 encodes the protein cofilin-2, which plays an important role in regulation of sarcomeric actin filaments. To our knowledge, this is the second family in which a mutation in CFL2 causes an autosomal recessive form of congenital myopathy with features of both nemaline and myofibrillar myopathy. Given the clinical variability and the multitude of histological features of congenital myopathies, CFL2 sequence analysis should be considered in patients presenting with an autosomal recessive form of congenital myopathy.
Collapse
|
39
|
Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 2012; 21:2341-56. [PMID: 22343409 DOI: 10.1093/hmg/dds053] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cofilin-2, a small actin-binding protein and member of the AC protein family that includes cofilin-1 and destrin, is predominantly expressed at sarcomeres in skeletal and cardiac muscles. The role of cofilin-2 in muscle development and function is unclear. In humans, recessive cofilin-2 mutations have been associated with nemaline myopathy with minicores. To investigate the functional role of cofilin-2 in vivo, we generated constitutive and muscle-specific cofilin-2-deficient mice using a cre-loxP strategy. Cofilin-2-deficient mice were similar to their wild-type (WT) littermates at birth, but died by day 8. They were significantly smaller, severely weak and had very little milk in their stomachs. The sarcomeric structure was intact at birth, but by Day 7, skeletal muscles showed severe sarcomeric disruptions starting at the Z-line, along with filamentous actin accumulations consistent with a lack of actin depolymerization activity. Cofilin-2-deficient muscles contained elevated numbers of slow fibers and exhibited upregulation of slow fiber-specific genes. Increased amounts of other sarcomeric proteins including α-actinin-2, α-sarcomeric actin and tropomyosin were also present. While destrin was not expressed in either WT or cofilin-2-deficient muscles, cofilin-1 was similarly expressed in developing myofibers of both genotypes. There was no evidence for compensatory changes in expression of either family member in cofilin-2-deficient tissues. The onset of pathology and weakness in cofilin-2-deficient muscles correlated with normal developmental loss of cofilin-1 expression within myofibers, suggesting that cofilin-1 serves as an early developmental sarcomeric isoform. Overall, cofilin-2, although not critical for muscle development, is essential for muscle maintenance.
Collapse
Affiliation(s)
- Pankaj B Agrawal
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
40
|
Grabek KR, Karimpour-Fard A, Epperson LE, Hindle A, Hunter LE, Martin SL. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 2011; 43:1263-75. [PMID: 21914784 PMCID: PMC3217319 DOI: 10.1152/physiolgenomics.00125.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
The hibernator's heart functions continuously and avoids damage across the wide temperature range of winter heterothermy. To define the molecular basis of this phenotype, we quantified proteomic changes in the 13-lined ground squirrel heart among eight distinct physiological states encompassing the hibernator's year. Unsupervised clustering revealed a prominent seasonal separation between the summer homeotherms and winter heterotherms, whereas within-season state separation was limited. Further, animals torpid in the fall were intermediate to summer and winter, consistent with the transitional nature of this phase. A seasonal analysis revealed that the relative abundances of protein spots were mainly winter-increased. The winter-elevated proteins were involved in fatty acid catabolism and protein folding, whereas the winter-depleted proteins included those that degrade branched-chain amino acids. To identify further state-dependent changes, protein spots were re-evaluated with respect to specific physiological state, confirming the predominance of seasonal differences. Additionally, chaperone and heat shock proteins increased in winter, including HSPA4, HSPB6, and HSP90AB1, which have known roles in protecting against ischemia-reperfusion injury and apoptosis. The most significant and greatest fold change observed was a disappearance of phospho-cofilin 2 at low body temperature, likely a strategy to preserve ATP. The robust summer-to-winter seasonal proteomic shift implies that a winter-protected state is orchestrated before prolonged torpor ensues. Additionally, the general preservation of the proteome during winter hibernation and an increase of stress response proteins, together with dephosphorylation of cofilin 2, highlight the importance of ATP-conserving mechanisms for winter cardioprotection.
Collapse
Affiliation(s)
- Katharine R Grabek
- Human Medical Genetics Program, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
41
|
The sarcomeric Z-disc and Z-discopathies. J Biomed Biotechnol 2011; 2011:569628. [PMID: 22028589 PMCID: PMC3199094 DOI: 10.1155/2011/569628] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/12/2011] [Indexed: 02/06/2023] Open
Abstract
The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions.
Collapse
|
42
|
Buyandelger B, Ng KE, Miocic S, Piotrowska I, Gunkel S, Ku CH, Knöll R. MLP (muscle LIM protein) as a stress sensor in the heart. Pflugers Arch 2011; 462:135-42. [PMID: 21484537 PMCID: PMC3114083 DOI: 10.1007/s00424-011-0961-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/11/2011] [Accepted: 03/24/2011] [Indexed: 01/22/2023]
Abstract
Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221-231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393-403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674-2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78-85, 2006; Geier et al. Circulation 107:1390-1395, 2003; Hershberger et al. Clin Transl Sci 1:21-26, 2008; Knöll et al. Cell 111:943-955, 2002; Knöll et al. Circ Res 106:695-704, 2010; Mohapatra et al. Mol Genet Metab 80:207-215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms-how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research.
Collapse
Affiliation(s)
- Byambajav Buyandelger
- Myocardial Genetics, British Heart Foundation-Centre for Research Excellence, National Heart & Lung Institute, Imperial College, South Kensington Campus, Flowers Building, 4th floor, London, SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
44
|
Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C. Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. THE PLANT CELL 2010; 22:3034-52. [PMID: 20817848 PMCID: PMC2965535 DOI: 10.1105/tpc.110.075960] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/04/2010] [Accepted: 08/19/2010] [Indexed: 05/18/2023]
Abstract
Recently, a number of two LIM-domain containing proteins (LIMs) have been reported to trigger the formation of actin bundles, a major higher-order cytoskeletal assembly. Here, we analyzed the six Arabidopsis thaliana LIM proteins. Promoter-β-glucuronidase reporter studies revealed that WLIM1, WLIM2a, and WLIM2b are widely expressed, whereas PLIM2a, PLIM2b, and PLIM2c are predominantly expressed in pollen. LIM-green fluorescent protein (GFP) fusions all decorated the actin cytoskeleton and increased actin bundle thickness in transgenic plants and in vitro, although with different affinities and efficiencies. Remarkably, the activities of WLIMs were calcium and pH independent, whereas those of PLIMs were inhibited by high pH and, in the case of PLIM2c, by high [Ca(2+)]. Domain analysis showed that the C-terminal domain is key for the responsiveness of PLIM2c to pH and calcium. Regulation of LIM by pH was further analyzed in vivo by tracking GFP-WLIM1 and GFP-PLIM2c during intracellular pH modifications. Cytoplasmic alkalinization specifically promoted release of GFP-PLIM2c but not GFP-WLIM1, from filamentous actin. Consistent with these data, GFP-PLIM2c decorated long actin bundles in the pollen tube shank, a region of relatively low pH. Together, our data support a prominent role of Arabidopsis LIM proteins in the regulation of actin cytoskeleton organization and dynamics in sporophytic tissues and pollen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Clément Thomas
- Centre de Recherche Public-Santé, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
45
|
Ebert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol Endocrinol 2010; 24:790-9. [PMID: 20197309 DOI: 10.1210/me.2009-0345] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prolonged fasting alters skeletal muscle gene expression in a manner that promotes myofiber atrophy, but the underlying mechanisms are not fully understood. Here, we examined the potential role of activating transcription factor 4 (ATF4), a transcription factor with an evolutionarily ancient role in the cellular response to starvation. In mouse skeletal muscle, fasting increases the level of ATF4 mRNA. To determine whether increased ATF4 expression was required for myofiber atrophy, we reduced ATF4 expression with an inhibitory RNA targeting ATF4 and found that it reduced myofiber atrophy during fasting. Likewise, reducing the fasting level of ATF4 mRNA with a phosphorylation-resistant form of eukaryotic initiation factor 2alpha decreased myofiber atrophy. To determine whether ATF4 was sufficient to reduce myofiber size, we overexpressed ATF4 and found that it reduced myofiber size in the absence of fasting. In contrast, a transcriptionally inactive ATF4 construct did not reduce myofiber size, suggesting a requirement for ATF4-mediated transcriptional regulation. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression. Interestingly, expression of ATF4 increased a small subset of five fasting-responsive mRNAs, including four of the 15 mRNAs most highly induced by fasting. These five mRNAs encode proteins previously implicated in growth suppression (p21(Cip1/Waf1), GADD45alpha, and PW1/Peg3) or titin-based stress signaling [muscle LIM protein (MLP) and cardiac ankyrin repeat protein (CARP)]. Taken together, these data identify ATF4 as a novel mediator of skeletal myofiber atrophy during starvation.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gunkel S, Linke WA, Heineke J, Hilfiker-Kleiner D, Knöll R. Response to Gehmlich et al. Letter to the Editor of the Journal of Molecular and Cellular Cardiology Regarding “MLP: A Stress Sensor Goes Nuclear”. J Mol Cell Cardiol 2010. [DOI: 10.1016/j.yjmcc.2009.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Knöll R, Kostin S, Klede S, Savvatis K, Klinge L, Stehle I, Gunkel S, Kötter S, Babicz K, Sohns M, Miocic S, Didié M, Knöll G, Zimmermann WH, Thelen P, Bickeböller H, Maier LS, Schaper W, Schaper J, Kraft T, Tschöpe C, Linke WA, Chien KR. A common MLP (muscle LIM protein) variant is associated with cardiomyopathy. Circ Res 2009; 106:695-704. [PMID: 20044516 DOI: 10.1161/circresaha.109.206243] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE We previously discovered the human 10T-->C (Trp4Arg) missense mutation in exon 2 of the muscle LIM protein (MLP, CSRP3) gene. OBJECTIVE We sought to study the effects of this single-nucleotide polymorphism in the in vivo situation. METHODS AND RESULTS We now report the generation and detailed analysis of the corresponding Mlp(W4R/+) and Mlp(W4R/W4R) knock-in animals, which develop an age- and gene dosage-dependent hypertrophic cardiomyopathy and heart failure phenotype, characterized by almost complete loss of contractile reserve under catecholamine induced stress. In addition, evidence for skeletal muscle pathology, which might have implications for human mutation carriers, was observed. Importantly, we found significantly reduced MLP mRNA and MLP protein expression levels in hearts of heterozygous and homozygous W4R-MLP knock-in animals. We also detected a weaker in vitro interaction of telethonin with W4R-MLP than with wild-type MLP. These alterations may contribute to an increased nuclear localization of W4R-MLP, which was observed by immunohistochemistry. CONCLUSIONS Given the well-known high frequency of this mutation in Caucasians of up to 1%, our data suggest that (W4R-MLP) might contribute significantly to human cardiovascular disease.
Collapse
Affiliation(s)
- Ralph Knöll
- Heart Centre, Georg August University, Götingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|