1
|
Karlström V, Sagredo E, Planells J, Welinder C, Jungfleisch J, Barrera-Conde A, Engfors L, Daniel C, Gebauer F, Visa N, Öhman M. ADAR3 modulates neuronal differentiation and regulates mRNA stability and translation. Nucleic Acids Res 2024; 52:12021-12038. [PMID: 39217468 PMCID: PMC11514483 DOI: 10.1093/nar/gkae753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.
Collapse
Affiliation(s)
- Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Charlotte Welinder
- Mass Spectrometry, Clinical Sciences, Lund University, Lund SE-221 84, Sweden
| | - Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Andrea Barrera-Conde
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
| | - Linus Engfors
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, ES-08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), ES-08003 Barcelona, Spain
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm SE-106 91, Sweden
| |
Collapse
|
2
|
Lin WH, Opoc FG, Liao CW, Roy K, Steinmetz L, Leu JY. Histone deacetylase Hos2 regulates protein expression noise by potentially modulating the protein translation machinery. Nucleic Acids Res 2024; 52:7556-7571. [PMID: 38783136 PMCID: PMC11260488 DOI: 10.1093/nar/gkae432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Non-genetic variations derived from expression noise at transcript or protein levels can result in cell-to-cell heterogeneity within an isogenic population. Although cells have developed strategies to reduce noise in some cellular functions, this heterogeneity can also facilitate varying levels of regulation and provide evolutionary benefits in specific environments. Despite several general characteristics of cellular noise having been revealed, the detailed molecular pathways underlying noise regulation remain elusive. Here, we established a dual-fluorescent reporter system in Saccharomyces cerevisiae and performed experimental evolution to search for mutations that increase expression noise. By analyzing evolved cells using bulk segregant analysis coupled with whole-genome sequencing, we identified the histone deacetylase Hos2 as a negative noise regulator. A hos2 mutant down-regulated multiple ribosomal protein genes and exhibited partially compromised protein translation, indicating that Hos2 may regulate protein expression noise by modulating the translation machinery. Treating cells with translation inhibitors or introducing mutations into several Hos2-regulated ribosomal protein genes-RPS9A, RPS28B and RPL42A-enhanced protein expression noise. Our study provides an effective strategy for identifying noise regulators and also sheds light on how cells regulate non-genetic variation through protein translation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Florica J G Opoc
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Wei Liao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Kevin R Roy
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg 69117, Germany
| | - Jun-Yi Leu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Goh AR, Kim YN, Oh JH, Choi SK. A Novel Inhibitor of Translation Initiation Factor eIF5B in Saccharomyces cerevisiae. J Microbiol Biotechnol 2024; 34:1348-1355. [PMID: 38755008 PMCID: PMC11239407 DOI: 10.4014/jmb.2404.04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The eukaryotic translation initiation factor eIF5B is a bacterial IF2 ortholog that plays an important role in ribosome joining and stabilization of the initiator tRNA on the AUG start codon during the initiation of translation. We identified the fluorophenyl oxazole derivative 2,2-dibromo-1-(2-(4-fluorophenyl)benzo[d]oxazol-5-yl)ethanone quinolinol as an inhibitor of fungal protein synthesis using an in vitro translation assay in a fungal system. Mutants resistant to this compound were isolated in Saccharomyces cerevisiae and were demonstrated to contain amino acid substitutions in eIF5B that conferred the resistance. These results suggest that eIF5B is a target of potential antifungal compound and that mutation of eIF5B can confer resistance. Subsequent identification of 16 other mutants revealed that primary mutations clustered mainly on domain 2 of eIF5B and secondarily mainly on domain 4. Domain 2 has been implicated in the interaction with the small ribosomal subunit during initiation of translation. The tested translation inhibitor could act by weakening the functional contact between eIF5B and the ribosome complex. This data provides the basis for the development of a new family of antifungals.
Collapse
Affiliation(s)
- Ah-Ra Goh
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Yi-Na Kim
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Jae Hyeun Oh
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Sang Ki Choi
- Department of Biomedical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
4
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Coureux PD, Mechulam Y, Schmitt E. Structural insights into the evolution of late steps of translation initiation in the three domains of life. Biochimie 2024; 217:31-41. [PMID: 36773835 DOI: 10.1016/j.biochi.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. These two factors are also orthologous to the bacterial IF2 and IF1 proteins, respectively. Recent cryo-EM studies showed how e/aIF5B and e/aIF1A cooperate on the small ribosomal subunit to favor the binding of the large ribosomal subunit and the formation of a ribosome competent for elongation. In this review, pioneering studies and recent biochemical and structural results providing new insights into the role of a/eIF5B in archaea and eukaryotes will be presented. Recent structures will also be compared to orthologous bacterial initiation complexes to highlight domain-specific features and the evolution of initiation mechanisms.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
5
|
Kazan R, Bourgeois G, Lazennec-Schurdevin C, Larquet E, Mechulam Y, Coureux PD, Schmitt E. Role of aIF5B in archaeal translation initiation. Nucleic Acids Res 2022; 50:6532-6548. [PMID: 35694843 PMCID: PMC9226500 DOI: 10.1093/nar/gkac490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023] Open
Abstract
In eukaryotes and in archaea late steps of translation initiation involve the two initiation factors e/aIF5B and e/aIF1A. In eukaryotes, the role of eIF5B in ribosomal subunit joining is established and structural data showing eIF5B bound to the full ribosome were obtained. To achieve its function, eIF5B collaborates with eIF1A. However, structural data illustrating how these two factors interact on the small ribosomal subunit have long been awaited. The role of the archaeal counterparts, aIF5B and aIF1A, remains to be extensively addressed. Here, we study the late steps of Pyrococcus abyssi translation initiation. Using in vitro reconstituted initiation complexes and light scattering, we show that aIF5B bound to GTP accelerates subunit joining without the need for GTP hydrolysis. We report the crystallographic structures of aIF5B bound to GDP and GTP and analyze domain movements associated to these two nucleotide states. Finally, we present the cryo-EM structure of an initiation complex containing 30S bound to mRNA, Met-tRNAiMet, aIF5B and aIF1A at 2.7 Å resolution. Structural data shows how archaeal 5B and 1A factors cooperate to induce a conformation of the initiator tRNA favorable to subunit joining. Archaeal and eukaryotic features of late steps of translation initiation are discussed.
Collapse
Affiliation(s)
- Ramy Kazan
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée, PMC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| |
Collapse
|
6
|
Wang J, Wang J, Shin BS, Kim JR, Dever TE, Puglisi JD, Fernández IS. Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex. Nat Commun 2020; 11:5003. [PMID: 33024099 PMCID: PMC7538418 DOI: 10.1038/s41467-020-18829-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Recognition of a start codon by the initiator aminoacyl-tRNA determines the reading frame of messenger RNA (mRNA) translation by the ribosome. In eukaryotes, the GTPase eIF5B collaborates in the correct positioning of the initiator Met-tRNAiMet on the ribosome in the later stages of translation initiation, gating entrance into elongation. Leveraging the long residence time of eIF5B on the ribosome recently identified by single-molecule fluorescence measurements, we determine the cryoEM structure of the naturally long-lived ribosome complex with eIF5B and Met-tRNAiMet immediately before transition into elongation. The structure uncovers an unexpected, eukaryotic specific and dynamic fidelity checkpoint implemented by eIF5B in concert with components of the large ribosomal subunit.
Collapse
Affiliation(s)
- Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA.
| |
Collapse
|
7
|
Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation. Proc Natl Acad Sci U S A 2020; 117:1429-1437. [PMID: 31900355 PMCID: PMC6983393 DOI: 10.1073/pnas.1916436117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translation is a key regulatory step in the control of gene expression. The first stage of translation, initiation, establishes the foundation for the sequential synthesis of a protein. In eukaryotes, 2 GTP-regulated checkpoints ensure the efficiency and fidelity of translation initiation. The GTPase eIF5B is responsible for the correct functioning of the second checkpoint. Molecular interactions of eIF5B with other correctly assembled components on the ribosome lead to GTP hydrolysis that allows the machinery of protein production to transition from initiation into elongation. Here, we show how a highly conserved stretch of residues in eIF5B, identified using electron cryomicroscopy, coordinates the gating into elongation, underscoring the importance of modular architecture in translation factors to sense and communicate ribosomal states. Translation initiation controls protein synthesis by regulating the delivery of the first aminoacyl-tRNA to messenger RNAs (mRNAs). In eukaryotes, initiation is sophisticated, requiring dozens of protein factors and 2 GTP-regulated steps. The GTPase eIF5B gates progression to elongation during the second GTP-regulated step. Using electron cryomicroscopy (cryo-EM), we imaged an in vitro initiation reaction which is set up with purified yeast components and designed to stall with eIF5B and a nonhydrolyzable GTP analog. A high-resolution reconstruction of a “dead-end” intermediate at 3.6 Å allowed us to visualize eIF5B in its ribosome-bound conformation. We identified a stretch of residues in eIF5B, located close to the γ-phosphate of GTP and centered around the universally conserved tyrosine 837 (Saccharomyces cerevisiae numbering), that contacts the catalytic histidine of eIF5B (H480). Site-directed mutagenesis confirmed the essential role that these residues play in regulating ribosome binding, GTP hydrolysis, and translation initiation both in vitro and in vivo. Our results illustrate how eIF5B transmits the presence of a properly delivered initiator aminoacyl-tRNA at the P site to the distant GTPase center through interdomain communications and underscore the importance of the multidomain architecture in translation factors to sense and communicate ribosomal states.
Collapse
|
8
|
Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Genetics 2017; 203:65-107. [PMID: 27183566 DOI: 10.1534/genetics.115.186221] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.
Collapse
|
9
|
Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat Struct Mol Biol 2014; 21:721-7. [PMID: 25064512 DOI: 10.1038/nsmb.2859] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
The universally conserved eukaryotic initiation factor (eIF) 5B, a translational GTPase, is essential for canonical translation initiation. It is also required for initiation facilitated by the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) RNA. eIF5B promotes joining of 60S ribosomal subunits to 40S ribosomal subunits bound by initiator tRNA (Met-tRNAi(Met)). However, the exact molecular mechanism by which eIF5B acts has not been established. Here we present cryo-EM reconstructions of the mammalian 80S-HCV-IRES-Met-tRNAi(Met)-eIF5B-GMPPNP complex. We obtained two substates distinguished by the rotational state of the ribosomal subunits and the configuration of initiator tRNA in the peptidyl (P) site. Accordingly, a combination of conformational changes in the 80S ribosome and in initiator tRNA facilitates binding of the Met-tRNAi(Met) to the 60S P site and redefines the role of eIF5B as a tRNA-reorientation factor.
Collapse
|
10
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
11
|
Fernández IS, Bai XC, Hussain T, Kelley AC, Lorsch JR, Ramakrishnan V, Scheres SH. Molecular architecture of a eukaryotic translational initiation complex. Science 2013; 342:1240585. [PMID: 24200810 PMCID: PMC3836175 DOI: 10.1126/science.1240585] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The last step in eukaryotic translational initiation involves the joining of the large and small subunits of the ribosome, with initiator transfer RNA (Met-tRNA(i)(Met)) positioned over the start codon of messenger RNA in the P site. This step is catalyzed by initiation factor eIF5B. We used recent advances in cryo-electron microscopy (cryo-EM) to determine a structure of the eIF5B initiation complex to 6.6 angstrom resolution from <3% of the population, comprising just 5143 particles. The structure reveals conformational changes in eIF5B, initiator tRNA, and the ribosome that provide insights into the role of eIF5B in translational initiation. The relatively high resolution obtained from such a small fraction of a heterogeneous sample suggests a general approach for characterizing the structure of other dynamic or transient biological complexes.
Collapse
Affiliation(s)
- Israel S. Fernández
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| | - Tanweer Hussain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| | - Ann C. Kelley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| | - Jon R. Lorsch
- Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, USA
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CB2 0QH, United Kingdom
| |
Collapse
|
12
|
Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Mol Cell Biol 2013; 33:3540-8. [PMID: 23836883 DOI: 10.1128/mcb.00771-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In yeast, 25S rRNA makes up the major mass and shape of the 60S ribosomal subunit. During the last step of translation initiation, eukaryotic initiation factor 5B (eIF5B) promotes the 60S subunit joining with the 40S initiation complex (IC). Malfunctional 60S subunits produced by misfolding or mutation may disrupt the 40S IC stalling on the start codon, thereby altering the stringency of initiation. Using several point mutations isolated by random mutagenesis, here we studied the role of 25S rRNA in start codon selection. Three mutations changing bases near the ribosome surface had strong effects, allowing the initiating ribosomes to skip both AUG and non-AUG codons: C2879U and U2408C, altering the A loop and P loop, respectively, of the peptidyl transferase center, and G1735A, mapping near a Eukarya-specific bridge to the 40S subunit. Overexpression of eIF5B specifically suppressed the phenotype caused by C2879U, suggesting functional interaction between eIF5B and the A loop. In vitro reconstitution assays showed that C2879U decreased eIF5B-catalyzed 60S subunit joining with a 40S IC. Thus, eIF5B interaction with the peptidyl transferase center A loop increases the accuracy of initiation by stabilizing the overall conformation of the 80S initiation complex. This study provides an insight into the effect of ribosomal mutations on translation profiles in eukaryotes.
Collapse
|
13
|
Lebaron S, Schneider C, van Nues RW, Swiatkowska A, Walsh D, Böttcher B, Granneman S, Watkins NJ, Tollervey D. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012; 19:744-53. [PMID: 22751017 PMCID: PMC3654374 DOI: 10.1038/nsmb.2308] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
Abstract
In the final steps of yeast ribosome synthesis, immature translation-incompetent pre-40S particles that contain 20S pre-rRNA are converted to the mature translation-competent subunits containing the 18S rRNA. An assay for 20S pre-rRNA cleavage in purified pre-40S particles showed that cleavage by the PIN domain endonuclease Nob1 was strongly stimulated by the GTPase activity of Fun12, the yeast homolog of cytoplasmic translation initiation factor eIF5b. Cleavage of the 20S pre-rRNA was also inhibited in vivo and in vitro by blocking binding of Fun12 to the 25S rRNA through specific methylation of its binding site. Cleavage competent pre-40S particles stably associated with Fun12 and formed 80S complexes with 60S ribosomal subunits. We propose that recruitment of 60S subunits promotes GTP hydrolysis by Fun12, leading to structural rearrangements within the pre-40S particle that bring Nob1 and the pre-rRNA cleavage site together.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Base Sequence
- Binding Sites
- Eukaryotic Initiation Factor-2/chemistry
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nuclear Proteins/metabolism
- Nucleic Acid Conformation
- Protein Conformation
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Simon Lebaron
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Claudia Schneider
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W. van Nues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Agata Swiatkowska
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Dietrich Walsh
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| | - Bettina Böttcher
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
- Institute of Structural and Molecular Biology, The University of Edinburgh, Scotland
| | | | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, The University of Edinburgh, Scotland
| |
Collapse
|
14
|
Fabbretti A, Brandi L, Milón P, Spurio R, Pon CL, Gualerzi CO. Translation initiation without IF2-dependent GTP hydrolysis. Nucleic Acids Res 2012; 40:7946-55. [PMID: 22723375 PMCID: PMC3439930 DOI: 10.1093/nar/gks569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Translation initiation factor IF2 is a guanine nucleotide-binding protein. The free energy change associated with guanosine triphosphate hydrolase (GTPase) activity of these proteins is believed to be the driving force allowing them to perform their functions as molecular switches. We examined role and relevance of IF2 GTPase and demonstrate that an Escherichia coli IF2 mutant bearing a single amino acid substitution (E571K) in its 30S binding domain (IF2-G3) can perform in vitro all individual translation initiation functions of wild type (wt) IF2 and supports faithful messenger RNA translation, despite having a reduced affinity for the 30S subunit and being completely inactive in GTP hydrolysis. Furthermore, the corresponding GTPase-null mutant of Bacillus stearothermophilus (E424K) can replace in vivo wt IF2 allowing an E. coli infB null mutant to grow with almost wt duplication times. Following the E571K (and E424K) mutation, which likely disrupts hydrogen bonding between subdomains G2 and G3, IF2 acquires a guanosine diphosphate (GDP)-like conformation, no longer responsive to GTP binding thereby highlighting the importance of interdomain communication in IF2. Our data underlie the importance of GTP as an IF2 ligand in the early initiation steps and the dispensability of the free energy generated by the IF2 GTPase in the late events of the translation initiation pathway.
Collapse
Affiliation(s)
- Attilio Fabbretti
- Laboratory of Genetics, Department of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Macerata, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Wilson DN, Doudna Cate JH. The structure and function of the eukaryotic ribosome. Cold Spring Harb Perspect Biol 2012; 4:4/5/a011536. [PMID: 22550233 DOI: 10.1101/cshperspect.a011536] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.
Collapse
|
16
|
Initiation factor eIF2γ promotes eIF2-GTP-Met-tRNAi(Met) ternary complex binding to the 40S ribosome. Nat Struct Mol Biol 2011; 18:1227-34. [PMID: 22002225 PMCID: PMC3210414 DOI: 10.1038/nsmb.2133] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/09/2011] [Indexed: 11/24/2022]
Abstract
In contrast to elongation factor EF-Tu, which delivers aminoacyl-tRNAs to the ribosomal A-site, eukaryotic initiation factor eIF2 binds initiator Met-tRNAiMet to the P-site of the 40S ribosomal subunit. We used directed hydroxyl radical probing experiments to map the binding of Saccharomyces cerevisiae eIF2 on the ribosome and on Met-tRNAiMet. Our results identify a key binding-interface between domain III of eIF2γ and 18S rRNA helix h44 on the 40S subunit. Moreover, we showed that eIF2γ primarily contacts the acceptor stem of Met-tRNAiMet. Whereas the analogous domain III of EF-Tu contacts the T-stem of tRNAs, biochemical analyses demonstrated that eIF2γ domain III is important for ribosome, but not Met-tRNAiMet, binding. Thus despite their structural similarity, eIF2 and EF-Tu bind tRNAs in substantially different manners, and we propose that the tRNA-binding domain III of EF-Tu has acquired a new ribosome-binding function in eIF2γ.
Collapse
|
17
|
Bartoli KM, Jakovljevic J, Woolford JL, Saunders WS. Kinesin molecular motor Eg5 functions during polypeptide synthesis. Mol Biol Cell 2011; 22:3420-30. [PMID: 21795388 PMCID: PMC3172266 DOI: 10.1091/mbc.e11-03-0211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The microtubule motor Eg5 is well known for its functions during mitosis. It is shown that during interphase, Eg5 associates with ribosomes and is required for efficient protein synthesis. The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation.
Collapse
Affiliation(s)
- Kristen M Bartoli
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
18
|
Shin BS, Acker MG, Kim JR, Maher KN, Arefin SM, Lorsch JR, Dever TE. Structural integrity of {alpha}-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability. RNA (NEW YORK, N.Y.) 2011; 17:687-696. [PMID: 21335519 PMCID: PMC3062179 DOI: 10.1261/rna.2412511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Translation initiation factor eIF5B promotes GTP-dependent ribosomal subunit joining in the final step of the translation initiation pathway. The protein resembles a chalice with the α-helix H12 forming the stem connecting the GTP-binding domain cup to the domain IV base. Helix H12 has been proposed to function as a rigid lever arm governing domain IV movements in response to nucleotide binding and as a molecular ruler fixing the distance between domain IV and the G domain of the factor. To investigate its function, helix H12 was lengthened or shortened by one or two turns. In addition, six consecutive residues in the helix were substituted by Gly to alter the helical rigidity. Whereas the mutations had minimal impacts on the factor's binding to the ribosome and its GTP binding and hydrolysis activities, shortening the helix by six residues impaired the rate of subunit joining in vitro and both this mutation and the Gly substitution mutation lowered the yield of Met-tRNA(i)(Met) bound to 80S complexes formed in the presence of nonhydrolyzable GTP. Thus, these two mutations, which impair yeast cell growth and enhance ribosome leaky scanning in vivo, impair the rate of formation and stability of the 80S product of subunit joining. These data support the notion that helix H12 functions as a ruler connecting the GTPase center of the ribosome to the P site where Met-tRNA(i)(Met) is bound and that helix H12 rigidity is required to stabilize Met-tRNA(i)(Met) binding.
Collapse
Affiliation(s)
- Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:277-98. [PMID: 21957010 DOI: 10.1002/wrna.52] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 5' mRNA cap structure is essential for efficient gene expression from yeast to human. It plays a critical role in all aspects of the life cycle of an mRNA molecule. Capping occurs co-transcriptionally on the nascent pre-mRNA as it emerges from the RNA exit channel of RNA polymerase II. The cap structure protects mRNAs from degradation by exonucleases and promotes transcription, polyadenylation, splicing, and nuclear export of mRNA and U-rich, capped snRNAs. In addition, the cap structure is required for the optimal translation of the vast majority of cellular mRNAs, and it also plays a prominent role in the expression of eukaryotic, viral, and parasite mRNAs. Cap-binding proteins specifically bind to the cap structure and mediate its functions in the cell. Two major cellular cap-binding proteins have been described to date: eukaryotic translation initiation factor 4E (eIF4E) in the cytoplasm and nuclear cap binding complex (nCBC), a nuclear complex consisting of a cap-binding subunit cap-binding protein 20 (CBP 20) and an auxiliary protein cap-binding protein 80 (CBP 80). nCBC plays an important role in various aspects of nuclear mRNA metabolism such as pre-mRNA splicing and nuclear export, whereas eIF4E acts primarily as a facilitator of mRNA translation. In this review, we highlight recent findings on the role of the cap structure and cap-binding proteins in the regulation of gene expression. We also describe emerging regulatory pathways that control mRNA capping and cap-binding proteins in the cell.
Collapse
Affiliation(s)
- Ivan Topisirovic
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montréal, QC, Canada
| | | | | | | |
Collapse
|
20
|
Caserta E, Ferrara C, Milon P, Fabbretti A, Rocchetti A, Tomsic J, Pon CL, Gualerzi CO, La Teana A. Ribosomal interaction of Bacillus stearothermophilus translation initiation factor IF2: characterization of the active sites. J Mol Biol 2009; 396:118-29. [PMID: 19917289 DOI: 10.1016/j.jmb.2009.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022]
Abstract
InfB-encoded translation initiation factor IF2 contains a non-conserved N-terminal domain and two conserved domains (G and C) constituted by three (G1, G2 and G3) and two (C1 and C2) sub-domains. Here, we show that: (i) Bacillus stearothermophilus IF2 complements in vivo an Escherichia coli infB null mutation and (ii) the N-domain of B. stearothermophilus IF2, like that of E. coli IF2, provides a strong yet dispensable interaction with 30 S and 50 S subunits in spite of the lack of any size, sequence or structural homology between the N-domains of the two factors. Furthermore, the nature of the B. stearothermophilus IF2 sites involved in establishing the functional interactions with the ribosome was investigated by generating deletion, random and site-directed mutations within sub-domains G2 or G3 of a molecule carrying an H301Y substitution in switch II of the G2 module, which impairs the ribosome-dependent GTPase activity of IF2. By selecting suppressors of the dominant-lethal phenotype caused by the H301Y substitution, three independent mutants impaired in ribosome binding were identified; namely, S387P (in G2) and G420E and E424K (in G3). The functional properties of these mutants and those of the deletion mutants are compatible with the premise that IF2 interacts with 30 S and 50 S subunits via G3 and G2 modules, respectively. However, beyond this generalization, because the mutation in G2 resulted in a functional alteration of G3 and vice versa, our results indicate the existence of extensive "cross-talking" between these two modules, highlighting a harmonic conformational cooperation between G2 and G3 required for a functional interaction between IF2 and the two ribosomal subunits. It is noteworthy that the E424K mutant, which completely lacks GTPase activity, displays IF2 wild-type capacity in supporting initiation of dipeptide formation.
Collapse
Affiliation(s)
- Enrico Caserta
- Laboratory of Genetics, Department of Biology, University of Camerino, 62032 Camerino (MC), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|