1
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Arimbasseri AG, Shukla A, Pradhan AK, Bhargava P. Increased histone acetylation is the signature of repressed state on the genes transcribed by RNA polymerase III. Gene 2024; 893:147958. [PMID: 37923095 DOI: 10.1016/j.gene.2023.147958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Several covalent modifications are found associated with the transcriptionally active chromatin regions constituted by the genes transcribed by RNA polymerase (pol) II. Pol III-transcribed genes code for the small, stable RNA species, which participate in many cellular processes, essential for survival. Pol III transcription is repressed under most of the stress conditions by its negative regulator Maf1. We found that most of the histone acetylations increase with starvation-induced repression on several genes transcribed by the yeast pol III. On one of these genes, SNR6 (coding for the U6snRNA), a strongly positioned nucleosome in the gene upstream region plays regulatory role under repression. On this nucleosome, the changes in H3K9 and H3K14 acetylations show different dynamics. During repression, acetylation levels on H3K9 show steady increase whereas H3K14 acetylation increases with a peak at 40 min after which levels reduce. Both the levels settle by 2 hr to a level higher than the active state, which revert to normal levels with nutrient repletion. The increase in H3 acetylations is seen in the mutants reported to show reduced SNR6 transcription but not in the maf1Δ cells. This increase on a regulatory nucleosome may be part of the signaling mechanisms, which prepare cells for the stress-related quick repression as well as reactivation. The contrasting association of the histone acetylations with pol II and pol III transcription may be an important consideration to make in research studies focused on drug developments targeting histone modifications.
Collapse
Affiliation(s)
| | - Ashutosh Shukla
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Ashis Kumar Pradhan
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology, (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad 500007, India.
| |
Collapse
|
3
|
van Breugel ME, van Kruijsbergen I, Mittal C, Lieftink C, Brouwer I, van den Brand T, Kluin RJC, Hoekman L, Menezes RX, van Welsem T, Del Cortona A, Malik M, Beijersbergen RL, Lenstra TL, Verstrepen KJ, Pugh BF, van Leeuwen F. Locus-specific proteome decoding reveals Fpt1 as a chromatin-associated negative regulator of RNA polymerase III assembly. Mol Cell 2023; 83:4205-4221.e9. [PMID: 37995691 PMCID: PMC11289708 DOI: 10.1016/j.molcel.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Transcription of tRNA genes by RNA polymerase III (RNAPIII) is tuned by signaling cascades. The emerging notion of differential tRNA gene regulation implies the existence of additional regulatory mechanisms. However, tRNA gene-specific regulators have not been described. Decoding the local chromatin proteome of a native tRNA gene in yeast revealed reprogramming of the RNAPIII transcription machinery upon nutrient perturbation. Among the dynamic proteins, we identified Fpt1, a protein of unknown function that uniquely occupied RNAPIII-regulated genes. Fpt1 binding at tRNA genes correlated with the efficiency of RNAPIII eviction upon nutrient perturbation and required the transcription factors TFIIIB and TFIIIC but not RNAPIII. In the absence of Fpt1, eviction of RNAPIII was reduced, and the shutdown of ribosome biogenesis genes was impaired upon nutrient perturbation. Our findings provide support for a chromatin-associated mechanism required for RNAPIII eviction from tRNA genes and tuning the physiological response to changing metabolic demands.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Chitvan Mittal
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Cor Lieftink
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Ineke Brouwer
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Renée X Menezes
- Biostatistics Centre and Division of Psychosocial Research and Epidemiology, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Andrea Del Cortona
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - Muddassir Malik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis and Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Genomics Core Facility, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands
| | - Tineke L Lenstra
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Division of Gene Regulation, Netherlands Cancer Institute, Oncode Institute, Amsterdam 1066 CX, the Netherlands
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, KU Leuven, 3001 Heverlee-Leuven, Belgium
| | - B Franklin Pugh
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, the Netherlands; Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
4
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
6
|
Vinayachandran V, Bhargava P. Structural Features of the Nucleosomal DNA Modulate the Functional Binding of a Transcription Factor and Productive Transcription. Front Genet 2022; 13:870700. [PMID: 35646068 PMCID: PMC9136082 DOI: 10.3389/fgene.2022.870700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
A small non-histone protein of budding yeast, Nhp6 has been reported to specifically influence the transcription of a yeast gene, SNR6. The gene is essential, transcribed by the enzyme RNA polymerase III, and codes for the U6snRNA required for mRNA splicing. A translationally positioned nucleosome on the gene body enables the assembly factor TFIIIC binding by juxtaposing its otherwise widely separated binding sites, boxes A and B. We found histone depletion results in the loss of U6 snRNA production. Changing the rotational phase of the boxes and the linear distance between them with deletions in 5 bp steps displayed a helical periodicity in transcription, which gradually reduced with incremental deletions up to 40 bp but increased on further deletions enclosing the pseudoA boxes. Nhp6 influences the transcription in a dose-dependent manner, which is modulated by its previously reported co-operator, an upstream stretch of seven T residues centered between the TATA box and transcription start site. Nhp6 occupancy on the gene in vivo goes up at least 2-fold under the repression conditions. Nhp6 absence, T7 disruption, or shorter A–B box distance all cause the downstream initiation of transcription. The right +1 site is selected with the correct placement of TFIIIC before the transcription initiation factor TFIIIB. Thus, the T7 sequence and Nhp6 help the assembly and placement of the transcription complex at the right position. Apart from the chromatin remodelers, the relative rotational orientation of the promoter elements in nucleosomal DNA, and Nhp6 regulate the transcription of the SNR6 gene with precision.
Collapse
|
7
|
Kleinschmidt RA, Lyon LM, Smith SL, Rittenberry J, Lawless KM, Acosta AA, Donze D. Genetic screen for suppressors of increased silencing in rpd3 mutants in Saccharomyces cerevisiae identifies a potential role for H3K4 methylation. G3 GENES|GENOMES|GENETICS 2021; 11:6371869. [PMID: 34534290 PMCID: PMC8527511 DOI: 10.1093/g3journal/jkab309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022]
Abstract
Several studies have identified the paradoxical phenotype of increased heterochromatic gene silencing at specific loci that results from deletion or mutation of the histone deacetylase (HDAC) gene RPD3. To further understand this phenomenon, we conducted a genetic screen for suppressors of this extended silencing phenotype at the HMR locus in Saccharomyces cerevisiae. Most of the mutations that suppressed extended HMR silencing in rpd3 mutants without completely abolishing silencing were identified in the histone H3 lysine 4 methylation (H3K4me) pathway, specifically in SET1, BRE1, and BRE2. These second-site mutations retained normal HMR silencing, therefore, appear to be specific for the rpd3Δ extended silencing phenotype. As an initial assessment of the role of H3K4 methylation in extended silencing, we rule out some of the known mechanisms of Set1p/H3K4me mediated gene repression by HST1, HOS2, and HST3 encoded HDACs. Interestingly, we demonstrate that the RNA Polymerase III complex remains bound and active at the HMR-tDNA in rpd3 mutants despite silencing extending beyond the normal barrier. We discuss these results as they relate to the interplay among different chromatin-modifying enzyme functions and the importance of further study of this enigmatic phenomenon.
Collapse
Affiliation(s)
| | - Laurie M Lyon
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha L Smith
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jonah Rittenberry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - K Maeve Lawless
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anabelle A Acosta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David Donze
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Bhalla P, Vernekar DV, Gilquin B, Couté Y, Bhargava P. Interactome of the yeast RNA polymerase III transcription machinery constitutes several chromatin modifiers and regulators of the genes transcribed by RNA polymerase II. Gene 2018; 702:205-214. [PMID: 30593915 DOI: 10.1016/j.gene.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Eukaryotic transcription is a highly regulated fundamental life process. A large number of regulatory proteins and complexes, many of them with sequence-specific DNA-binding activity are known to influence transcription by RNA polymerase (pol) II with a fine precision. In comparison, only a few regulatory proteins are known for pol III, which transcribes genes encoding small, stable, non-translated RNAs. The pol III transcription is precisely regulated under various stress conditions. We used pol III transcription complex (TC) components TFIIIC (Tfc6), pol III (Rpc128) and TFIIIB (Brf1) as baits and mass spectrometry to identify their potential interactors in vivo. A large interactome constituting chromatin modifiers, regulators and factors of transcription by pol I and pol II supports the possibility of a crosstalk between the three transcription machineries. The association of proteins and complexes involved in various basic life processes like ribogenesis, RNA processing, protein folding and degradation, DNA damage response, replication and transcription underscores the possibility of the pol III TC serving as a signaling hub for communication between the transcription and other cellular physiological activities under normal growth conditions. We also found an equally large number of proteins and complexes interacting with the TC under nutrient starvation condition, of which at least 25% were non-identical under the two conditions. The data reveal the possibility of a large number of signaling cues for pol III transcription against adverse conditions, necessary for an efficient co-ordination of various cellular functions.
Collapse
Affiliation(s)
- Pratibha Bhalla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India
| | - Benoit Gilquin
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BIG-BGE, Grenoble, France
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Hyderabad, India.
| |
Collapse
|
9
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
10
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
11
|
Bosio MC, Fermi B, Spagnoli G, Levati E, Rubbi L, Ferrari R, Pellegrini M, Dieci G. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Res 2017; 45:4493-4506. [PMID: 28158860 PMCID: PMC5416754 DOI: 10.1093/nar/gkx058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 01/25/2017] [Indexed: 01/21/2023] Open
Abstract
Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Beatrice Fermi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Elisabetta Levati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Ludmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
12
|
Durano D, Lukacs A, Di Felice F, Micheli G, Camilloni G. A novel role for Nhp6 proteins in histone gene regulation in Saccharomyces cerevisiae. Int J Biochem Cell Biol 2017; 83:76-83. [DOI: 10.1016/j.biocel.2016.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
13
|
Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-26. [PMID: 27016735 PMCID: PMC5291244 DOI: 10.1093/nar/gkw194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023] Open
Abstract
In Saccharomyces cerevisiae, ribosomal protein gene (RPG) promoters display binding sites for either Rap1 or Abf1 transcription factors. Unlike Rap1-associated promoters, the small cohort of Abf1-dependent RPGs (Abf1-RPGs) has not been extensively investigated. We show that RPL3, RPL4B, RPP1A, RPS22B and RPS28A/B share a common promoter architecture, with an Abf1 site upstream of a conserved element matching the sequence recognized by Fhl1, a transcription factor which together with Ifh1 orchestrates Rap1-associated RPG regulation. Abf1 and Fhl1 promoter association was confirmed by ChIP and/or gel retardation assays. Mutational analysis revealed a more severe requirement of Abf1 than Fhl1 binding sites for RPG transcription. In the case of RPS22B an unusual Tbf1 binding site promoted both RPS22B and intron-hosted SNR44 expression. Abf1-RPG down-regulation upon TOR pathway inhibition was much attenuated at defective mutant promoters unable to bind Abf1. TORC1 inactivation caused the expected reduction of Ifh1 occupancy at RPS22B and RPL3 promoters, but unexpectedly it entailed largely increased Abf1 association with Abf1-RPG promoters. We present evidence that Abf1 recruitment upon nutritional stress, also observed for representative ribosome biogenesis genes, favours RPG transcriptional rescue upon nutrient replenishment, thus pointing to nutrient-regulated Abf1 dynamics at promoters as a novel mechanism in ribosome biogenesis control.
Collapse
Affiliation(s)
- Beatrice Fermi
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Maria Cristina Bosio
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
14
|
Dieci G, Fermi B, Bosio MC. Investigating transcription reinitiation through in vitro approaches. Transcription 2015; 5:e27704. [PMID: 25764113 DOI: 10.4161/trns.27704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By influencing the number of RNA molecules repeatedly synthesized from the same gene, the control of transcription reinitiation has the potential to shape the transcriptome. Transcription reinitiation mechanisms have been mainly addressed in vitro, through approaches based on both crude and reconstituted systems. These studies support the notion that transcription reinitiation and its regulation rely on dedicated networks of molecular interactions within transcription machineries. At the same time, comparison with in vivo transcription rates suggests that additional mechanisms, factors and conditions must exist in the nucleus, whose biochemical elucidation is a fascinating challenge for future in vitro transcription studies.
Collapse
Affiliation(s)
- Giorgio Dieci
- a Dipartimento di Bioscienze; Università degli Studi di Parma; Parma, Italy
| | | | | |
Collapse
|
15
|
Nguyen NTT, Saguez C, Conesa C, Lefebvre O, Acker J. Identification of proteins associated with RNA polymerase III using a modified tandem chromatin affinity purification. Gene 2015; 556:51-60. [DOI: 10.1016/j.gene.2014.07.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023]
|
16
|
Cieśla M, Mierzejewska J, Adamczyk M, Farrants AKÖ, Boguta M. Fructose bisphosphate aldolase is involved in the control of RNA polymerase III-directed transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1103-10. [DOI: 10.1016/j.bbamcr.2014.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
17
|
Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae. Genetics 2013; 196:427-38. [PMID: 24336746 PMCID: PMC3914616 DOI: 10.1534/genetics.113.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.
Collapse
|
18
|
Epigenetic regulation of transcription by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1015-25. [DOI: 10.1016/j.bbagrm.2013.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/11/2013] [Accepted: 05/15/2013] [Indexed: 01/11/2023]
|
19
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
20
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
21
|
Acker J, Conesa C, Lefebvre O. Yeast RNA polymerase III transcription factors and effectors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:283-95. [PMID: 23063749 DOI: 10.1016/j.bbagrm.2012.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Recent data indicate that the well-defined transcription machinery of RNA polymerase III (Pol III) is probably more complex than commonly thought. In this review, we describe the yeast basal transcription factors of Pol III and their involvements in the transcription cycle. We also present a list of proteins detected on genes transcribed by Pol III (class III genes) that might participate in the transcription process. Surprisingly, several of these proteins are involved in RNA polymerase II transcription. Defining the role of these potential new effectors in Pol III transcription in vivo will be the challenge of the next few years. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Joël Acker
- CEA, iBiTecS, Gif Sur Yvette, F-91191, France
| | | | | |
Collapse
|
22
|
RNA polymerase III transcription control elements: themes and variations. Gene 2011; 493:185-94. [PMID: 21712079 DOI: 10.1016/j.gene.2011.06.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/06/2011] [Accepted: 06/09/2011] [Indexed: 11/22/2022]
Abstract
Eukaryotic genomes are punctuated by a multitude of tiny genetic elements, that share the property of being recognized and transcribed by the RNA polymerase (Pol) III machinery to produce a variety of small, abundant non-protein-coding (nc) RNAs (tRNAs, 5S rRNA, U6 snRNA and many others). The highly selective, efficient and localized action of Pol III at its minute genomic targets is made possible by a handful of cis-acting regulatory elements, located within the transcribed region (where they are bound by the multisubunit assembly factor TFIIIC) and/or upstream of the transcription start site. Most of them participate directly or indirectly in the ultimate recruitment of TFIIIB, a key multiprotein initiation factor able to direct, once assembled, multiple transcription cycles by Pol III. But the peculiar efficiency and selectivity of Pol III transcription also depends on its ability to recognize very simple and precisely positioned termination signals. Studies in the last few years have significantly expanded the set of known Pol III-associated loci in genomes and, concomitantly, have revealed unexpected features of Pol III cis-regulatory elements in terms of variety, function, genomic location and potential contribution to transcriptome complexity. Here we review, in a historical perspective, well established and newly acquired knowledge about Pol III transcription control elements, with the aim of providing a useful reference for future studies of the Pol III system, which we anticipate will be numerous and intriguing for years to come.
Collapse
|
23
|
Venters BJ, Wachi S, Mavrich TN, Andersen BE, Jena P, Sinnamon AJ, Jain P, Rolleri NS, Jiang C, Hemeryck-Walsh C, Pugh BF. A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 2011; 41:480-92. [PMID: 21329885 DOI: 10.1016/j.molcel.2011.01.015] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/28/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
Hundreds of different proteins regulate and implement transcription in Saccharomyces. Yet their interrelationships have not been investigated on a comprehensive scale. Here we determined the genome-wide binding locations of 200 transcription-related proteins, under normal and acute heat-shock conditions. This study distinguishes binding between distal versus proximal promoter regions as well as the 3' ends of genes for nearly all mRNA and tRNA genes. This study reveals (1) a greater diversity and specialization of regulation associated with the SAGA transcription pathway compared to the TFIID pathway, (2) new regulators enriched at tRNA genes, (3) a global co-occupancy network of >20,000 unique regulator combinations that show a high degree of regulatory interconnections among lowly expressed genes, (4) regulators of the SAGA pathway located largely distal to the core promoter and regulators of the TFIID pathway located proximally, and (5) distinct mobilization of SAGA- versus TFIID-linked regulators during acute heat shock.
Collapse
Affiliation(s)
- Bryan J Venters
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Preti M, Ribeyre C, Pascali C, Bosio MC, Cortelazzi B, Rougemont J, Guarnera E, Naef F, Shore D, Dieci G. The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae. Mol Cell 2010; 38:614-20. [PMID: 20513435 DOI: 10.1016/j.molcel.2010.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 01/22/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Small nucleolar RNAs (snoRNAs) play a key role in ribosomal RNA biogenesis, yet factors controlling their expression are unknown. We found that the majority of Saccharomyces snoRNA promoters display an aRCCCTaa sequence motif at the upstream border of a TATA-containing nucleosome-free region. Genome-wide ChIP-seq analysis showed that these motifs are bound by Tbf1, a telomere-binding protein known to recognize mammalian-like T(2)AG(3) repeats at subtelomeric regions. Tbf1 has over 100 additional promoter targets, including several other genes involved in ribosome biogenesis and the TBF1 gene itself. Tbf1 is required for full snoRNA expression, yet it does not influence nucleosome positioning at snoRNA promoters. In contrast, Tbf1 contributes to nucleosome exclusion at non-snoRNA promoters, where it selectively colocalizes with the Tbf1-interacting zinc-finger proteins Vid22 and Ygr071c. Our data show that, besides the ribosomal protein gene regulator Rap1, a second telomere-binding protein also functions as a transcriptional regulator linked to yeast ribosome biogenesis.
Collapse
Affiliation(s)
- Milena Preti
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stillman DJ. Nhp6: a small but powerful effector of chromatin structure in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:175-80. [PMID: 20123079 DOI: 10.1016/j.bbagrm.2009.11.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/28/2009] [Accepted: 11/03/2009] [Indexed: 10/19/2022]
Abstract
The small Nhp6 protein from budding yeast is an abundant protein that binds DNA non-specifically and bends DNA sharply. It contains only a single HMGB domain that binds DNA in the minor groove and a basic N-terminal extension that wraps around DNA to contact the major groove. This review describes the genetic and biochemical experiments that indicate Nhp6 functions in promoting RNA pol III transcription, in formation of preinitiation complexes at promoters transcribed by RNA pol II, and in facilitating the activity of chromatin modifying complexes. The FACT complex may provide a paradigm for how Nhp6 functions with chromatin factors, as Nhp6 allows Spt16-Pob3 to bind to and reorganize nucleosomes in vitro.
Collapse
Affiliation(s)
- David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Zhou J, Zhou BO, Lenzmeier BA, Zhou JQ. Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 2009; 37:3699-713. [PMID: 19372273 PMCID: PMC2699518 DOI: 10.1093/nar/gkp233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the eukaryotic genome, transcriptionally silent chromatin tends to propagate along a chromosome and encroach upon adjacent active chromatin. The silencing machinery can be stopped by chromatin boundary elements. We performed a screen in Saccharomyces cerevisiae for proteins that may contribute to the establishment of a chromatin boundary. We found that disruption of histone deacetylase Rpd3p results in defective boundary activity, leading to a Sir-dependent local propagation of transcriptional repression. In rpd3 Delta cells, the amount of Sir2p that was normally found in the nucleolus decreased and the amount of Sir2p found at telomeres and at HM and its adjacent loci increased, leading to an extension of silent chromatin in those areas. In addition, Rpd3p interacted directly with chromatin at boundary regions to deacetylate histone H4 at lysine 5 and at lysine 12. Either the mutation of histone H4 at lysine 5 or a decrease in the histone acetyltransferase (HAT) activity of Esa1p abrogated the silencing phenotype associated with rpd3 mutation, suggesting a novel role for the H4 amino terminus in Rpd3p-mediated heterochromatin boundary regulation. Together, these data provide insight into the molecular mechanisms for the anti-silencing functions of Rpd3p during the formation of heterochromatin boundaries.
Collapse
Affiliation(s)
- Jing Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, The Graduate School, Shanghai 200031, China
| | | | | | | |
Collapse
|
27
|
Dieci G, Ruotolo R, Braglia P, Carles C, Carpentieri A, Amoresano A, Ottonello S. Positive modulation of RNA polymerase III transcription by ribosomal proteins. Biochem Biophys Res Commun 2008; 379:489-93. [PMID: 19116144 DOI: 10.1016/j.bbrc.2008.12.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA(Ile)(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Viale G.P. Usberti 23/A, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
TFIIIC binding sites function as both heterochromatin barriers and chromatin insulators in Saccharomyces cerevisiae. EUKARYOTIC CELL 2008; 7:2078-86. [PMID: 18849469 DOI: 10.1128/ec.00128-08] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromosomal sites of RNA polymerase III (Pol III) transcription have been demonstrated to have "extratranscriptional" functions, as the assembled Pol III complex can act as chromatin boundaries or pause sites for replication forks, can alter nucleosome positioning or affect transcription of neighboring genes, and can play a role in sister chromatid cohesion. Several studies have demonstrated that assembled Pol III complexes block the propagation of heterochromatin-mediated gene repression. Here we show that in Saccharomyces cerevisiae tRNA genes (tDNAs) and even partially assembled Pol III complexes containing only the transcription factor TFIIIC can exhibit chromatin boundary functions both as heterochromatin barriers and as insulators to gene activation. Both the TRT2 tDNA and the ETC4 site which binds only the TFIIIC complex prevented an upstream activation sequence from activating the GAL promoters in our assay system, effectively acting as chromatin insulators. Additionally, when placed downstream from the heterochromatic HMR locus, ETC4 blocked the ectopic spread of Sir protein-mediated silencing, thus functioning as a barrier to repression. Finally, we show that TRT2 and the ETC6 site upstream of TFC6 in their natural contexts display potential insulator-like functions, and ETC6 may represent a novel case of a Pol III factor directly regulating a Pol II promoter. The results are discussed in the context of how the TFIIIC transcription factor complex may function to demarcate chromosomal domains in yeast and possibly in other eukaryotes.
Collapse
|
29
|
Ghavi-Helm Y, Michaut M, Acker J, Aude JC, Thuriaux P, Werner M, Soutourina J. Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription. Genes Dev 2008; 22:1934-47. [PMID: 18628399 DOI: 10.1101/gad.471908] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
TFIIS is a transcription elongation factor that stimulates transcript cleavage activity of arrested RNA polymerase II (Pol II). Recent studies revealed that TFIIS has also a role in Pol II transcription initiation. To improve our understanding of TFIIS function in vivo, we performed genome-wide location analysis of this factor. Under normal growth conditions, TFIIS was detected on Pol II-transcribed genes, and TFIIS occupancy was well correlated with that of Pol II, indicating that TFIIS recruitment is not restricted to NTP-depleted cells. Unexpectedly, TFIIS was also detected on almost all Pol III-transcribed genes. TFIIS and Pol III occupancies correlated well genome-wide on this novel class of targets. In vivo, some dst1 mutants were partly defective in tRNA synthesis and showed a reduced Pol III occupancy at the restrictive temperature. In vitro transcription assays suggested that TFIIS may affect Pol III start site selection. These data provide strong in vivo and in vitro evidence in favor of a role of TFIIS as a general Pol III transcription factor.
Collapse
|
30
|
Xue X, Lehming N. Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II. J Mol Biol 2008; 379:212-30. [PMID: 18448120 DOI: 10.1016/j.jmb.2008.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/19/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Abstract
Nhp6p is an architectural Saccharomyces cerevisiae non-histone chromosomal protein that bends DNA and plays an important role in transcription and genome stability. We used the split-ubiquitin system to isolate proteins that interact with Nhp6p in vivo, and we confirmed 11 of these protein-protein interactions with glutathione S-transferase pull-down experiments in vitro. Most of the Nhp6p-interacting proteins are involved in transcription and DNA repair. We utilized the ZDS1, PUR5 and UME6 genes, which are repressed by Nhp6p and its interacting partners Rpb4p and Med3p, to study the chromosomal localization of these three proteins in wild-type and gene deletion strains. Nhp6p, Med3p and Rpb4p were found at the promoters of ZDS1, PUR5 and UME6, indicating that the repressing effects the three proteins had on the expression of these three genes had been direct ones. We also found that Med3p inhibited promoter clearance of RNA polymerase II, which contained the dissociable subunit Rpb4p, while Nhp6p recruited Rpb4p to the basal promoters of ZDS1, PUR5 and UME6. Our results further suggest that Rpb4p inhibits transcription initiation but stimulates transcription elongation and that Nhp6p and Med3p regulate gene expression by controlling the local subunit composition of RNA polymerase II.
Collapse
Affiliation(s)
- Xiaowei Xue
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore
| | | |
Collapse
|
31
|
Arimbasseri AG, Bhargava P. Chromatin structure and expression of a gene transcribed by RNA polymerase III are independent of H2A.Z deposition. Mol Cell Biol 2008; 28:2598-607. [PMID: 18268003 PMCID: PMC2293117 DOI: 10.1128/mcb.01953-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/04/2007] [Accepted: 02/04/2008] [Indexed: 01/09/2023] Open
Abstract
The genes transcribed by RNA polymerase III (Pol III) generally have intragenic promoter elements. One of them, the yeast U6 snRNA (SNR6) gene is activated in vitro by a positioned nucleosome between its intragenic box A and extragenic, downstream box B separated by approximately 200 bp. We demonstrate here that the in vivo chromatin structure of the gene region is characterized by the presence of an array of positioned nucleosomes, with only one of them in the 5' end of the gene having a regulatory role. A positioned nucleosome present between boxes A and B in vivo does not move when the gene is repressed due to nutritional deprivation. In contrast, the upstream nucleosome which covers the TATA box under repressed conditions is shifted approximately 50 bp further upstream by the ATP-dependent chromatin remodeler RSC upon activation. It is marked with the histone variant H2A.Z and H4K16 acetylation in active state. In the absence of H2A.Z, the chromatin structure of the gene does not change, suggesting that H2A.Z is not required for establishing the active chromatin structure. These results show that the chromatin structure directly participates in regulation of a Pol III-transcribed gene under different states of its activity in vivo.
Collapse
|
32
|
Lemieux K, Larochelle M, Gaudreau L. Variant histone H2A.Z, but not the HMG proteins Nhp6a/b, is essential for the recruitment of Swi/Snf, Mediator, and SAGA to the yeast GAL1 UAS(G). Biochem Biophys Res Commun 2008; 369:1103-7. [PMID: 18331823 DOI: 10.1016/j.bbrc.2008.02.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
Abstract
Chromatin architecture is very important for the regulation of transcriptional activation. Here, we investigated the role of two different chromatin components, the histone variant H2A.Z and HMG proteins Nhp6a/b, in regulating GAL1 gene expression. We have shown that recruitment of the Mediator complex is significantly affected in the absence of H2A.Z. Furthermore, H2A.Z is also required to fully recruit the SAGA and Swi/Snf complexes to the yeast GAL1-10 UAS(G). On the other hand, the HMG protein Nhp6a/b is not required to recruit the aforementioned components to the GAL1 promoter. The Nhp6 protein has been shown to interact with nucleosomes, and we show that its distribution is unaffected in the absence of H2A.Z. Our results suggest that the incorporation of the histone variant H2A.Z, but not the HMG proteins Nhp6a/b, in promoter regions creates a specialized chromatin domain that is required for pre-initiation complex assembly at the GAL1 locus.
Collapse
Affiliation(s)
- Karine Lemieux
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Que., Canada
| | | | | |
Collapse
|
33
|
Scott KC, White CV, Willard HF. An RNA polymerase III-dependent heterochromatin barrier at fission yeast centromere 1. PLoS One 2007; 2:e1099. [PMID: 17971862 PMCID: PMC2040200 DOI: 10.1371/journal.pone.0001099] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/10/2007] [Indexed: 01/20/2023] Open
Abstract
Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNAAlanine gene barrier (cen1 tDNAAla) blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1) in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNAAla gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere.
Collapse
Affiliation(s)
- Kristin C Scott
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
34
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|