1
|
Chen Y, Lv P, Du M, Liang Z, Zhou M, Chen D. Increased retinol-free RBP4 contributes to insulin resistance in gestational diabetes mellitus. Arch Gynecol Obstet 2017; 296:53-61. [PMID: 28528355 DOI: 10.1007/s00404-017-4378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Retinol-binding protein 4 (RBP4) is a circulating retinol transporter that is strongly associated with insulin resistance. The aim of this study was to evaluate the RBP4 and retinol level in rat model of gestational diabetes mellitus and the relationship between retinol-free RBP4 (apo-RBP4), retinol-bound RBP4 (holo-RBP4) and insulin resistance. METHODS Pregnant rats were administered streptozotocin to induce diabetes. The RBP4 and retinol levels were evaluated in GDM and normal pregnant rats. After then, normal pregnant rats were divided into two groups to receive either apo-RBP4 or vehicle injection. The metabolic parameters and insulin signaling in adipose tissue, skeletal muscle and liver were determined in apo-RBP4 and control groups. Primary human adipocytes were cultured in vitro with different proportions of apo-RBP4 and holo-RBP4 for 24 h. The interaction between RBP4 and STRA6 was assessed by co-immunoprecipitation, and the expression of JAK-STAT pathway and insulin signaling were detected by Western blotting and immunofluorescence. RESULTS We found increases in serum RBP4 levels and the RBP4:retinol ratio but not in the retinol levels in GDM rats. Exogenous apo-RBP4 injection attenuated insulin sensitivity in pregnant rats. In vitro, a prolonged interaction between RBP4 and STRA6 was observed when apo-RBP4 was present. In response to increased apo-RBP4 levels, cells showed elevated activation of the JAK2/STAT5 cascade and SOCS3 expression, decreased phosphorylation of IR and IRS1, and attenuated GLUT4 translocation and glucose uptake upon insulin stimulation. CONCLUSION Apo-RBP4 is a ligand that activates the STRA6 signaling cascade, inducing insulin resistance in GDM.
Collapse
Affiliation(s)
- Yanmin Chen
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ping Lv
- Department of Obstetrics and Gynecology, Shengzhou People's Hospital, Hangzhou, 312400, Zhejiang, China
| | - Mengkai Du
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Zhaoxia Liang
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Menglin Zhou
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Danqing Chen
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
2
|
Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, Assur Z, Cavalier M, Godoy-Ruiz R, von Alpen DC, Manzini C, Blaner WS, Frank J, Quadro L, Weber DJ, Shapiro L, Hendrickson WA, Mancia F. Structure of the STRA6 receptor for retinol uptake. Science 2017; 353:353/6302/aad8266. [PMID: 27563101 DOI: 10.1126/science.aad8266] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 06/16/2016] [Indexed: 12/20/2022]
Abstract
Vitamin A homeostasis is critical to normal cellular function. Retinol-binding protein (RBP) is the sole specific carrier in the bloodstream for hydrophobic retinol, the main form in which vitamin A is transported. The integral membrane receptor STRA6 mediates cellular uptake of vitamin A by recognizing RBP-retinol to trigger release and internalization of retinol. We present the structure of zebrafish STRA6 determined to 3.9-angstrom resolution by single-particle cryo-electron microscopy. STRA6 has one intramembrane and nine transmembrane helices in an intricate dimeric assembly. Unexpectedly, calmodulin is bound tightly to STRA6 in a noncanonical arrangement. Residues involved with RBP binding map to an archlike structure that covers a deep lipophilic cleft. This cleft is open to the membrane, suggesting a possible mode for internalization of retinol through direct diffusion into the lipid bilayer.
Collapse
Affiliation(s)
- Yunting Chen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Oliver B Clarke
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean Stowe
- The Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zahra Assur
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael Cavalier
- The Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Raquel Godoy-Ruiz
- The Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Desiree C von Alpen
- Department of Pharmacology and Physiology and Department of Integrative Systems Biology, George Washington University, Washington, DC 20037, USA
| | - Chiara Manzini
- Department of Pharmacology and Physiology and Department of Integrative Systems Biology, George Washington University, Washington, DC 20037, USA
| | - William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wayne A Hendrickson
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA. Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|