1
|
Arnosti DN. Soft repression and chromatin modification by conserved transcriptional corepressors. Enzymes 2023; 53:69-96. [PMID: 37748837 DOI: 10.1016/bs.enz.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Transcriptional regulation in eukaryotic cells involves the activity of multifarious DNA-binding transcription factors and recruited corepressor complexes. Together, these complexes interact with the core transcriptional machinery, chromatin, and nuclear environment to effect complex patterns of gene regulation. Much focus has been paid to the action of master regulatory switches that are key to developmental and environmental responses, as these genetic elements have important phenotypic effects. The regulation of widely-expressed metabolic control genes has been less well studied, particularly in cases in which physically-interacting repressors and corepressors have subtle influences on steady-state expression. This latter phenomenon, termed "soft repression" is a topic of increasing interest as genomic approaches provide ever more powerful tools to uncover the significance of this level of control. This review provides an oversight of classic and current approaches to the study of transcriptional repression in eukaryotic systems, with a specific focus on opportunities and challenges that lie ahead in the study of soft repression.
Collapse
Affiliation(s)
- David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
2
|
Chambers M, Turki-Judeh W, Kim MW, Chen K, Gallaher SD, Courey AJ. Mechanisms of Groucho-mediated repression revealed by genome-wide analysis of Groucho binding and activity. BMC Genomics 2017; 18:215. [PMID: 28245789 PMCID: PMC5331681 DOI: 10.1186/s12864-017-3589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The transcriptional corepressor Groucho (Gro) is required for the function of many developmentally regulated DNA binding repressors, thus helping to define the gene expression profile of each cell during development. The ability of Gro to repress transcription at a distance together with its ability to oligomerize and bind to histones has led to the suggestion that Gro may spread along chromatin. However, much is unknown about the mechanism of Gro-mediated repression and about the dynamics of Gro targeting. Results Our chromatin immunoprecipitation sequencing analysis of temporally staged Drosophila embryos shows that Gro binds in a highly dynamic manner primarily to clusters of discrete (<1 kb) segments. Consistent with the idea that Gro may facilitate communication between silencers and promoters, Gro binding is enriched at both cis-regulatory modules, as well as within the promotors of potential target genes. While this Gro-recruitment is required for repression, our data show that it is not sufficient for repression. Integration of Gro binding data with transcriptomic analysis suggests that, contrary to what has been observed for another Gro family member, Drosophila Gro is probably a dedicated repressor. This analysis also allows us to define a set of high confidence Gro repression targets. Using publically available data regarding the physical and genetic interactions between these targets, we are able to place them in the regulatory network controlling development. Through analysis of chromatin associated pre-mRNA levels at these targets, we find that genes regulated by Gro in the embryo are enriched for characteristics of promoter proximal paused RNA polymerase II. Conclusions Our findings are inconsistent with a one-dimensional spreading model for long-range repression and suggest that Gro-mediated repression must be regulated at a post-recruitment step. They also show that Gro is likely a dedicated repressor that sits at a prominent highly interconnected regulatory hub in the developmental network. Furthermore, our findings suggest a role for RNA polymerase II pausing in Gro-mediated repression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3589-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Chambers
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Wiam Turki-Judeh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Min Woo Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kenny Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.,Department of Energy, Institute of Genomics and Proteomics, University of California, Los Angeles, CA, 90095, USA
| | - Albert J Courey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Kwong PN, Chambers M, Vashisht AA, Turki-Judeh W, Yau TY, Wohlschlegel JA, Courey AJ. The Central Region of the Drosophila Co-repressor Groucho as a Regulatory Hub. J Biol Chem 2015; 290:30119-30. [PMID: 26483546 DOI: 10.1074/jbc.m115.681171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
Groucho (Gro) is a Drosophila co-repressor that regulates the expression of a large number of genes, many of which are involved in developmental control. Previous studies have shown that its central region is essential for function even though its three domains are poorly conserved and intrinsically disordered. Using these disordered domains as affinity reagents, we have now identified multiple embryonic Gro-interacting proteins. The interactors include protein complexes involved in chromosome organization, mRNA processing, and signaling. Further investigation of the interacting proteins using a reporter assay showed that many of them modulate Gro-mediated repression either positively or negatively. The positive regulators include components of the spliceosomal subcomplex U1 small nuclear ribonucleoprotein (U1 snRNP). A co-immunoprecipitation experiment confirms this finding and suggests that a sizable fraction of nuclear U1 snRNP is associated with Gro. The use of RNA-seq to analyze the gene expression profile of cells subjected to knockdown of Gro or snRNP-U1-C (a component of U1 snRNP) showed a significant overlap between genes regulated by these two factors. Furthermore, comparison of our RNA-seq data with Gro and RNA polymerase II ChIP data led to a number of insights, including the finding that Gro-repressed genes are enriched for promoter-proximal RNA polymerase II. We conclude that the Gro central domains mediate multiple interactions required for repression, thus functioning as a regulatory hub. Furthermore, interactions with the spliceosome may contribute to repression by Gro.
Collapse
Affiliation(s)
- Pak N Kwong
- From the Departments of Chemistry and Biochemistry and
| | | | | | - Wiam Turki-Judeh
- From the Departments of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Tak Yu Yau
- From the Departments of Chemistry and Biochemistry and
| | - James A Wohlschlegel
- Biological Chemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Albert J Courey
- From the Departments of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
4
|
Modulation of Heterochromatin by Male Specific Lethal Proteins and roX RNA in Drosophila melanogaster Males. PLoS One 2015; 10:e0140259. [PMID: 26468879 PMCID: PMC4607463 DOI: 10.1371/journal.pone.0140259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 01/04/2023] Open
Abstract
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.
Collapse
|
5
|
Zhang T, Du W. Groucho restricts rhomboid expression and couples EGFR activation with R8 selection during Drosophila photoreceptor differentiation. Dev Biol 2015; 407:246-55. [PMID: 26417727 DOI: 10.1016/j.ydbio.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/18/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022]
Abstract
Notch and EGFR signaling pathways play important roles in photoreceptor differentiation during Drosophila eye development. Notch signaling induces Enhancer of Split (E(spl)) proteins to repress atonal (ato) expression and restrict R8 photoreceptor cell fate. The R8 precursors express rhomboid (rho), which is required for the release of active EGFR ligand to activate EGFR signaling in surrounding cells for the subsequent stepwise recruitment. However, it is not clear about the mechanisms of transcriptional regulation of rho and how the lateral inhibition of Notch signaling and rho expression are coordinated. In this study, we show that inactivation of Groucho (Gro), an evolutionally conserved transcriptional corepressor, inhibits Ato upregulation, delays R8 determination, and promotes differentiation of R2-5 type of neurons. We demonstrate that these phenotypes are caused by a combination of the loss of Notch-mediated lateral inhibition and the precocious activation of EGFR signaling due to deregulated rho expression. Blocking EGFR signaling by Pnt-RNAi in conjunction with Gro-inactivation leads to lateral inhibition defects with deregulated Ato expression and R8 differentiation. We further show that inactivation of E(spl), which are the Gro binding transcription factors, causes deregulated rho expression and extra R8 cells within and posterior to the morphogenetic furrow (MF), and that E(spl) mediates the binding of Gro to the regulatory regions of both rho and ato genes in eye disc cells. Our results suggest that Gro inhibits rho expression in undifferentiated cells and represses the expression of both ato and rho in non-R8 precursors during initiation of photoreceptor differentiation in an E(spl)-dependent manner. The latter function of Gro provides novel insights into the mechanism that coordinates R8 specification with the restriction of initial rho expression to developing R8 cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA
| | - Wei Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Kok K, Ay A, Li LM, Arnosti DN. Genome-wide errant targeting by Hairy. eLife 2015; 4. [PMID: 26305409 PMCID: PMC4547095 DOI: 10.7554/elife.06394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
Metazoan transcriptional repressors regulate chromatin through diverse histone modifications. Contributions of individual factors to the chromatin landscape in development is difficult to establish, as global surveys reflect multiple changes in regulators. Therefore, we studied the conserved Hairy/Enhancer of Split family repressor Hairy, analyzing histone marks and gene expression in Drosophila embryos. This long-range repressor mediates histone acetylation and methylation in large blocks, with highly context-specific effects on target genes. Most strikingly, Hairy exhibits biochemical activity on many loci that are uncoupled to changes in gene expression. Rather than representing inert binding sites, as suggested for many eukaryotic factors, many regions are targeted errantly by Hairy to modify the chromatin landscape. Our findings emphasize that identification of active cis-regulatory elements must extend beyond the survey of prototypical chromatin marks. We speculate that this errant activity may provide a path for creation of new regulatory elements, facilitating the evolution of novel transcriptional circuits.
Collapse
Affiliation(s)
- Kurtulus Kok
- Genetics Program, Michigan State University, East Lansing, United States
| | - Ahmet Ay
- Departments of Biology and Mathematics, Colgate University, Hamilton, United States
| | - Li M Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David N Arnosti
- Genetics Program, Michigan State University, East Lansing, United States
| |
Collapse
|
7
|
Abstract
Gene expression is often controlled by transcriptional repressors during development. Many transcription factors lack intrinsic repressive activity but recruit co-factors that inhibit productive transcription. Here we discuss new insights and models for repression mediated by the Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressor proteins.
Collapse
Key Words
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- ChIP-seq, chromatin immunoprecipitation followed by high throughput sequencing, qPCR, quantitative PCR
- Drosophila
- Drosophila, Drosophila melanogaster, Gro, Groucho
- E(spl), enhancer of split
- GAF, GAGA Factor; NELF, Negative Elongation Factor
- Gro/TLE, Groucho/Transducin-like enhancer of split
- Groucho/TLE
- P-TEFb, Positive Elongation Factor b
- RNA polymerase pausing
- RNAP II, RNA polymerase II
- TALENs, Transcription Activator-Like Effector Nucleases
- TSS, transcription start site
- bHLH, basic helix-loop-helix
- kb, kilobase
- repressor
- transcription factor
- transcriptional repression
Collapse
Affiliation(s)
- Aamna K Kaul
- a Department of Genetics, Evolution and Environment ; University College London ; London , United Kingdom
| | | | | |
Collapse
|
8
|
Kaul A, Schuster E, Jennings BH. The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet 2014; 10:e1004595. [PMID: 25165826 PMCID: PMC4148212 DOI: 10.1371/journal.pgen.1004595] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022] Open
Abstract
Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation and polymerase pausing. Repression by transcription factors plays a central role in gene regulation. The Groucho/Transducin-Like Enhancer of split (Gro/TLE) family of co-repressors interacts with many different transcription factors and has many essential roles during animal development. Groucho/TLE proteins form oligomers that are necessary for target gene repression in some contexts. We have profiled the genome-wide recruitment of the founding member of this family, Groucho (from Drosophila) to gain insight into how and where it binds with respect to target genes and to identify factors associated with its binding. We find that Groucho binds in discrete peaks, frequently at transcription start sites, and that blocking Groucho from forming oligomers does not significantly change the pattern of Groucho recruitment. Although Groucho acts as a repressor, Groucho binding is enriched in chromatin that is permissive for transcription, and we find that it acts to attenuate rather than completely silence target gene expression. Thus, Groucho does not act as an “on/off” switch on target gene expression, but rather as a “mute” button.
Collapse
Affiliation(s)
- Aamna Kaul
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Eugene Schuster
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Barbara H. Jennings
- UCL Cancer Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Alkhori L, Öst A, Alenius M. The corepressor Atrophin specifies odorant receptor expression in Drosophila. FASEB J 2013; 28:1355-64. [PMID: 24334704 DOI: 10.1096/fj.13-240325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In both insects and vertebrates, each olfactory sensory neuron (OSN) expresses one odorant receptor (OR) from a large genomic repertoire. How a receptor is specified is a tantalizing question addressing fundamental aspects of cell differentiation. Here, we demonstrate that the corepressor Atrophin (Atro) segregates OR gene expression between OSN classes in Drosophila. We show that the knockdown of Atro result in either loss or gain of a broad set of ORs. Each OR phenotypic group correlated with one of two opposing Notch fates, Notch responding, Nba (N(on)), and nonresponding, Nab (N(off)) OSNs. Our data show that Atro segregates ORs expressed in the Nba OSN classes and helps establish the Nab fate during OSN development. Consistent with a role in recruiting histone deacetylates, immunohistochemistry revealed that Atro regulates global histone 3 acetylation (H3ac) in OSNs and requires Hdac3 to segregate OR gene expression. We further found that Nba OSN classes exhibit variable but higher H3ac levels than the Nab OSNs. Together, these data suggest that Atro determines the level of H3ac, which ensures correct OR gene expression within the Nba OSNs. We propose a mechanism by which a single corepressor can specify a large number of neuron classes.
Collapse
Affiliation(s)
- Liza Alkhori
- 1Department of Clinical and Experimental Medicine, Linköping University, S-581 83 Linköping, Sweden.
| | | | | |
Collapse
|
10
|
Upadhyai P, Campbell G. Brinker possesses multiple mechanisms for repression because its primary co-repressor, Groucho, may be unavailable in some cell types. Development 2013; 140:4256-65. [PMID: 24086079 DOI: 10.1242/dev.099366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional repressors function primarily by recruiting co-repressors, which are accessory proteins that antagonize transcription by modifying chromatin structure. Although a repressor could function by recruiting just a single co-repressor, many can recruit more than one, with Drosophila Brinker (Brk) recruiting the co-repressors CtBP and Groucho (Gro), in addition to possessing a third repression domain, 3R. Previous studies indicated that Gro is sufficient for Brk to repress targets in the wing, questioning why it should need to recruit CtBP, a short-range co-repressor, when Gro is known to be able to function over longer distances. To resolve this we have used genomic engineering to generate a series of brk mutants that are unable to recruit Gro, CtBP and/or have 3R deleted. These reveal that although the recruitment of Gro is necessary and can be sufficient for Brk to make an almost morphologically wild-type fly, it is insufficient during oogenesis, where Brk must utilize CtBP and 3R to pattern the egg shell appropriately. Gro insufficiency during oogenesis can be explained by its downregulation in Brk-expressing cells through phosphorylation downstream of EGFR signaling.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
11
|
Mannervik M. Control of Drosophila embryo patterning by transcriptional co-regulators. Exp Cell Res 2013; 321:47-57. [PMID: 24157250 DOI: 10.1016/j.yexcr.2013.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/29/2022]
Abstract
A combination of broadly expressed transcriptional activators and spatially restricted repressors are used to pattern embryos into cells of different fate. Transcriptional co-regulators are essential mediators of transcription factor function, and contribute to selective transcriptional responses in embryo development. A two step mechanism of transcriptional regulation is discussed, where remodeling of chromatin is initially required, followed by stimulation of recruitment or release of RNA polymerase from the promoter. Transcriptional co-regulators are essential for both of these steps. In particular, most co-activators are associated with histone acetylation and co-repressors with histone deacetylation. In the early Drosophila embryo, genome-wide studies have shown that the CBP co-activator has a preference for associating with some transcription factors and regulatory regions. The Groucho, CtBP, Ebi, Atrophin and Brakeless co-repressors are selectively used to limit zygotic gene expression. New findings are summarized which show that different co-repressors are often utilized by a single repressor, that the context in which a co-repressor is recruited to DNA can affect its activity, and that co-regulators may switch from co-repressors to co-activators and vice versa. The possibility that co-regulator activity is regulated and plays an instructive role in development is discussed as well. This review highlights how findings in Drosophila embryos have contributed to the understanding of transcriptional regulation in eukaryotes as well as to mechanisms of animal embryo patterning.
Collapse
Affiliation(s)
- Mattias Mannervik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Arrheniuslaboratories E3, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Surkova S, Golubkova E, Manu, Panok L, Mamon L, Reinitz J, Samsonova M. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev Biol 2013; 376:99-112. [PMID: 23333947 DOI: 10.1016/j.ydbio.2013.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/30/2012] [Accepted: 01/09/2013] [Indexed: 11/28/2022]
Abstract
Here we characterize the response of the Drosophila segmentation system to mutations in two gap genes, Kr and kni, in the form of single or double homozygotes and single heterozygotes. Segmentation gene expression in these genotypes was quantitatively monitored with cellular resolution in space and 6.5 to 13min resolution in time. As is the case with wild type, we found that gene expression domains in the posterior portion of the embryo shift to the anterior over time. In certain cases, such as the gt posterior domain in Kr mutants, the shifts are significantly larger than is seen in wild type embryos. We also investigated the effects of Kr and kni on the variability of gene expression. Mutations often produce variable phenotypes, and it is well known that the cuticular phenotype of Kr mutants is variable. We sought to understand the molecular basis of this effect. We find that throughout cycle 14A the relative levels of eve and ftz expression in stripes 2 and 3 are variable among individual embryos. Moreover, in Kr and kni mutants, unlike wild type, the variability in positioning of the posterior Hb domain and eve stripe 7 is not decreased or filtered with time. The posterior Gt domain in Kr mutants is highly variable at early times, but this variability decreases when this domain shifts in the anterior direction to the position of the neighboring Kni domain. In contrast to these findings, positional variability throughout the embryo does not decrease over time in double Kr;kni mutants. In heterozygotes the early expression patterns of segmentation genes resemble patterns seen in homozygous mutants but by the onset of gastrulation they become similar to the wild type patterns. Finally, we note that gene expression levels are reduced in Kr and kni mutant embryos and have a tendency to decrease over time. This is a surprising result in view of the role that mutual repression is thought to play in the gap gene system.
Collapse
Affiliation(s)
- Svetlana Surkova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnical University, 29 Polytehnicheskaya Street, St. Petersburg 195251, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
The Tbx20 homolog Midline represses wingless in conjunction with Groucho during the maintenance of segment polarity. Dev Biol 2012; 369:319-29. [PMID: 22814213 DOI: 10.1016/j.ydbio.2012.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/07/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022]
Abstract
The regulation of the segment polarity gene wingless is essential for the correct patterning of the Drosophila ectoderm. We have previously shown that the asymmetric activation of wingless downstream of Hedghog-signaling depends on the T-box transcription factors, midline and H15. Hedgehog activates wingless anterior to the Hedgehog domain. midline/H15 are responsible in part for repressing wingless in cells posterior to the Hedgehog expressing cells. Here, we show that Midline binds the Groucho co-repressor directly via the engrailed homology-1 domain and requires an intact engrailed-homology-1 domain to repress wingless. In contrast, the regulation of Serrate, a second target of midline repression, is not dependent on the engrailed-homology-1 domain. Furthermore, we identify a midline responsive region of the wingless cis-regulatory region and show that Midline binds to sequences within this region. Mutating these sequences in transgenic reporter constructs results in ectopic reporter expression in the midline-expression domain, consistent with wingless being a direct target of Midline repression.
Collapse
|
14
|
Turki-Judeh W, Courey AJ. The unconserved groucho central region is essential for viability and modulates target gene specificity. PLoS One 2012; 7:e30610. [PMID: 22319573 PMCID: PMC3272004 DOI: 10.1371/journal.pone.0030610] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/26/2011] [Indexed: 12/31/2022] Open
Abstract
Groucho (Gro) is a Drosophila corepressor required by numerous DNA-binding repressors, many of which are distributed in gradients and provide positional information during development. Gro contains well-conserved domains at its N- and C-termini, and a poorly conserved central region that includes the GP, CcN, and SP domains. All lethal point mutations in gro map to the conserved regions, leading to speculation that the unconserved central domains are dispensable. However, our sequence analysis suggests that the central domains are disordered leading us to suspect that the lack of lethal mutations in this region reflects a lack of order rather than an absence of essential functions. In support of this conclusion, genomic rescue experiments with Gro deletion variants demonstrate that the GP and CcN domains are required for viability. Misexpression assays using these same deletion variants show that the SP domain prevents unrestrained and promiscuous repression by Gro, while the GP and CcN domains are indispensable for repression. Deletion of the GP domain leads to loss of nuclear import, while deletion of the CcN domain leads to complete loss of repression. Changes in Gro activity levels reset the threshold concentrations at which graded repressors silence target gene expression. We conclude that co-regulators such as Gro are not simply permissive components of the repression machinery, but cooperate with graded DNA-binding factors in setting borders of gene expression. We suspect that disorder in the Gro central domains may provide the flexibility that allows this region to mediate multiple interactions required for repression.
Collapse
Affiliation(s)
- Wiam Turki-Judeh
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert J. Courey
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
Drosophila Groucho (Gro) is the founding member of a family of metazoan corepressors. Gro mediates repression through interactions with a myriad of DNA-binding repressor proteins to direct the silencing of genes involved in many developmental processes, including neurogenesis and patterning of the main body axis, as well as receptor tyrosine kinase/Ras/MAPK, Notch, Wingless (Wg)/Wnt, and Decapentaplegic (Dpp) signaling. Gro mediates repression by multiple molecular mechanisms, depending on the regulatory context. Because Gro is a broadly expressed nuclear factor, whereas its repressor partners display restricted temporal and spatial distribution, it was presumed that this corepressor played permissive rather than instructive roles in development. However, a wide range of studies demonstrates that this is not the case. Gro can sense and integrate many cellular inputs to modulate the expression of variety of genes, making it a versatile corepressor with crucial instructive roles in development and signaling.
Collapse
Affiliation(s)
- Wiam Turki-Judeh
- Department of Chemistry & Biochemistry and Molecular Biology Institute, University of California, Los Angeles, California, USA
| | | |
Collapse
|
16
|
Bothma JP, Magliocco J, Levine M. The snail repressor inhibits release, not elongation, of paused Pol II in the Drosophila embryo. Curr Biol 2011; 21:1571-7. [PMID: 21920753 DOI: 10.1016/j.cub.2011.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 07/11/2011] [Accepted: 08/08/2011] [Indexed: 12/25/2022]
Abstract
The development of the precellular Drosophila embryo is characterized by exceptionally rapid transitions in gene activity, with broadly distributed maternal regulatory gradients giving way to precise on/off patterns of gene expression within a one-hour window, between two and three hours after fertilization [1]. Transcriptional repression plays a pivotal role in this process, delineating sharp expression patterns (e.g., pair-rule stripes) within broad domains of gene activation. As many as 20 different sequence-specific repressors have been implicated in this process, yet the mechanisms by which they silence gene expression have remained elusive [2]. Here we report the development of a method for the quantitative visualization of transcriptional repression. We focus on the Snail repressor, which establishes the boundary between the presumptive mesoderm and neurogenic ectoderm [3]. We find that elongating Pol II complexes complete transcription after the onset of Snail repression. As a result, moderately sized genes (e.g., the 22 kb sog locus) are fully silenced only after tens of minutes of repression. We propose that this "repression lag" imposes a severe constraint on the regulatory dynamics of embryonic patterning and further suggest that posttranscriptional regulators, like microRNAs, are required to inhibit unwanted transcripts produced during protracted periods of gene silencing.
Collapse
Affiliation(s)
- Jacques P Bothma
- Biophysics Graduate Group, Center for Integrative Genomics, Division of Genetics, Genomics and Development, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
17
|
Li LM, Arnosti DN. Long- and short-range transcriptional repressors induce distinct chromatin states on repressed genes. Curr Biol 2011; 21:406-12. [PMID: 21353562 DOI: 10.1016/j.cub.2011.01.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/19/2010] [Accepted: 01/20/2011] [Indexed: 12/25/2022]
Abstract
Transcriptional repression is essential for establishing precise patterns of gene expression during development. Repressors governing early Drosophila segmentation can be classified as short- or long-range factors based on their ranges of action, acting either locally to quench adjacent activators or broadly to silence an entire locus. Paradoxically, these repressors recruit common corepressors, Groucho and CtBP, despite their different ranges of repression. To reveal the mechanisms underlying these two distinct modes of repression, we performed chromatin analysis using the prototypical long-range repressor Hairy and the short-range repressor Knirps. Chromatin immunoprecipitation and micrococcal nuclease mapping studies reveal that Knirps causes local changes of histone density and acetylation, and the inhibition of activator recruitment, without affecting the recruitment of basal transcriptional machinery. In contrast, Hairy induces widespread histone deacetylation and inhibits the recruitment of basal machinery without inducing chromatin compaction. Our study provides detailed mechanistic insight into short- and long-range repression on selected endogenous target genes and suggests that the transcriptional corepressors can be differentially deployed to mediate chromatin changes in a context-dependent manner.
Collapse
Affiliation(s)
- Li M Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
18
|
Abed M, Barry KC, Kenyagin D, Koltun B, Phippen TM, Delrow JJ, Parkhurst SM, Orian A. Degringolade, a SUMO-targeted ubiquitin ligase, inhibits Hairy/Groucho-mediated repression. EMBO J 2011; 30:1289-301. [PMID: 21343912 PMCID: PMC3094120 DOI: 10.1038/emboj.2011.42] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 01/26/2011] [Indexed: 11/09/2022] Open
Abstract
Transcriptional cofactors are essential for proper embryonic development. One such cofactor in Drosophila, Degringolade (Dgrn), encodes a RING finger/E3 ubiquitin ligase. Dgrn and its mammalian ortholog RNF4 are SUMO-targeted ubiquitin ligases (STUbLs). STUbLs bind to SUMOylated proteins via their SUMO interaction motif (SIM) domains and facilitate substrate ubiquitylation. In this study, we show that Dgrn is a negative regulator of the repressor Hairy and its corepressor Groucho (Gro/transducin-like enhancer (TLE)) during embryonic segmentation and neurogenesis, as dgrn heterozygosity suppresses Hairy mutant phenotypes and embryonic lethality. Mechanistically Dgrn functions as a molecular selector: it targets Hairy for SUMO-independent ubiquitylation that inhibits the recruitment of its corepressor Gro, without affecting the recruitment of its other cofactors or the stability of Hairy. Concomitantly, Dgrn specifically targets SUMOylated Gro for sequestration and antagonizes Gro functions in vivo. Our findings suggest that by targeting SUMOylated Gro, Dgrn serves as a molecular switch that regulates cofactor recruitment and function during development. As Gro/TLE proteins are conserved universal corepressors, this may be a general paradigm used to regulate the Gro/TLE corepressors in other developmental processes.
Collapse
Affiliation(s)
- Mona Abed
- Cancer and Vascular Biology Research Center, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ajuria L, Nieva C, Winkler C, Kuo D, Samper N, Andreu MJ, Helman A, González-Crespo S, Paroush Z, Courey AJ, Jiménez G. Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila. Development 2011; 138:915-24. [PMID: 21270056 DOI: 10.1242/dev.057729] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RTK/Ras/MAPK signaling pathways play key functions in metazoan development, but how they control expression of downstream genes is not well understood. In Drosophila, it is generally assumed that most transcriptional responses to RTK signal activation depend on binding of Ets-family proteins to specific cis-acting sites in target enhancers. Here, we show that several Drosophila RTK pathways control expression of downstream genes through common octameric elements that are binding sites for the HMG-box factor Capicua, a transcriptional repressor that is downregulated by RTK signaling in different contexts. We show that Torso RTK-dependent regulation of terminal gap gene expression in the early embryo critically depends on Capicua octameric sites, and that binding of Capicua to these sites is essential for recruitment of the Groucho co-repressor to the huckebein enhancer in vivo. We then show that subsequent activation of the EGFR RTK pathway in the neuroectodermal region of the embryo controls dorsal-ventral gene expression by downregulating the Capicua protein, and that this control also depends on Capicua octameric motifs. Thus, a similar mechanism of RTK regulation operates during subdivision of the anterior-posterior and dorsal-ventral embryonic axes. We also find that identical DNA octamers mediate Capicua-dependent regulation of another EGFR target in the developing wing. Remarkably, a simple combination of activator-binding sites and Capicua motifs is sufficient to establish complex patterns of gene expression in response to both Torso and EGFR activation in different tissues. We conclude that Capicua octamers are general response elements for RTK signaling in Drosophila.
Collapse
Affiliation(s)
- Leiore Ajuria
- Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Acharya P, Raj N, Buckley MS, Zhang L, Duperon S, Williams G, Henry RW, Arnosti DN. Paradoxical instability-activity relationship defines a novel regulatory pathway for retinoblastoma proteins. Mol Biol Cell 2010; 21:3890-901. [PMID: 20861300 PMCID: PMC2982090 DOI: 10.1091/mbc.e10-06-0520] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Functional overlap of retinoblastoma protein stability and activity reveals a novel conserved regulatory pathway during Drosophila development. The Retinoblastoma (RB) transcriptional corepressor and related family of pocket proteins play central roles in cell cycle control and development, and the regulatory networks governed by these factors are frequently inactivated during tumorigenesis. During normal growth, these proteins are subject to tight control through at least two mechanisms. First, during cell cycle progression, repressor potential is down-regulated by Cdk-dependent phosphorylation, resulting in repressor dissociation from E2F family transcription factors. Second, RB proteins are subject to proteasome-mediated destruction during development. To better understand the mechanism for RB family protein instability, we characterized Rbf1 turnover in Drosophila and the protein motifs required for its destabilization. We show that specific point mutations in a conserved C-terminal instability element strongly stabilize Rbf1, but strikingly, these mutations also cripple repression activity. Rbf1 is destabilized specifically in actively proliferating tissues of the larva, indicating that controlled degradation of Rbf1 is linked to developmental signals. The positive linkage between Rbf1 activity and its destruction indicates that repressor function is governed in a manner similar to that described by the degron theory of transcriptional activation. Analogous mutations in the mammalian RB family member p107 similarly induce abnormal accumulation, indicating substantial conservation of this regulatory pathway.
Collapse
Affiliation(s)
- Pankaj Acharya
- Department of Microbiology and Molecular Genetics, Program in Genetics, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Boyle P, Després C. Dual-function transcription factors and their entourage: unique and unifying themes governing two pathogenesis-related genes. PLANT SIGNALING & BEHAVIOR 2010; 5:629-34. [PMID: 20383056 PMCID: PMC3001550 DOI: 10.4161/psb.5.6.11570] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Much of what we, as plant molecular biologists studying gene regulation, know comes from paradigms characterized or developed in mammalian systems. Although plants, animals, and fungi have been diverging for a very long time, a great deal of the machineries and components discovered in yeast and mammals seem to have been maintained in plants. Nevertheless, despite this apparent conservation, evolutionary pressures on the mechanisms of gene regulation are likely to be different between these kingdoms, given their different environmental constraints. As such, it is imperative for plant molecular biologists to develop their own paradigms, even on seemingly conserved systems. It is with this intent that we compare and contrast the regulation of two pathogenesis-related genes, the arabidopsis PR-1 and potato PR-10a genes. The transcription factors regulating these genes present prime paradigms for the study of plant signal- and context-dependent dual-function transcription factors.
Collapse
Affiliation(s)
- Patrick Boyle
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | | |
Collapse
|
22
|
Winkler CJ, Ponce A, Courey AJ. Groucho-mediated repression may result from a histone deacetylase-dependent increase in nucleosome density. PLoS One 2010; 5:e10166. [PMID: 20405012 PMCID: PMC2854148 DOI: 10.1371/journal.pone.0010166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/21/2010] [Indexed: 01/19/2023] Open
Abstract
Groucho (Gro) is a Drosophila melanogaster transcriptional corepressor that directly interacts with the histone deacetylase Rpd3. Although previous studies suggest that this interaction is required for repression of Gro-responsive reporters in cultured cells, the in vivo significance of this interaction and the mechanism by which it leads to repression remain largely unexplored. In this study, we show that Gro is partially dependent on Rpd3 for repression, supporting the idea that Rpd3-mediated repression is one mode of Gro-mediated repression. We demonstrate that Gro colocalizes with Rpd3 to the chromatin of a target gene and that this is accompanied by the deacetylation of specific lysines within the N-terminal tails of histones H3 and H4. Gro overexpression leads to wing patterning defects and ectopic repression in the wing disc of transcription directed by the vestigial quadrant enhancer. These effects are reversed by the histone deacetylase inhibitors TSA and HC-Toxin and by the reduction of Rpd3 gene dosage. Furthermore, repression of the vestigial quadrant enhancer is accompanied by a Gro-mediated increase in nucleosome density, an effect that is reversed by histone deacetylase inhibitors. We propose a model in which Gro-mediated histone deacetylation results in increased nucleosome density leading to transcriptional repression.
Collapse
Affiliation(s)
- Clint J. Winkler
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Alberto Ponce
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert J. Courey
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kelemen JZ, Ratna P, Scherrer S, Becskei A. Spatial epigenetic control of mono- and bistable gene expression. PLoS Biol 2010; 8:e1000332. [PMID: 20305717 PMCID: PMC2838748 DOI: 10.1371/journal.pbio.1000332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/09/2010] [Indexed: 11/18/2022] Open
Abstract
Bistability in signaling networks is frequently employed to promote stochastic switch-like transitions between cellular differentiation states. Differentiation can also be triggered by antagonism of activators and repressors mediated by epigenetic processes that constitute regulatory circuits anchored to the chromosome. Their regulatory logic has remained unclear. A reaction-diffusion model reveals that the same reaction mechanism can support both graded monostable and switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing gradient or two interacting gradients that flank a gene. Our experiments confirm that chromosomal recruitment of activator and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial distribution of silencing nucleation sites along the chromosome. The unveiled regulatory principles will help to understand the mechanisms of variegated gene expression, to design synthetic genetic networks that combine transcriptional regulatory motifs with chromatin-based epigenetic effects, and to control cellular differentiation.
Collapse
Affiliation(s)
- János Z. Kelemen
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Prasuna Ratna
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Simone Scherrer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Attila Becskei
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Cellular corepressor TLE2 inhibits replication-and-transcription- activator-mediated transactivation and lytic reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 84:2047-62. [PMID: 19939918 DOI: 10.1128/jvi.01984-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Replication and transcription activator (RTA) encoded by open reading frame 50 (ORF50) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential and sufficient to initiate lytic reactivation. RTA activates its target genes through direct binding with high affinity to its responsive elements or by interaction with cellular factors, such as RBP-Jkappa, Ap-1, C/EBP-alpha, and Oct-1. In this study, we identified transducin-like enhancer of split 2 (TLE2) as a novel RTA binding protein by using yeast two-hybrid screening of a human spleen cDNA library. The interaction between TLE2 and RTA was confirmed by glutathione S-transferase (GST) binding and coimmunoprecipitation assays. Immunofluorescence analysis showed that TLE2 and RTA were colocalized in the same nuclear compartment in KSHV-infected cells. This interaction recruited TLE2 to RTA bound to its recognition sites on DNA and repressed RTA auto-activation and transactivation activity. Moreover, TLE2 also inhibited the induction of lytic replication and virion production driven by RTA. We further showed that the Q (Gln-rich), SP (Ser-Pro-rich), and WDR (Trp-Asp repeat) domains of TLE2 and the Pro-rich domain of RTA were essential for this interaction. RBP-Jkappa has been shown previously to bind to the same Pro-rich domain of RTA, and this binding can be subject to competition by TLE2. In addition, TLE2 can form a complex with RTA to access the cognate DNA sequence of the RTA-responsive element at different promoters. Intriguingly, the transcription level of TLE2 could be upregulated by RTA during the lytic reactivation process. In conclusion, we identified a new RTA binding protein, TLE2, and demonstrated that TLE2 inhibited replication and transactivation mediated by RTA. This provides another potentially important mechanism for maintenance of KSHV viral latency through interaction with a host protein.
Collapse
|
25
|
Groucho corepressor functions as a cofactor for the Knirps short-range transcriptional repressor. Proc Natl Acad Sci U S A 2009; 106:17314-9. [PMID: 19805071 DOI: 10.1073/pnas.0904507106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the pervasive roles for repressors in transcriptional control, the range of action of these proteins on cis regulatory elements remains poorly understood. Knirps has essential roles in patterning the Drosophila embryo by means of short-range repression, an activity that is essential for proper regulation of complex transcriptional control elements. Short-range repressors function in a local fashion to interfere with the activity of activators or basal promoters within approximately 100 bp. In contrast, long-range repressors such as Hairy act over distances >1 kb. The functional distinction between these two classes of repressors has been suggested to stem from the differential recruitment of the CtBP corepressor to short-range repressors and Groucho to long-range repressors. Contrary to this differential recruitment model, we report that Groucho is a functional part of the Knirps short-range repression complex. The corepressor interaction is mediated via an eh-1 like motif present in the N terminus and a conserved region present in the central portion of Knirps. We also show that this interaction is important for the CtBP-independent repression activity of Knirps and is required for regulation of even-skipped. Our study uncovers a previously uncharacterized interaction between proteins previously thought to function in distinct repression pathways, and indicates that the Groucho corepressor can be differentially harnessed to execute short- and long-range repression.
Collapse
|
26
|
Cooper MB, Loose M, Brookfield JFY. The evolutionary influence of binding site organisation on gene regulatory networks. Biosystems 2009; 96:185-93. [PMID: 19428984 DOI: 10.1016/j.biosystems.2009.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 01/23/2009] [Accepted: 02/01/2009] [Indexed: 12/30/2022]
Abstract
Gene regulatory networks are shaped by selection for advantageous gene expression patterns. Can we use this fact to predict and explain the structure and properties of gene regulatory networks? Here we address this question with evolutionary simulations of small (two to four genes) transcriptional regulatory networks. Each modeled network is tested for the frequency with which it evolves to produce a bimodal spatial expression pattern of a target gene (the output), in response to a linear trigger gradient (the input). By including network features such as the organisation of binding sites that do not evolve in the model, we can compare the relative chances of evolutionary success between networks differing only in these features. Specifically, we show that networks with competitive binding sites (where binding of one transcription factor excludes another) are more likely to evolve bimodal patterns of gene repression than are networks with independent binding sites (where binding of multiple transcription factors can occur simultaneously). These predictions have implications for the likely structure of gene regulatory networks carrying out bimodal (including bistable) gene expression functions in vivo. The capacity to predict the evolution of structure-function relationships in gene regulatory networks is constrained by gaps in current understanding such as the unknown prior probabilities of the network features, and the quantitative nature of the molecular interactions involved in gene expression. Methods for the circumvention of these constraints, and the potential of the evolutionary modeling approach, are discussed.
Collapse
Affiliation(s)
- Max B Cooper
- Institute of Genetics, School of Biology, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | | | | |
Collapse
|
27
|
Cinnamon E, Paroush Z. Context-dependent regulation of Groucho/TLE-mediated repression. Curr Opin Genet Dev 2008; 18:435-40. [PMID: 18721877 DOI: 10.1016/j.gde.2008.07.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/14/2008] [Accepted: 07/23/2008] [Indexed: 01/15/2023]
Abstract
Groucho/TLE proteins are global corepressors that are recruited to target promoters by different families of DNA-binding repressors. As these corepressors are widely expressed, the long-standing view had been that Groucho/TLE-mediated repression is regulated solely by the spatial and temporal distribution of partner repressors. It has recently emerged, however, that Groucho/TLE repressor activity is itself regulated, in a signal induced, context-dependent manner. Here we review the essential roles played by Groucho/TLE factors in different cell-signalling processes that illustrate different modes for regulating Groucho/TLE-mediated repression: (i) via the expression of partner repressors; (ii) by competition with coactivators and (iii) through post-translational modifications of Groucho/TLE. We also discuss how the intrinsic properties of repressors can result in differential responses to Groucho/TLE regulation.
Collapse
Affiliation(s)
- Einat Cinnamon
- Department of Biochemistry, Faculty of Medicine, The Hebrew University, PO Box 12272, Jerusalem 91120, Israel.
| | | |
Collapse
|
28
|
Maternal Groucho and bHLH repressors amplify the dose-sensitive X chromosome signal in Drosophila sex determination. Dev Biol 2008; 323:248-60. [PMID: 18773886 DOI: 10.1016/j.ydbio.2008.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/07/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
In Drosophila, XX embryos are fated to develop as females, and XY embryos as males, because the diplo-X dose of four X-linked signal element genes, XSEs, activates the Sex-lethal establishment promoter, SxlPe, whereas the haplo-X XSE dose leaves SxlPe off. The threshold response of SxlPe to XSE concentrations depends in part on the bHLH repressor, Deadpan, present in equal amounts in XX and XY embryos. We identified canonical and non-canonical DNA-binding sites for Dpn at SxlPe and found that cis-acting mutations in the Dpn-binding sites caused stronger and earlier Sxl expression than did deletion of dpn implicating other bHLH repressors in Sxl regulation. Maternal Hey encodes one such bHLH regulator but the E(spl) locus does not. Elimination of the maternal corepressor Groucho also caused strong ectopic Sxl expression in XY, and premature Sxl activation in XX embryos, but Sxl was still expressed differently in the sexes. Our findings suggest that Groucho and associated maternal and zygotic bHLH repressors define the threshold XSE concentrations needed to activate SxlPe and that they participate directly in sex signal amplification. We present a model in which the XSE signal is amplified by a feedback mechanism that interferes with Gro-mediated repression in XX, but not XY embryos.
Collapse
|