1
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
2
|
Nostramo RT, Hopper AK. A novel assay provides insight into tRNAPhe retrograde nuclear import and re-export in S. cerevisiae. Nucleic Acids Res 2020; 48:11577-11588. [PMID: 33074312 PMCID: PMC7672469 DOI: 10.1093/nar/gkaa879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, tRNAs are transcribed in the nucleus and subsequently exported to the cytoplasm where they serve as essential adaptor molecules in translation. However, tRNAs can be returned to the nucleus by the evolutionarily conserved process called tRNA retrograde nuclear import, before relocalization back to the cytoplasm via a nuclear re-export step. Several important functions of these latter two trafficking events have been identified, yet the pathways are largely unknown. Therefore, we developed an assay in Saccharomyces cerevisiae to identify proteins mediating tRNA retrograde nuclear import and re-export using the unique wybutosine modification of mature tRNAPhe. Our hydrochloric acid/aniline assay revealed that the karyopherin Mtr10 mediates retrograde import of tRNAPhe, constitutively and in response to amino acid deprivation, whereas the Hsp70 protein Ssa2 mediates import specifically in the latter. Furthermore, tRNAPhe is re-exported by Crm1 and Mex67, but not by the canonical tRNA exporters Los1 or Msn5. These findings indicate that the re-export process occurs in a tRNA family-specific manner. Together, this assay provides insights into the pathways for tRNAPhe retrograde import and re-export and is a tool that can be used on a genome-wide level to identify additional gene products involved in these tRNA trafficking events.
Collapse
Affiliation(s)
- Regina T Nostramo
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics Center for RNA Biology The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Schwenzer H, Jühling F, Chu A, Pallett LJ, Baumert TF, Maini M, Fassati A. Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response. Cell Rep 2020; 26:3416-3428.e5. [PMID: 30893612 PMCID: PMC6426654 DOI: 10.1016/j.celrep.2019.02.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/05/2023] Open
Abstract
In eukaryotes, tRNAs are transcribed in the nucleus and exported to the cytosol, where they deliver amino acids to ribosomes for protein translation. This nuclear-cytoplasmic movement was believed to be unidirectional. However, active shuttling of tRNAs, named tRNA retrograde transport, between the cytosol and nucleus has been discovered. This pathway is conserved in eukaryotes, suggesting a fundamental function; however, little is known about its role in human cells. Here we report that, in human cells, oxidative stress triggers tRNA retrograde transport, which is rapid, reversible, and selective for certain tRNA species, mostly with shorter 3′ ends. Retrograde transport of tRNASeC, which promotes translation of selenoproteins required to maintain homeostatic redox levels in cells, is highly efficient. tRNA retrograde transport is regulated by the integrated stress response pathway via the PERK-REDD1-mTOR axis. Thus, we propose that tRNA retrograde transport is part of the cellular response to oxidative stress. Oxidative stress triggers nuclear import of cytoplasmic tRNAs Import is selective for certain tRNAs Import requires activation of the unfolded protein response and inhibition of mTOR via REDD1 tRNA nuclear import is a component of the integrated stress response
Collapse
Affiliation(s)
- Hagen Schwenzer
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Frank Jühling
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 2 Université de Strasbourg, 67000 Strasbourg, France
| | - Alexander Chu
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Laura J Pallett
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 2 Université de Strasbourg, 67000 Strasbourg, France; Nouvel Hôpital Civil, Institut Hospitalo-Universitaire, 67000 Strasbourg, France
| | - Mala Maini
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London (UCL), London WC1E 6BT, UK.
| |
Collapse
|
4
|
Hopper AK, Nostramo RT. tRNA Processing and Subcellular Trafficking Proteins Multitask in Pathways for Other RNAs. Front Genet 2019; 10:96. [PMID: 30842788 PMCID: PMC6391926 DOI: 10.3389/fgene.2019.00096] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/29/2019] [Indexed: 01/28/2023] Open
Abstract
This article focuses upon gene products that are involved in tRNA biology, with particular emphasis upon post-transcriptional RNA processing and nuclear-cytoplasmic subcellular trafficking. Rather than analyzing these proteins solely from a tRNA perspective, we explore the many overlapping functions of the processing enzymes and proteins involved in subcellular traffic. Remarkably, there are numerous examples of conserved gene products and RNP complexes involved in tRNA biology that multitask in a similar fashion in the production and/or subcellular trafficking of other RNAs, including small structured RNAs such as snRNA, snoRNA, 5S RNA, telomerase RNA, and SRP RNA as well as larger unstructured RNAs such as mRNAs and RNA-protein complexes such as ribosomes. Here, we provide examples of steps in tRNA biology that are shared with other RNAs including those catalyzed by enzymes functioning in 5' end-processing, pseudoU nucleoside modification, and intron splicing as well as steps regulated by proteins functioning in subcellular trafficking. Such multitasking highlights the clever mechanisms cells employ for maximizing their genomes.
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, Center for RNA Biology, Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Quilis I, Taberner FJ, Martínez-Garay CA, Alepuz P, Igual JC. Karyopherin Msn5 is involved in a novel mechanism controlling the cellular level of cell cycle regulators Cln2 and Swi5. Cell Cycle 2019; 18:580-595. [PMID: 30739521 PMCID: PMC6464581 DOI: 10.1080/15384101.2019.1578148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The yeast β-karyopherin Msn5 controls the SBF cell-cycle transcription factor, responsible for the periodic expression of CLN2 cyclin gene at G1/S, and the nuclear export of Cln2 protein. Here we show that Msn5 regulates Cln2 by an additional mechanism. Inactivation of Msn5 causes a severe reduction in the cellular content of Cln2. This occurs by a post-transcriptional mechanism, since CLN2 mRNA level is not importantly affected in asynchronous cultures. Cln2 stability is not significantly altered in msn5 cells and inactivation of Msn5 causes a reduction in protein level even when Cln2 is stabilized. Therefore, the reduced amount of Cln2 in msn5 cells is mainly due not to a higher rate of protein degradation but to a defect in Cln2 synthesis. In fact, analysis of polysome profiles indicated that Msn5 inactivation causes a shift of CLN2 and SWI5 mRNAs from heavy-polysomal to light-polysomal and non-polysomal fractions, supporting a defect in Cln2 and Swi5 protein synthesis in the msn5 mutant. The analysis of truncated versions of Cln2 and of chimeric cyclins combining distinct domains from Cln2 and the related Cln1 cyclin identified an internal region in Cln2 from 181 to 225 residues that when fused to GFP is able to confer Msn5-dependent regulation of protein cellular content. Finally, we showed that a high level of Cln2 is toxic in the absence of Msn5. In summary, we described that Msn5 is required for the proper protein synthesis of specific proteins, introducing a new level of control of cell cycle regulators.
Collapse
Affiliation(s)
- Inma Quilis
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Francisco J Taberner
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Carlos A Martínez-Garay
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - Paula Alepuz
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| | - J Carlos Igual
- a Departament de Bioquímica i Biologia Molecular , Universitat de València , Valencia , Spain.,b Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED) , Universitat de València , Valencia , Spain
| |
Collapse
|
6
|
Chatterjee K, Nostramo RT, Wan Y, Hopper AK. tRNA dynamics between the nucleus, cytoplasm and mitochondrial surface: Location, location, location. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2018; 1861:373-386. [PMID: 29191733 PMCID: PMC5882565 DOI: 10.1016/j.bbagrm.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023]
Abstract
Although tRNAs participate in the essential function of protein translation in the cytoplasm, tRNA transcription and numerous processing steps occur in the nucleus. This subcellular separation between tRNA biogenesis and function requires that tRNAs be efficiently delivered to the cytoplasm in a step termed "primary tRNA nuclear export". Surprisingly, tRNA nuclear-cytoplasmic traffic is not unidirectional, but, rather, movement is bidirectional. Cytoplasmic tRNAs are imported back to the nucleus by the "tRNA retrograde nuclear import" step which is conserved from budding yeast to vertebrate cells and has been hijacked by viruses, such as HIV, for nuclear import of the viral reverse transcription complex in human cells. Under appropriate environmental conditions cytoplasmic tRNAs that have been imported into the nucleus return to the cytoplasm via the 3rd nuclear-cytoplasmic shuttling step termed "tRNA nuclear re-export", that again is conserved from budding yeast to vertebrate cells. We describe the 3 steps of tRNA nuclear-cytoplasmic movements and their regulation. There are multiple tRNA nuclear export and import pathways. The different tRNA nuclear exporters appear to possess substrate specificity leading to the tantalizing possibility that the cellular proteome may be regulated at the level of tRNA nuclear export. Moreover, in some organisms, such as budding yeast, the pre-tRNA splicing heterotetrameric endonuclease (SEN), which removes introns from pre-tRNAs, resides on the cytoplasmic surface of the mitochondria. Therefore, we also describe the localization of the SEN complex to mitochondria and splicing of pre-tRNA on mitochondria, which occurs prior to the participation of tRNAs in protein translation. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Regina T Nostramo
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, United States; Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, United States; Center for RNA Biology, The Ohio State University, United States.
| |
Collapse
|
7
|
Chatterjee K, Majumder S, Wan Y, Shah V, Wu J, Huang HY, Hopper AK. Sharing the load: Mex67-Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev 2017; 31:2186-2198. [PMID: 29212662 PMCID: PMC5749166 DOI: 10.1101/gad.305904.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Here, Chatterjee et al. describe a novel tRNA nuclear export pathway that functions in parallel to the tRNA nuclear exporter Los1. They provide molecular, genetic, cytological, and biochemical evidence that the Mex67–Mtr2 (TAP–p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Eukaryotic transfer RNAs (tRNAs) are exported from the nucleus, their site of synthesis, to the cytoplasm, their site of function for protein synthesis. The evolutionarily conserved β-importin family member Los1 (Exportin-t) has been the only exporter known to execute nuclear export of newly transcribed intron-containing pre-tRNAs. Interestingly, LOS1 is unessential in all tested organisms. As tRNA nuclear export is essential, we previously interrogated the budding yeast proteome to identify candidates that function in tRNA nuclear export. Here, we provide molecular, genetic, cytological, and biochemical evidence that the Mex67–Mtr2 (TAP–p15) heterodimer, best characterized for its essential role in mRNA nuclear export, cofunctions with Los1 in tRNA nuclear export. Inactivation of Mex67 or Mtr2 leads to rapid accumulation of end-matured unspliced tRNAs in the nucleus. Remarkably, merely fivefold overexpression of Mex67–Mtr2 can substitute for Los1 in los1Δ cells. Moreover, in vivo coimmunoprecipitation assays with tagged Mex67 document that the Mex67 binds tRNAs. Our data also show that tRNA exporters surprisingly exhibit differential tRNA substrate preferences. The existence of multiple tRNA exporters, each with different tRNA preferences, may indicate that the proteome can be regulated by tRNA nuclear export. Thus, our data show that Mex67–Mtr2 functions in primary nuclear export for a subset of yeast tRNAs.
Collapse
Affiliation(s)
- Kunal Chatterjee
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yao Wan
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vijay Shah
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jingyan Wu
- The Ohio State University Comprehensive Cancer Research Center, The Ohio State University, Columbus, Ohio 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hsiao-Yun Huang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
8
|
Kessler AC, Kulkarni SS, Paulines MJ, Rubio MAT, Limbach PA, Paris Z, Alfonzo JD. Retrograde nuclear transport from the cytoplasm is required for tRNA Tyr maturation in T. brucei. RNA Biol 2017; 15:528-536. [PMID: 28901827 PMCID: PMC6103694 DOI: 10.1080/15476286.2017.1377878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022] Open
Abstract
Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.
Collapse
Affiliation(s)
- Alan C. Kessler
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sneha S. Kulkarni
- Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, South Bohemia, Czech Republic
| | - Mellie J. Paulines
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Anne T. Rubio
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Patrick A. Limbach
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, South Bohemia, Czech Republic
| | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Mendes M, Peláez-García A, López-Lucendo M, Bartolomé RA, Calviño E, Barderas R, Casal JI. Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/28/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Marta Mendes
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Alberto Peláez-García
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - María López-Lucendo
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rubén A. Bartolomé
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Eva Calviño
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| | - Rodrigo Barderas
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
- Instituto de Salud Carlos III.; Majadahonda Spain
| | - J. Ignacio Casal
- Department of Cellular and Molecular Medicine; Centro de Investigaciones Biológicas (CIB-CSIC); Madrid Spain
| |
Collapse
|
10
|
Lord CL, Ospovat O, Wente SR. Nup100 regulates Saccharomyces cerevisiae replicative life span by mediating the nuclear export of specific tRNAs. RNA (NEW YORK, N.Y.) 2017; 23:365-377. [PMID: 27932586 PMCID: PMC5311497 DOI: 10.1261/rna.057612.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Nuclear pore complexes (NPCs), which are composed of nucleoporins (Nups) and regulate transport between the nucleus and cytoplasm, significantly impact the replicative life span (RLS) of Saccharomyces cerevisiae We previously reported that deletion of the nonessential gene NUP100 increases RLS, although the molecular basis for this effect was unknown. In this study, we find that nuclear tRNA accumulation contributes to increased longevity in nup100Δ cells. Fluorescence in situ hybridization (FISH) experiments demonstrate that several specific tRNAs accumulate in the nuclei of nup100Δ mutants. Protein levels of the transcription factor Gcn4 are increased when NUP100 is deleted, and GCN4 is required for the elevated life spans of nup100Δ mutants, similar to other previously described tRNA export and ribosomal mutants. Northern blots indicate that tRNA splicing and aminoacylation are not significantly affected in nup100Δ cells, suggesting that Nup100 is largely required for nuclear export of mature, processed tRNAs. Distinct tRNAs accumulate in the nuclei of nup100Δ and msn5Δ mutants, while Los1-GFP nucleocytoplasmic shuttling is unaffected by Nup100. Thus, we conclude that Nup100 regulates tRNA export in a manner distinct from Los1 or Msn5. Together, these experiments reveal a novel Nup100 role in the tRNA life cycle that impacts the S. cerevisiae life span.
Collapse
Affiliation(s)
- Christopher L Lord
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Ophir Ospovat
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37240, USA
| |
Collapse
|
11
|
Huang HY, Hopper AK. Multiple Layers of Stress-Induced Regulation in tRNA Biology. Life (Basel) 2016; 6:life6020016. [PMID: 27023616 PMCID: PMC4931453 DOI: 10.3390/life6020016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 01/28/2023] Open
Abstract
tRNAs are the fundamental components of the translation machinery as they deliver amino acids to the ribosomes during protein synthesis. Beyond their essential function in translation, tRNAs also function in regulating gene expression, modulating apoptosis and several other biological processes. There are multiple layers of regulatory mechanisms in each step of tRNA biogenesis. For example, tRNA 3′ trailer processing is altered upon nutrient stress; tRNA modification is reprogrammed under various stresses; nuclear accumulation of tRNAs occurs upon nutrient deprivation; tRNA halves accumulate upon oxidative stress. Here we address how environmental stresses can affect nearly every step of tRNA biology and we describe the possible regulatory mechanisms that influence the function or expression of tRNAs under stress conditions.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Biology, Indiana University, 915 E third St., Myers 300, Bloomington, IN 47405, USA.
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
12
|
Yoshihisa T. Nucleocytoplasmic shuttling of tRNAs and implication of the cytosolic Hsp70 system in tRNA import. Nucleus 2015; 6:339-43. [PMID: 26280499 PMCID: PMC4915482 DOI: 10.1080/19491034.2015.1082696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
tRNAs, a class of non-coding RNAs essential for translation, are unique among cytosolic RNA species in that they shuttle between the nucleus and cytoplasm during their life. Although their export from the nucleus has been studied in detail, limited information on import machinery was available. Our group recently reported that Ssa2p, one of major cytosolic Hsp70s in Saccharomyces cerevisiae, acts as a crucial factor for tRNA import upon nutrient starvation. Ssa2p can bind tRNAs and a nucleoporin directly in an ATP-sensitive manner, suggesting that it acts as a nuclear import carrier for tRNAs, like importin-β proteins. In vitro assays revealed that Ssa2p binds tRNA specifically but has preference for loosely folded tRNAs. In this Extra View, these features of Ssa2p as a new import factor is discussed with other recent findings related to nucleocytoplasmic transport of tRNAs reported from other groups.
Collapse
Affiliation(s)
- Tohru Yoshihisa
- a Graduate School of Life Science; University of Hyogo ; Ako-gun , Hyogo , Japan
| |
Collapse
|
13
|
Huang HY, Hopper AK. In vivo biochemical analyses reveal distinct roles of β-importins and eEF1A in tRNA subcellular traffic. Genes Dev 2015; 29:772-83. [PMID: 25838545 PMCID: PMC4387718 DOI: 10.1101/gad.258293.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Huang et al. developed in vivo β-importin complex co-IP assays to study the interactions of β-importins with tRNAs. Los1 (exportin-t) interacts with both unspliced and spliced tRNAs. In contrast, Msn5 (exportin-5) primarily interacts with spliced aminoacylated tRNAs. They demonstrate that Tef1/2 assembles with Msn5–tRNA complexes in a RanGTP-dependent manner. Bidirectional tRNA movement between the nucleus and the cytoplasm serves multiple biological functions. To gain a biochemical understanding of the mechanisms for tRNA subcellular dynamics, we developed in vivo β-importin complex coimmunoprecipitation (co-IP) assays using budding yeast. Our studies provide the first in vivo biochemical evidence that two β-importin family members, Los1 (exportin-t) and Msn5 (exportin-5), serve overlapping but distinct roles in tRNA nuclear export. Los1 assembles complexes with RanGTP and tRNA. Both intron-containing pre-tRNAs and spliced tRNAs, regardless of whether they are aminoacylated, assemble into Los1–RanGTP complexes, documenting that Los1 participates in both primary nuclear export and re-export of tRNAs to the cytoplasm. In contrast, β-importin Msn5 preferentially assembles with RanGTP and spliced, aminoacylated tRNAs, documenting its role in tRNA nuclear re-export. Tef1/2 (the yeast form of translation elongation factor 1α [eEF1A]) aids the specificity of Msn5 for aminoacylated tRNAs to form a quaternary complex consisting of Msn5, RanGTP, aminoacylated tRNA, and Tef1/2. Assembly and/or stability of this quaternary complex requires Tef1/2, thereby facilitating efficient re-export of aminoacylated tRNAs to the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Anita K Hopper
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
14
|
Wilusz JE. Controlling translation via modulation of tRNA levels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:453-70. [PMID: 25919480 DOI: 10.1002/wrna.1287] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Transfer RNAs (tRNAs) are critical adaptor molecules that carry amino acids to a messenger RNA (mRNA) template during protein synthesis. Although tRNAs have commonly been viewed as abundant 'house-keeping' RNAs, it is becoming increasingly clear that tRNA expression is tightly regulated. Depending on a cell's proliferative status, the pool of active tRNAs is rapidly changed, enabling distinct translational programs to be expressed in differentiated versus proliferating cells. Here, I highlight several post-transcriptional regulatory mechanisms that allow the expression or functions of tRNAs to be altered. Modulating the modification status or structural stability of individual tRNAs can cause those specific tRNA transcripts to selectively accumulate or be degraded. Decay generally occurs via the rapid tRNA decay pathway or by the nuclear RNA surveillance machinery. In addition, the CCA-adding enzyme plays a critical role in determining the fate of a tRNA. The post-transcriptional addition of CCA to the 3' ends of stable tRNAs generates the amino acid attachment site, whereas addition of CCACCA to unstable tRNAs prevents aminoacylation and marks the tRNA for degradation. In response to various stresses, tRNAs can accumulate in the nucleus or be further cleaved into small RNAs, some of which inhibit translation. By implementing these various post-transcriptional control mechanisms, cells are able to fine-tune tRNA levels to regulate subsets of mRNAs as well as overall translation rates.
Collapse
Affiliation(s)
- Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. eLife 2015; 4:e04659. [PMID: 25853343 PMCID: PMC4432389 DOI: 10.7554/elife.04659] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 04/05/2015] [Indexed: 01/31/2023] Open
Abstract
tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.
Collapse
Affiliation(s)
- Akira Takano
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takuya Kajita
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Makoto Mochizuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Tohru Yoshihisa
- Graduate School of Life Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
16
|
Quality Control Pathways for Nucleus-Encoded Eukaryotic tRNA Biosynthesis and Subcellular Trafficking. Mol Cell Biol 2015; 35:2052-8. [PMID: 25848089 DOI: 10.1128/mcb.00131-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
tRNAs perform an essential role in translating the genetic code. They are long-lived RNAs that are generated via numerous posttranscriptional steps. Eukaryotic cells have evolved numerous layers of quality control mechanisms to ensure that the tRNAs are appropriately structured, processed, and modified. We describe the known tRNA quality control processes that check tRNAs and correct or destroy aberrant tRNAs. These mechanisms employ two types of exonucleases, CCA end addition, tRNA nuclear aminoacylation, and tRNA subcellular traffic. We arrange these processes in order of the steps that occur from generation of precursor tRNAs by RNA polymerase (Pol) III transcription to end maturation and modification in the nucleus to splicing and additional modifications in the cytoplasm. Finally, we discuss the tRNA retrograde pathway, which allows tRNA reimport into the nucleus for degradation or repair.
Collapse
|
17
|
Pinto G, Alhaiek AAM, Godovac-Zimmermann J. Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells. Expert Rev Proteomics 2015; 12:61-74. [PMID: 25591448 DOI: 10.1586/14789450.2015.1002474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At the molecular level, living cells are enormously complicated complex adaptive systems in which intertwined genomic, transcriptomic, proteomic and metabolic networks all play a crucial role. At the same time, cells are spatially heterogeneous systems in which subcellular compartmentalization of different functions is ubiquitous and requires efficient cross-compartmental communication. Dynamic redistribution of multitudinous proteins to different subcellular locations in response to cellular functional state is increasingly recognized as a crucial characteristic of cellular function that seems to be at least as important as overall changes in protein abundance. Characterization of the subcellular spatial dynamics of protein distribution is a major challenge for proteomics and recent results with MCF7 breast cancer cells suggest that this may be of particular importance for cancer cells.
Collapse
Affiliation(s)
- Gabriella Pinto
- Division of Medicine, University College London, Centre for Nephrology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|
18
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
19
|
Pang YLJ, Abo R, Levine SS, Dedon PC. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res 2014; 42:e170. [PMID: 25348403 PMCID: PMC4267671 DOI: 10.1093/nar/gku945] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Emerging evidence points to roles for tRNA modifications and tRNA abundance in cellular stress responses. While isolated instances of stress-induced tRNA degradation have been reported, we sought to assess the effects of stress on tRNA levels at a systems level. To this end, we developed a next-generation sequencing method that exploits the paucity of ribonucleoside modifications at the 3′-end of tRNAs to quantify changes in all cellular tRNA molecules. Application of this tRNA-seq method to Saccharomyces cerevisiae identified all 76 expressed unique tRNA species out of 295 coded in the yeast genome, including all isoacceptor variants, with highly precise relative (fold-change) quantification of tRNAs. In studies of stress-induced changes in tRNA levels, we found that oxidation (H2O2) and alkylation (methylmethane sulfonate, MMS) stresses induced nearly identical patterns of up- and down-regulation for 58 tRNAs. However, 18 tRNAs showed opposing changes for the stresses, which parallels our observation of signature reprogramming of tRNA modifications caused by H2O2 and MMS. Further, stress-induced degradation was limited to only a small proportion of a few tRNA species. With tRNA-seq applicable to any organism, these results suggest that translational control of stress response involves a contribution from tRNA abundance.
Collapse
Affiliation(s)
- Yan Ling Joy Pang
- Department of Biological Engineering and Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ryan Abo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter C Dedon
- Department of Biological Engineering and Infectious Diseases Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Huang HY, Hopper AK. Separate responses of karyopherins to glucose and amino acid availability regulate nucleocytoplasmic transport. Mol Biol Cell 2014; 25:2840-52. [PMID: 25057022 PMCID: PMC4161518 DOI: 10.1091/mbc.e14-04-0948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The subcellular distribution of yeast β-importins inverts upon acute glucose deprivation, likely due to collapse of the RanGTP nuclear–cytoplasmic gradient. This redistribution of β-importins likely results in rapid widespread alterations of the traffic of macromolecules between the nucleus and cytoplasm in response to glucose limitation. The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210 Graduate Program in Molecular, Cellular, and Developmental Biology, Ohio State University, Columbus, OH 43210
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, OH 43210
| |
Collapse
|
21
|
Kimura M, Imamoto N. Biological significance of the importin-β family-dependent nucleocytoplasmic transport pathways. Traffic 2014; 15:727-48. [PMID: 24766099 DOI: 10.1111/tra.12174] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
Importin-β family proteins (Imp-βs) are nucleocytoplasmic transport receptors (NTRs) that import and export proteins and RNAs through the nuclear pores. The family consists of 14-20 members depending on the biological species, and each member transports a specific group of cargoes. Thus, the Imp-βs mediate multiple, parallel transport pathways that can be regulated separately. In fact, the spatiotemporally differential expressions and the functional regulations of Imp-βs have been reported. Additionally, the biological significance of each pathway has been characterized by linking the function of a member of Imp-βs to a cellular consequence. Connecting these concepts, the regulation of the transport pathways conceivably induces alterations in the cellular physiological states. However, few studies have linked the regulation of an importin-β family NTR to an induced cellular response and the corresponding cargoes, despite the significance of this linkage in comprehending the biological relevance of the transport pathways. This review of recent reports on the regulation and biological functions of the Imp-βs highlights the significance of the transport pathways in physiological contexts and points out the possibility that the identification of yet unknown specific cargoes will reinforce the importance of transport regulation.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, RIKEN, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
22
|
Pinto G, Alhaiek AAM, Amadi S, Qattan AT, Crawford M, Radulovic M, Godovac-Zimmermann J. Systematic nucleo-cytoplasmic trafficking of proteins following exposure of MCF7 breast cancer cells to estradiol. J Proteome Res 2014; 13:1112-27. [PMID: 24422525 DOI: 10.1021/pr4012359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have used a proteomics subcellular spatial razor approach to look at changes in total protein abundance and in protein distribution between the nucleus and cytoplasm following exposure of MCF7 breast cancer cells to estradiol. The dominant response of MCF7 cells to estrogen stimulation involves dynamic changes in protein subcellular spatial distribution rather than changes in total protein abundance. Of the 3604 quantitatively monitored proteins, only about 2% show substantial changes in total abundance (>2-fold), whereas about 20% of the proteins show substantial changes in local abundance and/or redistribution of their subcellular location, with up to 16-fold changes in their local concentration in the nucleus or the cytoplasm. We propose that dynamic redistribution of the subcellular location of multiple proteins in response to stimuli is a fundamental characteristic of cells and suggest that perturbation of cellular spatial control may be an important feature of cancer.
Collapse
Affiliation(s)
- Gabriella Pinto
- Proteomics and Molecular Cell Dynamics, Center for Nephrology, Division of Medicine, School of Life and Medical Sciences, University College London , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
23
|
Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2013; 110:21042-7. [PMID: 24297920 DOI: 10.1073/pnas.1316579110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, transfer RNAs (tRNAs) are transcribed in the nucleus yet function in the cytoplasm; thus, tRNA movement within the cell was believed to be unidirectional--from the nucleus to the cytoplasm. It is now known that mature tRNAs also move in a retrograde direction from the cytoplasm to the nucleus via retrograde tRNA nuclear import, a process that is conserved from yeast to vertebrates. The biological significance of this tRNA nuclear import is not entirely clear. We hypothesized that retrograde tRNA nuclear import might function in proofreading tRNAs to ensure that only proper tRNAs reside in the cytoplasm and interact with the translational machinery. Here we identify two major types of aberrant tRNAs in yeast: a 5', 3' end-extended, spliced tRNA and hypomodified tRNAs. We show that both types of aberrant tRNAs accumulate in mutant cells that are defective in tRNA nuclear traffic, suggesting that they are normally imported into the nucleus and are repaired or degraded. The retrograde pathway functions in parallel with the cytoplasmic rapid tRNA decay pathway previously demonstrated to monitor tRNA quality, and cells are not viable if they lack both pathways. Our data support the hypothesis that the retrograde process provides a newly discovered level of tRNA quality control as a pathway that monitors both end processing of pre-tRNAs and the modification state of mature tRNAs.
Collapse
|