1
|
Evstyukhina TA, Alekseeva EA, Peshekhonov VT, Skobeleva II, Fedorov DV, Korolev VG. The Role of Chromatin Assembly Factors in Induced Mutagenesis at Low Levels of DNA Damage. Genes (Basel) 2023; 14:1242. [PMID: 37372422 DOI: 10.3390/genes14061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The problem of low-dose irradiation has been discussed in the scientific literature for several decades, but it is impossible to come to a generally accepted conclusion about the presence of any specific features of low-dose irradiation in contrast to acute irradiation. We were interested in the effect of low doses of UV radiation on the physiological processes, including repair processes in cells of the yeast Saccharomyces cerevisiae, in contrast to high doses of radiation. Cells utilize excision repair and DNA damage tolerance pathways without significant delay of the cell cycle to address low levels of DNA damage (such as spontaneous base lesions). For genotoxic agents, there is a dose threshold below which checkpoint activation is minimal despite the measurable activity of the DNA repair pathways. Here we report that at ultra-low levels of DNA damage, the role of the error-free branch of post-replicative repair in protection against induced mutagenesis is key. However, with an increase in the levels of DNA damage, the role of the error-free repair branch is rapidly decreasing. We demonstrate that with an increase in the amount of DNA damage from ultra-small to high, asf1Δ-specific mutagenesis decreases catastrophically. A similar dependence is observed for mutants of gene-encoding subunits of the NuB4 complex. Elevated levels of dNTPs caused by the inactivation of the SML1 gene are responsible for high spontaneous reparative mutagenesis. The Rad53 kinase plays a key role in reparative UV mutagenesis at high doses, as well as in spontaneous repair mutagenesis at ultra-low DNA damage levels.
Collapse
Affiliation(s)
- Tatiyana A Evstyukhina
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Elena A Alekseeva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Vyacheslav T Peshekhonov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| | - Irina I Skobeleva
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Dmitriy V Fedorov
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
| | - Vladimir G Korolev
- Chromatin and Repair Genetic Research Group of the Laboratory of Experimental Genetics, Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", 188300 Gatchina, Russia
- Laboratory of Molecular Genetic and Recombination Technologies, Kurchatov Genome Center-Petersburg Nuclear Physics Institute, 188300 Gatchina, Russia
| |
Collapse
|
2
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
3
|
TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity. Proc Natl Acad Sci U S A 2017; 114:1039-1044. [PMID: 28096404 DOI: 10.1073/pnas.1615093114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Maintaining cellular homeostasis under changing nutrient conditions is essential for the growth and development of all organisms. The mechanisms that maintain homeostasis upon loss of nutrient supply are not well understood. By mapping the SUMO proteome in Saccharomyces cerevisiae, we discovered a specific set of differentially sumoylated proteins mainly involved in transcription. RNA polymerase III (RNAPIII) components, including Rpc53, Rpc82, and Ret1, are particularly prominent nutrient-dependent SUMO targets. Nitrogen starvation, as well as direct inhibition of the master nutrient response regulator target of rapamycin complex 1 (TORC1), results in rapid desumoylation of these proteins, which is reflected by loss of SUMO at tRNA genes. TORC1-dependent sumoylation of Rpc82 in particular is required for robust tRNA transcription. Mechanistically, sumoylation of Rpc82 is important for assembly of the RNAPIII holoenzyme and recruitment of Rpc82 to tRNA genes. In conclusion, our data show that TORC1-dependent sumoylation of Rpc82 bolsters the transcriptional capacity of RNAPIII under optimal growth conditions.
Collapse
|
4
|
Yan ZF, Lin P, Tian FH, Kook M, Yi TH, Li CT. Molecular characteristics and extracellular expression analysis of farnesyl pyrophosphate synthetase gene in Inonotus obliquus. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0348-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang C, Chang JF, Yan H, Wang DL, Liu Y, Jing Y, Zhang M, Men YL, Lu D, Yang XM, Chen S, Sun FL. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis. Oncotarget 2016; 6:29599-613. [PMID: 26336826 PMCID: PMC4745749 DOI: 10.18632/oncotarget.5011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/12/2015] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.
Collapse
Affiliation(s)
- Chen Wang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,UN School of Environmental Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Da-Liang Wang
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yan Liu
- Institute of Epigenetics and Cancer Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuanya Jing
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Meng Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Yu-Long Men
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Dongdong Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Xiao-Mei Yang
- School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| | - Su Chen
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China.,Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei, 064200, China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200120/200092, China.,School of Life Sciences and Technology, Tongji University, Shanghai, 200120/200092, China
| |
Collapse
|
6
|
Abstract
The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which Sumo can regulate transcription. Although many individual substrates have been described that are sumoylated during the Sumo stress response, an emerging concept is modification of entire complexes or pathways by Sumo. This review focuses on the function and regulation of Sumo during the stress response.
Collapse
Affiliation(s)
- Jorrit M Enserink
- Institute for Microbiology, Oslo University Hospital, Sognsvannsveien 20N-0027, Oslo, Norway
| |
Collapse
|
7
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
8
|
Chymkowitch P, Nguéa AP, Aanes H, Koehler CJ, Thiede B, Lorenz S, Meza-Zepeda LA, Klungland A, Enserink JM. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 2015; 25:897-906. [PMID: 25800674 PMCID: PMC4448685 DOI: 10.1101/gr.185793.114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/17/2015] [Indexed: 01/20/2023]
Abstract
Transcription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs). Genome-wide expression analysis showed that Sumo positively regulates their transcription. We also discovered that the Sumo consensus motif at RPG promoters is identical to the DNA binding motif of the transcription factor Rap1. We demonstrate that Rap1 is a molecular target of Sumo and that sumoylation of Rap1 is important for cell viability. Furthermore, Rap1 sumoylation promotes recruitment of the basal transcription machinery, and sumoylation of Rap1 cooperates with the target of rapamycin kinase complex 1 (TORC1) pathway to promote RPG transcription. Strikingly, our data reveal that sumoylation of Rap1 functions in a homeostatic feedback loop that sustains RPG transcription during translational stress. Taken together, Sumo regulates the cellular translational capacity by promoting transcription of tRNA genes and RPGs.
Collapse
Affiliation(s)
- Pierre Chymkowitch
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Aurélie P Nguéa
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Håvard Aanes
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | | | - Bernd Thiede
- The Biotechnology Centre of Oslo, University of Oslo, 0349 Oslo, Norway
| | - Susanne Lorenz
- Department of Tumor Biology, The Norwegian Radium Hospital, and Genomics Core Facility, Oslo University Hospital, NO-0310 Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Tumor Biology, The Norwegian Radium Hospital, and Genomics Core Facility, Oslo University Hospital, NO-0310 Oslo, Norway
| | - Arne Klungland
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| | - Jorrit M Enserink
- Institute of Microbiology, Clinic for Diagnostics and Intervention, Oslo University Hospital, N-0027 Oslo, Norway; University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
9
|
Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response. G3-GENES GENOMES GENETICS 2014; 4:1373-84. [PMID: 24875629 PMCID: PMC4132169 DOI: 10.1534/g3.114.011346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizosaccharomyces pombe Rad8 is a conserved protein homologous to S. cerevisiaeRad5 and human HLTF that is required for error-free postreplication repair by contributing to polyubiquitylation of PCNA. It has three conserved domains: an E3 ubiquitin ligase motif, a SNF2-family helicase domain, and a family-specific HIRAN domain. Data from humans and budding yeast suggest that helicase activity contributes to replication fork regression and template switching for fork restart. We constructed specific mutations in the three conserved domains and found that both the E3 ligase and HIRAN domains are required for proper response to DNA damage caused by a variety of agents. In contrast, mutations in the helicase domain show no phenotypes in a wild-type background. To determine whether Rad8 functionally overlaps with other helicases, we compared the phenotypes of single and double mutants with a panel of 23 nonessential helicase mutants, which we categorized into five phenotypic groups. Synthetic phenotypes with rad8∆ were observed for mutants affecting recombination, and a rad8 helicase mutation affected the HU response of a subset of recombination mutants. Our data suggest that the S. pombe Rad8 ubiquitin ligase activity is important for response to a variety of damaging agents, while the helicase domain plays only a minor role in modulating recombination-based fork restart during specific forms of replication stress.
Collapse
|
10
|
Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD. A saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 2014; 34:1521-34. [PMID: 24550002 PMCID: PMC3993591 DOI: 10.1128/mcb.00960-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/23/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here, we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates, and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates when combined with mutations affecting other DNA metabolism pathways, including homologous recombination (HR), sister chromatid HR, resolution of branched HR intermediates, postreplication repair, sumoylation in response to DNA damage, and chromatin assembly. In some cases, a mutation in RAD51 or TOP1 suppressed the increased GCR rates and/or the growth defects of rnh203Δ double mutants. This analysis suggests that cells with RNase H2 defects have increased levels of DNA damage and depend on other pathways of DNA metabolism to overcome the deleterious effects of this DNA damage.
Collapse
Affiliation(s)
- Stephanie Allen-Soltero
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Sandra L. Martinez
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, USA
- Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Zimmermann C, Santos A, Gable K, Epstein S, Gururaj C, Chymkowitch P, Pultz D, Rødkær SV, Clay L, Bjørås M, Barral Y, Chang A, Færgeman NJ, Dunn TM, Riezman H, Enserink JM. TORC1 inhibits GSK3-mediated Elo2 phosphorylation to regulate very long chain fatty acid synthesis and autophagy. Cell Rep 2013; 5:1036-46. [PMID: 24239358 DOI: 10.1016/j.celrep.2013.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/12/2013] [Accepted: 10/11/2013] [Indexed: 10/26/2022] Open
Abstract
Very long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation. Elo2 phosphorylation is induced upon inhibition of TORC1 and requires GSK3. Expression of nonphosphorylatable Elo2 profoundly alters the ceramide spectrum, reflecting aberrant VLCFA synthesis. Furthermore, VLCFA depletion results in constitutive activation of autophagy, which requires sphingoid base phosphorylation. This constitutive activation of autophagy diminishes cell survival, indicating that VLCFAs serve to dampen the amplitude of autophagy. Together, our data reveal a function for TORC1 and GSK3 in the regulation of VLCFA synthesis that has important implications for autophagy and cell homeostasis.
Collapse
Affiliation(s)
- Christine Zimmermann
- Department of Microbiology, Oslo University Hospital, and University of Oslo, 0027 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Albuquerque CP, Wang G, Lee NS, Kolodner RD, Putnam CD, Zhou H. Distinct SUMO ligases cooperate with Esc2 and Slx5 to suppress duplication-mediated genome rearrangements. PLoS Genet 2013; 9:e1003670. [PMID: 23935535 PMCID: PMC3731205 DOI: 10.1371/journal.pgen.1003670] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Suppression of duplication-mediated gross chromosomal rearrangements (GCRs) is essential to maintain genome integrity in eukaryotes. Here we report that SUMO ligase Mms21 has a strong role in suppressing GCRs in Saccharomyces cerevisiae, while Siz1 and Siz2 have weaker and partially redundant roles. Understanding the functions of these enzymes has been hampered by a paucity of knowledge of their substrate specificity in vivo. Using a new quantitative SUMO-proteomics technology, we found that Siz1 and Siz2 redundantly control the abundances of most sumoylated substrates, while Mms21 more specifically regulates sumoylation of RNA polymerase-I and the SMC-family proteins. Interestingly, Esc2, a SUMO-like domain-containing protein, specifically promotes the accumulation of sumoylated Mms21-specific substrates and functions with Mms21 to suppress GCRs. On the other hand, the Slx5-Slx8 complex, a SUMO-targeted ubiquitin ligase, suppresses the accumulation of sumoylated Mms21-specific substrates. Thus, distinct SUMO ligases work in concert with Esc2 and Slx5-Slx8 to control substrate specificity and sumoylation homeostasis to prevent GCRs.
Collapse
Affiliation(s)
- Claudio P. Albuquerque
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Guoliang Wang
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Nancy S. Lee
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- Moores-UCSD Cancer Center, University of California School of Medicine, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
14
|
Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. Rad5-dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 2012; 287:26563-75. [PMID: 22696213 DOI: 10.1074/jbc.m112.369918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interstrand cross-links (ICLs) covalently link complementary DNA strands, block DNA replication, and transcription and must be removed to allow cell survival. Several pathways, including the Fanconi anemia (FA) pathway, can faithfully repair ICLs and maintain genomic integrity; however, the precise mechanisms of most ICL repair processes remain enigmatic. In this study we genetically characterized a conserved yeast ICL repair pathway composed of the yeast homologs (Mph1, Chl1, Mhf1, Mhf2) of four FA proteins (FANCM, FANCJ, MHF1, MHF2). This pathway is epistatic with Rad5-mediated DNA damage bypass and distinct from the ICL repair pathways mediated by Rad18 and Pso2. In addition, consistent with the FANCM role in stabilizing ICL-stalled replication forks, we present evidence that Mph1 prevents ICL-stalled replication forks from collapsing into double-strand breaks. This unique repair function of Mph1 is specific for ICL damage and does not extend to other types of damage. These studies reveal the functional conservation of the FA pathway and validate the yeast model for future studies to further elucidate the mechanism of the FA pathway.
Collapse
Affiliation(s)
- Danielle L Daee
- Genome Instability Section, Genetics, and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lehmann AR. Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett 2011; 585:2772-9. [PMID: 21704031 DOI: 10.1016/j.febslet.2011.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
Abstract
The cell uses specialised Y-family DNA polymerases or damage avoidance mechanisms to replicate past damaged sites in DNA. These processes are under complex regulatory systems, which employ different types of post-translational modification. All the Y-family polymerases have ubiquitin binding domains that bind to mono-ubiquitinated PCNA to effect the switching from replicative to Y-family polymerase. Ubiquitination and de-ubiquitination of PCNA are tightly regulated. There is also evidence for another as yet unidentified ubiquitinated protein being involved in recruitment of Y-family polymerases to chromatin. Poly-ubiquitination of PCNA stimulates damage avoidance, and, at least in yeast, PCNA is SUMOylated to prevent unwanted recombination events at the replication fork. The Y-family polymerases themselves can be ubiquitinated and, in the case of DNA polymerase η, this results in the polymerase being excluded from chromatin.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
16
|
Chan JE, Kolodner RD. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 2011; 7:e1002089. [PMID: 21637792 PMCID: PMC3102749 DOI: 10.1371/journal.pgen.1002089] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 04/02/2011] [Indexed: 11/19/2022] Open
Abstract
Ty elements are high copy number, dispersed repeated sequences in the Saccharomyces cerevisiae genome known to mediate gross chromosomal rearrangements (GCRs). Here we found that introduction of Ty912, a previously identified Ty1 element, onto the non-essential terminal region of the left arm of chromosome V led to a 380-fold increase in the rate of accumulating GCRs in a wild-type strain. A survey of 48 different mutations identified those that either increased or decreased the rate of Ty-mediated GCRs and demonstrated that suppression of Ty-mediated GCRs differs from that of both low copy repeat sequence- and single copy sequence-mediated GCRs. The majority of the Ty912-mediated GCRs observed were monocentric nonreciprocal translocations mediated by RAD52-dependent homologous recombination (HR) between Ty912 and a Ty element on another chromosome arm. The remaining Ty912-mediated GCRs appeared to involve Ty912-mediated formation of unstable dicentric translocation chromosomes that were resolved by one or more Ty-mediated breakage-fusion-bridge cycles. Overall, the results demonstrate that the Ty912-mediated GCR assay is an excellent model for understanding mechanisms and pathways that suppress genome rearrangements mediated by high copy number repeat sequences, as well as the mechanisms by which such rearrangements occur.
Collapse
Affiliation(s)
- Jason E. Chan
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Moores–UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Departments of Medicine and Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Moores–UCSD Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Institute of Genomic Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
The Swe1/Wee1 kinase phosphorylates and inhibits Cdk1-Clb2 and is a major mitotic switch. Swe1 levels are controlled by ubiquitin mediated degradation, which is regulated by interactions with various mitotic kinases. We have recently reported that Swe1 levels are capable of sensing the progress of the cell cycle by measuring the levels of Cdk1-Clb2, Cdc5 and Hsl1. We report here a novel mechanism that regulates the levels of Swe1. We show that S.cerevisiae Swe1 is modified by Smt3/SUMO on residue K594 in a Cdk1 dependant manner. A degradation of the swe1K594R mutant that cannot be modified by Smt3 is considerably delayed in comparison to wild type Swe1. Swe1K594R cells express elevated levels of Swe1 protein and demonstrate higher levels of Swe1 activity as manifested by Cdk1-Y19 phosphorylation. Interestingly this mutant is not targeted, like wild type Swe1, to the bud neck where Swe1 degradation takes place. We show that Swe1 is SUMOylated by the Siz1 SUMO ligase, and consequently siz1Δ cells express elevated levels of Swe1 protein and activity. Finally we show that swe1K594R cells are sensitive to osmotic stress, which is in line with their compromised regulation of Swe1 degradation.
Collapse
Affiliation(s)
- Kobi J. Simpson-Lavy
- The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Brandeis
- The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
18
|
Abstract
Okazaki fragment processing is an integral part of DNA replication. For a long time, we assumed that the maturation of these small RNA-primed DNA fragments did not necessarily have to occur during S phase, but could be postponed to late in S phase after the bulk of DNA synthesis had been completed. This view was primarily based on the arrest phenotype of temperature-sensitive DNA ligase I mutants in yeast, which accumulated with an almost fully duplicated set of chromosomes. However, many temperature-sensitive alleles can be leaky and the re-evaluation of DNA ligase I-deficient cells has offered new and unexpected insights into how cells keep track of lagging strand synthesis. It turns out that if Okazaki fragment joining goes awry, cells have their own alarm system in the form of ubiquitin that is conjugated to the replication clamp PCNA. Although this modification results in mono- and poly-ubiquitination of PCNA, it is genetically distinct from the known post-replicative repair mark at lysine 164. In this Extra View, we discuss the possibility that eukaryotic cells utilize different enzymatic pathways and ubiquitin attachment sites on PCNA to alert the replication machinery to the accumulation of single-stranded gaps or nicks behind the fork.
Collapse
Affiliation(s)
- Sapna Das-Bradoo
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN, USA
| | | | | |
Collapse
|
19
|
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 2010; 11:338. [PMID: 20507633 PMCID: PMC2895629 DOI: 10.1186/1471-2164-11-338] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/28/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
Collapse
Affiliation(s)
- Li Q Wei
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
20
|
Putnam CD, Hayes TK, Kolodner RD. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 2010; 6:e1000933. [PMID: 20463880 PMCID: PMC2865514 DOI: 10.1371/journal.pgen.1000933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 03/31/2010] [Indexed: 11/18/2022] Open
Abstract
RAD6 is known to suppress duplication-mediated gross chromosomal rearrangements (GCRs) but not single-copy sequence mediated GCRs. Here, we found that the RAD6- and RAD18-dependent post-replication repair (PRR) and the RAD5-, MMS2-, UBC13-dependent error-free PRR branch acted in concert with the replication stress checkpoint to suppress duplication-mediated GCRs formed by homologous recombination (HR). The Rad5 helicase activity, but not its RING finger, was required to prevent duplication-mediated GCRs, although the function of Rad5 remained dependent upon modification of PCNA at Lys164. The SRS2, SGS1, and HCS1 encoded helicases appeared to interact with Rad5, and epistasis analysis suggested that Srs2 and Hcs1 act upstream of Rad5. In contrast, Sgs1 likely functions downstream of Rad5, potentially by resolving DNA structures formed by Rad5. Our analysis is consistent with models in which PRR prevents replication damage from becoming double strand breaks (DSBs) and/or regulates the activity of HR on DSBs. Genome instability is a hallmark of many cancers and underlies many inherited disorders that cause a predisposition to cancer. The human genome has many different types of duplicated sequences that can lead to genome instability by recombination-mediated pathways. We previously discovered that duplication-mediated chromosomal rearrangements are suppressed by a number of pathways. Some of these pathways were specific to rearrangements between genomic duplications. Here, we have performed a detailed analysis of pathways dependent upon RAD6, and have discovered that the error-free branch of post-replication repair (PRR) either is as an alternative to homologous recombination or prevents the generation of homologous recombination intermediates. Both of these functions could lead to genomic instability in the context of genomes containing substantial amounts of duplications. The extreme sensitivity of our assay to post-replication repair defects reveals substantial complexity in the interaction of PRR defects, suggesting the presence of many alternative PRR pathways. Together, the results emphasize the importance for appropriately balancing different repair pathways to maintain global genomic stability and highlight a number of defects that could underlie genome instabilities in some cancers.
Collapse
Affiliation(s)
- Christopher D. Putnam
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Tikvah K. Hayes
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
- Cancer Center, University of California San Diego School of Medicine, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|