1
|
Lu F, Zeng N, Xiao X, Wang X, Gong H, Lei H. Exploring the ceRNA network involving AGAP2-AS1 as a novel biomarker for preeclampsia. Sci Rep 2024; 14:27330. [PMID: 39521940 PMCID: PMC11550820 DOI: 10.1038/s41598-024-79224-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Preeclampsia (PE) is an important research subject in obstetrics. Nevertheless, the underlying mechanisms of PE remain elusive. PE-related expression datasets (GSE96983, GSE96984 and GSE24129) were downloaded from the Gene Expression Omnibus (GEO) database. Firstly, the differentially expressed messenger RNAs (DE-mRNAs), DE-microRNA (DE-miRNAs) and DE-long non-coding RNA (DE-lncRNAs) between PE and control cohorts were identified, and the ceRNA network was constructed. Then candidate hub genes were obtained through five algorithms by the protein-protein intersection (PPI) network of the mRNAs. Further, five hub genes were identified by receiver operating characteristic (ROC) curve and gene expression profiles: DAXX, EFNB1, NCOR2, RBBP4 and SOCS1. The function of 5 hub genes was analyzed and the interaction between drugs and hub genes was predicted. A total of 5 small molecule drugs were predicted, namely benzbromarone, 9,10-phenanthrenequinone, chembl312032, insulin and aldesleukin. AGAP2-AS1 was mainly located in exosome and cytoplasm. Agap2-as1-related regulatory subnetworks were extracted from ceRNA networks which included 41 mRNAs, 2 miRNAs and 1 lncRNA, including the regulated relationship pairs AGAP2-AS1-hsa-miR-497-5p-SRPRB, and AGAP2-AS1-hsa-miR-195-5p-RPL36. In summary, we constructed a competitive endogenous RNA (ceRNA) network to identify five potential biomarkers (DAXX, EFNB1, NCOR2, SOCS1 and RBBP4) of PE. The in-depth analysis of the AGAP2-AS1 regulatory network will help to uncover more important molecules closely related to PE and provide a scientific Reference.
Collapse
Affiliation(s)
- Fan Lu
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Ni Zeng
- Department of Hospital infection and control, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xiang Xiao
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Xingxing Wang
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Han Gong
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China
| | - Houkang Lei
- Department of Obstetrics, Affiliated Hospital of GuiZhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Liu J, Ji Q, Cheng F, Chen D, Geng T, Huang Y, Zhang J, He Y, Song T. The lncRNAs involved in regulating the RIG-I signaling pathway. Front Cell Infect Microbiol 2022; 12:1041682. [PMID: 36439216 PMCID: PMC9682092 DOI: 10.3389/fcimb.2022.1041682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/21/2022] [Indexed: 09/23/2023] Open
Abstract
Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.
Collapse
Affiliation(s)
- Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Tingting Geng
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yueyue Huang
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Huang Y, Su Y, Shen L, Huo Z, Chen C, Sun T, Tian X, Li N, Yang C. A novel IFNbeta-induced long non-coding RNA ZAP-IT1 interrupts Zika virus replication in A549 cells. Virol Sin 2022; 37:904-912. [PMID: 35985476 PMCID: PMC9797370 DOI: 10.1016/j.virs.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/09/2022] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection can cause severe neurological diseases including neonatal microcephaly and Guillain-Barre syndrome. Long noncoding RNAs (lncRNAs) are the by-products of the transcription process, which are considered to affect viral infection. However, it remains largely unexplored whether host lncRNAs play a role in ZIKV infection. Here, we identified a group of human lncRNAs that were up-regulated upon ZIKV infection and were dependent on the type I interferon (IFN) signaling. Overexpression of lncRNA ZAP-IT1 leads to an impairment of ZIKV infection. Correspondently, deficiency of ZAP-IT1 led to an enhancement of ZIKV infection. We further confirmed that ZAP-IT1, an intronic lncRNA with total 551 nt in length, is mainly located in the nuclear upon ZIKV infection. Knockout of ZAP-IT1 also led to the increase of dengue virus (DENV), Japanese encephalitis virus (JEV), or vesicular stomatitis virus (VSV) infection. Mechanically, we found that the antiviral effect of ZAP-IT1 was independent of the type I IFN signaling pathway. Therefore, our data unveiled that host lncRNA ZAP-IT1 induced by the type I IFN signaling, showed robust restriction on ZIKV infection, and even on DENV, JEV, and VSV infection, which may benefit the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Yanxia Huang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Su
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Shen
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiting Huo
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cancan Chen
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Tao Sun
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xu Tian
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ning Li
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China,Corresponding author.
| |
Collapse
|
4
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
5
|
Ji X, Meng W, Liu Z, Mu X. Emerging Roles of lncRNAs Regulating RNA-Mediated Type-I Interferon Signaling Pathway. Front Immunol 2022; 13:811122. [PMID: 35280983 PMCID: PMC8914027 DOI: 10.3389/fimmu.2022.811122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
The type-I interferon (IFN-I) signaling pathway plays pivot roles in defending against pathogen invasion. Exogenous ssRNA and dsRNA could be immunogenic. RNA-mediated IFN signaling is extensively studied in the field. The incorrect functioning of this pathway leads to either autoimmune diseases or suffering from microorganism invasion. From the discrimination of “self” and “non-self” molecules by receptors to the fine-tune modulations in downstream cascades, all steps are under the surveillance featured by complex feedbacks and regulators. Studies in recent years highlighted the emerging roles of long noncoding RNAs (lncRNAs) as a reservoir for signaling regulation. LncRNAs bind to targets through the structure and sequence, and thus the mechanisms of action can be complex and specific. Here, we summarized lncRNAs modulating the RNA-activated IFN-I signaling pathway according to the event order during the signaling. We hope this review help understand how lncRNAs are participating in the regulation of IFN-I signaling.
Collapse
Affiliation(s)
- Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Wei Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Zichuan Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Zichuan Liu, ; Xin Mu,
| |
Collapse
|
6
|
Long non-coding RNAs associated with infection and vaccine-induced immunity. Essays Biochem 2021; 65:657-669. [PMID: 34528687 DOI: 10.1042/ebc20200072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/01/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
The immune system responds to infection or vaccination through a dynamic and complex process that involves several molecular and cellular factors. Among these factors, long non-coding RNAs (lncRNAs) have emerged as significant players in all areas of biology, particularly in immunology. Most of the mammalian genome is transcribed in a highly regulated manner, generating a diversity of lncRNAs that impact the differentiation and activation of immune cells and affect innate and adaptive immunity. Here, we have reviewed the range of functions and mechanisms of lncRNAs in response to infectious disease, including pathogen recognition, interferon (IFN) response, and inflammation. We describe examples of lncRNAs exploited by pathogenic agents during infection, which indicate that lncRNAs are a fundamental part of the arms race between hosts and pathogens. We also discuss lncRNAs potentially implicated in vaccine-induced immunity and present examples of lncRNAs associated with the antibody response of subjects receiving Influenza or Yellow Fever vaccines. Elucidating the widespread involvement of lncRNAs in the immune system will improve our understanding of the factors affecting immune response to different pathogenic agents, to better prevent and treat disease.
Collapse
|
7
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
8
|
Diagnostic and Prognostic Value of Long Noncoding RNAs as Potential Novel Biomarkers in Intrahepatic Cholestasis of Pregnancy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858326. [PMID: 33728343 PMCID: PMC7936904 DOI: 10.1155/2021/8858326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a class of important regulators participating in various pathological processes. Until now, the role of lncRNAs in the occurrence and development of intrahepatic cholestasis of pregnancy (ICP) has rarely been investigated. The data from microarray screening revealed 58 upregulated and 85 downregulated lncRNAs and 47 upregulated and 71 downregulated mRNAs in ICP patients compared to healthy controls. Bioinformatics analysis revealed biological processes focused on lipid metabolism, apoptosis, cell cycle, cell differentiation, and oxidative stress. Furthermore, the expressions of three lncRNAs (ENST00000505175.1, ASO3480, and ENST00000449605.1) chosen for verification were significantly decreased and showed the diagnostic and prognostic value for ICP based on ROC analysis. This is the first study to report the specific role of lncRNAs in ICP, which may be helpful for the diagnosis and prognosis of ICP clinically.
Collapse
|
9
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
10
|
Takaoka A, Yamada T. Regulation of signaling mediated by nucleic acid sensors for innate interferon-mediated responses during viral infection. Int Immunol 2019; 31:477-488. [PMID: 30985869 PMCID: PMC7110195 DOI: 10.1093/intimm/dxz034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Type I and type III interferons are important anti-viral cytokines that are massively induced during viral infection. This dynamic process is regulated by many executors and regulators for efficient eradication of invading viruses and protection from harmful, excessive responses. An array of innate sensors recognizes virus-derived nucleic acids to activate their downstream signaling to evoke cytokine responses including interferons. In particular, a cytoplasmic RNA sensor RIG-I (retinoic acid-inducible gene I) is involved in the detection of multiple types of not only RNA viruses but also DNA viruses. Accumulating findings have revealed that activation of nucleic acid sensors and the related signaling mediators is regulated on the basis of post-translational modification such as ubiquitination, phosphorylation and ADP-ribosylation. In addition, long non-coding RNAs (lncRNAs) have been implicated as a new class of regulators in innate signaling. A comprehensive understanding of the regulatory mechanisms of innate sensor activation and its signaling in host-virus interaction will provide a better therapeutic strategy to efficiently control viral infection and maintain immune homeostasis.
Collapse
Affiliation(s)
- Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taisho Yamada
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Whole Transcriptome Sequencing Reveals How Acupuncture and Moxibustion Increase Pregnancy Rate in Patients Undergoing In Vitro Fertilization-Embryo Transplantation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4179617. [PMID: 31275970 PMCID: PMC6558619 DOI: 10.1155/2019/4179617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 05/08/2019] [Indexed: 01/13/2023]
Abstract
Background In vitro fertilization and embryo transfer (IVF-ET) technology has been widely used in the therapy of refractory infertility. Previous studies showed that acupuncture can effectively increase the clinical pregnancy rate of IVF-ET. However, the molecular mechanism is unknown. Materials and Methods In this study, we performed whole transcriptome sequencing for endometrial samples from infertile women who underwent acupuncture and moxibustion therapy or not. Differentially expressed noncoding RNAs (ncRNAs) and mRNAs were identified and their functions were predicted. Besides, a competitive endogenous RNA network was constructed to further interpret the molecular mechanism of acupuncture and moxibustion therapy on infecund patients. In addition, real-time PCR was applied to validate the RNA-seq results. Results We identified 317 differentially expressed mRNAs and 82 ncRNAs in acupuncture and moxibustion therapy group compared with control group. Functional enrichment analysis suggested that these genes were significantly enriched in GO-BP terms associated with cellular transport, such as ATP hydrolysis coupled proton transport, vacuolar acidification, transferrin transport, and proton transport and metabolic process, including small molecule metabolic process and metabolic process. Pathway enrichment analysis enriched 11 terms, including oxidative phosphorylation, synaptic vesicle cycle, mineral absorption, and metabolic pathways. Four of five selected differentially expressed genes were validated by real-time PCR. Conclusion Our results suggested that acupuncture and moxibustion therapy might increase the pregnancy rate of patients undergoing IVF-ET by the regulation of ncRNAs.
Collapse
|
12
|
Basavappa M, Cherry S, Henao-Mejia J. Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. J Leukoc Biol 2019; 106:83-93. [PMID: 30817056 DOI: 10.1002/jlb.3mir0918-354r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Immune responses are both pathogen and cell type-specific. The innate arm of immunity is characterized by rapid intracellular signaling cascades resulting in the production of hundreds of antimicrobial effectors that protect the host organism. Long noncoding RNAs have been shown to operate as potent modulators of both RNA and protein function throughout cell biology. Emerging data suggest that this is also true within innate immunity. LncRNAs have been shown to regulate both innate immune cell identity and the transcription of gene expression programs critical for innate immune responses. Here, we review the diverse roles of lncRNAs within innate defense with a specific emphasis on host-virus interactions.
Collapse
Affiliation(s)
- Megha Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Wang P. The Opening of Pandora's Box: An Emerging Role of Long Noncoding RNA in Viral Infections. Front Immunol 2019; 9:3138. [PMID: 30740112 PMCID: PMC6355698 DOI: 10.3389/fimmu.2018.03138] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has proved that long noncoding RNAs (lncRNAs) participate in various physiological and pathological processes. Recent evidence has demonstrated that lncRNAs are crucial regulators of virus infections and antiviral immune responses. Upon viral infections, significant changes take place at the transcriptional level and the majority of the expression modifications occur in lncRNAs from both the host and viral genomes with dynamic regulatory courses. These lncRNAs exert diverse effects. Some are antiviral either through directly inhibiting viral infections or through stimulating antiviral immune responses, while others are pro-viral through directly promoting virus replication or through influencing cellular status, such as suppressing antiviral mechanisms. Consequently, these dynamic regulations lead to disparate pathophysiological outcomes and clinical manifestations. This review will focus on the roles of lncRNAs in viral infection and antiviral responses, summarize expression patterns of both host- and virally derived lncRNAs, describe their acting stages and modes of action, discuss challenges and novel concepts, and propose solutions and perspectives. Research into lncRNA will help identify novel viral infection-related regulators and design preventative and therapeutic strategies against virus-related diseases and immune disorders.
Collapse
Affiliation(s)
- Pin Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Hu J, Liu L, Gong Y, Zhang L, Gan X, Luo X, Yu T, Zhong X, Deng X, Hu L, Zhang Z, Dong X. Linc02527 promoted autophagy in Intrahepatic cholestasis of pregnancy. Cell Death Dis 2018; 9:979. [PMID: 30250023 PMCID: PMC6155230 DOI: 10.1038/s41419-018-1013-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022]
Abstract
LncRNA plays a crucial role in human disease. However, the expression and function of LncRNA in ICP(Intrahepatic cholestasis of pregnancy) is still not fully elucidated. In this study, we found Linc02527 was increased expression in placenta and serum of ICP patients. Ectopically expression of Linc02527 promoted autophagy and proliferate in HTR8 cells. Silencing Linc02527 suppressed the autophagy and proliferate in HTR8 cells. Mechanically study revealed that Linc02527 regulated the expression of ATG5 and ATG7 by sponging miR-3185. Linc02527 directly binding to YBX1 and activated P21. The growth of C57 mouse was retarded when autophagy was activated. In normal condition, inhibited autophagy using chloroquine did not affect the growth of C57 mouse. However, in the condition of autophagy was activated, inhibited autophagy using chloroquine can improve the growth of C57 mouse. Overall, the results of this study identified Linc02527 as a candidate biomarker in ICP and a potential target for ICP therapy. Chloroquine was a potential drug for ICP therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yangyang Gong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoling Gan
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaodong Luo
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaocui Zhong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinru Deng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhanyu Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Valadkhan S, Plasek LM. Long Non-Coding RNA-Mediated Regulation of the Interferon Response: A New Perspective on a Familiar Theme. Pathog Immun 2018. [PMID: 30135954 PMCID: PMC6101671 DOI: 10.20411/pai.v3i1.252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interferon (IFN) response is a critical and ubiquitous component of the innate immune response to pathogens. Detailed studies in the last decades have elucidated the function of a large number of proteins that mediate the complex signaling pathways and gene expression programs involved in the interferon response. The recent discovery of the long non-coding RNAs (lncRNAs) as a new category of cellular effectors has led to studies aiming to understand the role of these transcripts in the IFN response. Several high throughput studies have shown that a large number of lncRNAs are differentially expressed following IFN stimulation and/or viral infections. In-depth study of a very small fraction of the identified lncRNAs has revealed critical roles for this class of transcripts in the regulation of multiple steps of the IFN response, and pointed to the presence of an extensive RNA-mediated regulatory network during the antiviral response. As the vast majority of the identified potential regulatory lncRNAs remain unstudied, it is highly likely that future studies will reveal a completely new perspective on the regulation of the IFN response, with lncRNA- and protein-mediated regulatory networks coordinating the duration, magnitude, and character of this aspect of the innate immune response. In addition to providing a more complete picture of the IFN response, these studies will likely identify new therapeutic targets that in the long term may impact the therapeutic options available against microbial infections and diseases of the immune system.
Collapse
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Leah M Plasek
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
16
|
Qiu L, Wang T, Tang Q, Li G, Wu P, Chen K. Long Non-coding RNAs: Regulators of Viral Infection and the Interferon Antiviral Response. Front Microbiol 2018; 9:1621. [PMID: 30072977 PMCID: PMC6060254 DOI: 10.3389/fmicb.2018.01621] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines providing a robust first line of host innate defense against pathogenic infection, and have now been part of the standard treatment for viral infection. However, IFN based therapy can best be described as modestly effective. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding RNAs that are capable of regulating gene expression at different levels, including chromatin, transcription, post-transcription, and translation. Recently, lncRNAs are found to be deregulated upon viral infection or IFN treatment, and some of them can modulate viral infection in an IFN-dependent or -independent manner. Due to the crucial roles of lncRNAs in viral infection and the IFN antiviral response, the modulation of specific lncRNAs may be involved to increase the IFN antiviral response and improve the clinical result of IFN-based therapy. In this review, we summarize lncRNAs that are deregulated by viral infection, with special focus on the functions and underlying mechanisms of some essential lncRNAs, and discuss their roles in viral infection and the antiviral response of IFN.
Collapse
Affiliation(s)
- Lipeng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Tao Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Tang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guohui Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Valadkhan S, Fortes P. Regulation of the Interferon Response by lncRNAs in HCV Infection. Front Microbiol 2018; 9:181. [PMID: 29503633 PMCID: PMC5820368 DOI: 10.3389/fmicb.2018.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Saba Valadkhan, Puri Fortes,
| | - Puri Fortes
- Center for Applied Medical Research, Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Saba Valadkhan, Puri Fortes,
| |
Collapse
|
18
|
Mowel WK, Kotzin JJ, McCright SJ, Neal VD, Henao-Mejia J. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends Immunol 2017; 39:55-69. [PMID: 28919048 DOI: 10.1016/j.it.2017.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022]
Abstract
The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system.
Collapse
Affiliation(s)
- Walter K Mowel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Jonathan J Kotzin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; These authors contributed equally to this work
| | - Sam J McCright
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vanessa D Neal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
19
|
Mechanistic Insight into Long Noncoding RNAs and the Placenta. Int J Mol Sci 2017; 18:ijms18071371. [PMID: 28653993 PMCID: PMC5535864 DOI: 10.3390/ijms18071371] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as RNAs greater than 200 nucleotides in length that do not produce a protein product. lncRNAs are expressed with cellular and temporal specificity and have been shown to play a role in many cellular events, including the regulation of gene expression, post-transcriptional modifications and epigenetic modifications. Since lncRNAs were first discovered, there has been increasing evidence that they play important roles in the development and function of most organs, including the placenta. The placenta is an essential transient organ that facilitates communication and nutrient exchange between the mother and foetus. The placenta is of foetal origin and begins to form shortly after the embryo implants into the uterine wall. The placenta relies heavily on the successful differentiation and function of trophoblast cells, including invasion as well as the formation of the maternal/foetal interface. Here, we review the current literature surrounding the involvement of lncRNAs in the development and function of trophoblasts and the human placenta.
Collapse
|
20
|
Détrée C, Núñez-Acuña G, Tapia F, Gallardo-Escárate C. Long non-coding RNAs are associated with spatiotemporal gene expression profiles in the marine gastropod Tegula atra. Mar Genomics 2017; 33:39-45. [DOI: 10.1016/j.margen.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 01/05/2023]
|
21
|
Wang J, Anguera MC. In Vitro Differentiation of Human Pluripotent Stem Cells into Trophoblastic Cells. J Vis Exp 2017. [PMID: 28362386 DOI: 10.3791/55268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The placenta is the first organ to develop during embryogenesis and is required for the survival of the developing embryo. The placenta is comprised of various trophoblastic cells that differentiate from the extra-embryonic trophectoderm cells of the preimplantation blastocyst. As such, our understanding of the early differentiation events of the human placenta is limited because of ethical and legal restrictions on the isolation and manipulation of human embryogenesis. Human pluripotent stem cells (hPSCs) are a robust model system for investigating human development and can also be differentiated in vitro into trophoblastic cells that express markers of the various trophoblast cell types. Here, we present a detailed protocol for differentiating hPSCs into trophoblastic cells using bone morphogenic protein 4 and inhibitors of the Activin/Nodal signaling pathways. This protocol generates various trophoblast cell types that can be transfected with siRNAs for investigating loss-of-function phenotypes or can be infected with pathogens. Additionally, hPSCs can be genetically modified and then differentiated into trophoblast progenitors for gain-of-function analyses. This in vitro differentiation method for generating human trophoblasts starting from hPSCs overcomes the ethical and legal restrictions of working with early human embryos, and this system can be used for a variety of applications, including drug discovery and stem cell research.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania;
| |
Collapse
|
22
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
23
|
Abstract
The maternal immune system is complex and governed by multiple hormonal and metabolic factors, including those provided to the mother via the fetus. Understanding of the balance between maternal tolerance and protection of the fetus may require thinking from multiple theoretical approaches to the general problem of immune activation and tolerance. This article provides a brief review of the immune system, with aspects relevant to pregnancy. The references include reviews that expand on the elements discussed. The article also uses different models of immune system activation and tolerance to provide a theoretical understanding of the problem of maternal tolerance.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Given Building Room C-246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
24
|
Xia J, Inagaki Y, Sawakami T, Song P, Cai Y, Hasegawa K, Sakamoto Y, Akimitsu N, Tang W, Kokudo N. Preliminary investigation of five novel long non-coding RNAs in hepatocellular carcinoma cell lines. Biosci Trends 2016; 10:315-9. [PMID: 27499103 DOI: 10.5582/bst.2016.01140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent cancer with a high mortality rate and HCC is always accompanied with a hepatitis B virus (HBV) infection, unlike many other types of cancers. Over the past few years, cancer-related long non-coding RNAs (lncRNAs) and virus-related lncRNAs have attracted the attention of many researchers, and a number of previous studies have examined the relationship between lncRNAs and various cancers and viruses. The current study used The Cancer Genome Atlas database to screen for lncRNAs up-regulated in HCC in order to identify cancer biomarkers. Results revealed five lncRNAs that were the most up-regulated. This result was then verified in 10 HCC cell lines and two normal liver cell lines. Quantitative real-time PCR revealed that the five lncRNAs were substantially up-regulated in HCC cell lines. Several of the five lncRNAs were expressed at higher levels in a few HCC cell lines that were infected with HBV or that were positive for its protein or DNA than in HCC cell lines that were not infected with HBV or that were negative for its protein or DNA. These findings suggest that the five lncRNAs might play a role in the progression of HCC and/or HBV infection, and these findings need to be studied in further detail.
Collapse
Affiliation(s)
- Jufeng Xia
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|