1
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
2
|
Maru Y, Hippo Y. Two-Way Development of the Genetic Model for Endometrial Tumorigenesis in Mice: Current and Future Perspectives. Front Genet 2021; 12:798628. [PMID: 34956336 PMCID: PMC8696168 DOI: 10.3389/fgene.2021.798628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Endometrial cancer (EC) is the most common malignancy of the female reproductive tract worldwide. Although comprehensive genomic analyses of EC have already uncovered many recurrent genetic alterations and deregulated signaling pathways, its disease model has been limited in quantity and quality. Here, we review the current status of genetic models for EC in mice, which have been developed in two distinct ways at the level of organisms and cells. Accordingly, we first describe the in vivo model using genetic engineering. This approach has been applied to only a subset of genes, with a primary focus on Pten inactivation, given that PTEN is the most frequently altered gene in human EC. In these models, the tissue specificity in genetic engineering determined by the Cre transgenic line has been insufficient. Consequently, the molecular mechanisms underlying EC development remain poorly understood, and preclinical models are still limited in number. Recently, refined Cre transgenic mice have been created to address this issue. With highly specific gene recombination in the endometrial cell lineage, acceptable in vivo modeling of EC development is warranted using these Cre lines. Second, we illustrate an emerging cell-based model. This hybrid approach comprises ex vivo genetic engineering of organoids and in vivo tumor development in immunocompromised mice. Although only a few successful cases have been reported as proof of concept, this approach allows quick and comprehensive analysis, ensuring a high potential for reconstituting carcinogenesis. Hence, ex vivo/in vivo hybrid modeling of EC development and its comparison with corresponding in vivo models may dramatically accelerate EC research. Finally, we provide perspectives on future directions of EC modeling.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
3
|
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl 2020; 21:531-539. [PMID: 30924450 PMCID: PMC6859654 DOI: 10.4103/aja.aja_11_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up to 15% of male infertility has an immunological origin, either due to repetitive infections or to autoimmune responses mainly affecting the epididymis, prostate, and testis. Clinical observations and epidemiological data clearly contradict the idea that the testis confers immune protection to the whole male genital tract. As a consequence, the epididymis, in which posttesticular spermatozoa mature and are stored, has raised some interest in recent years when it comes to its immune mechanisms. Indeed, sperm cells are produced at puberty, long after the establishment of self-tolerance, and they possess unique surface proteins that cannot be recognized as self. These are potential targets of the immune system, with the risk of inducing autoantibodies and consequently male infertility. Epididymal immunity is based on a finely tuned equilibrium between efficient immune responses to pathogens and strong tolerance to sperm cells. These processes rely on incompletely described molecules and cell types. This review compiles recent studies focusing on the immune cell types populating the epididymis, and proposes hypothetical models of the organization of epididymal immunity with a special emphasis on the immune response, while also discussing important aspects of the epididymal immune regulation such as tolerance and tumour control.
Collapse
Affiliation(s)
- Allison Voisin
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Fabrice Saez
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Joël R Drevet
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Rachel Guiton
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
4
|
Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells 2020; 9:cells9041017. [PMID: 32325871 PMCID: PMC7226144 DOI: 10.3390/cells9041017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
A common feature of tumorigenesis is the upregulation of angiogenesis pathways in order to supply nutrients via the blood for the growing tumor. Understanding how cells promote angiogenesis and how to control these processes pharmaceutically are of great clinical interest. Clear cell renal cell carcinoma (ccRCC) is the most common form of sporadic and inherited kidney cancer which is associated with excess neovascularization. ccRCC is highly associated with biallelic mutations in the von Hippel–Lindau (VHL) tumor suppressor gene. Although upregulation of the miR-212/132 family and disturbed VHL signaling have both been linked with angiogenesis, no evidence of a possible connection between the two has yet been made. We show that miRNA-212/132 levels are increased after loss of functional pVHL, the protein product of the VHL gene, in vivo and in vitro. Furthermore, we show that blocking miRNA-212/132 with anti-miRs can significantly alleviate the excessive vascular branching phenotype characteristic of vhl−/− mutant zebrafish. Moreover, using human umbilical vascular endothelial cells (HUVECs) and an endothelial cell/pericyte coculture system, we observed that VHL knockdown promotes endothelial cells neovascularization capacity in vitro, an effect which can be inhibited by anti-miR-212/132 treatment. Taken together, our results demonstrate an important role for miRNA-212/132 in angiogenesis induced by loss of VHL. Intriguingly, this also presents a possibility for the pharmaceutical manipulation of angiogenesis by modulating levels of MiR212/132.
Collapse
|
5
|
Schönenberger D, Rajski M, Harlander S, Frew IJ. Vhl deletion in renal epithelia causes HIF-1α-dependent, HIF-2α-independent angiogenesis and constitutive diuresis. Oncotarget 2018; 7:60971-60985. [PMID: 27528422 PMCID: PMC5308630 DOI: 10.18632/oncotarget.11275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022] Open
Abstract
One of the earliest requirements for the formation of a solid tumor is the establishment of an adequate blood supply. Clear cell renal cell carcinomas (ccRCC) are highly vascularized tumors in which the earliest genetic event is most commonly the biallelic inactivation of the VHL tumor suppressor gene, leading to constitutive activation of the HIF-1α and HIF-2α transcription factors, which are known angiogenic factors. However it remains unclear whether either or both HIF-1α or HIF-2α stabilization in normal renal epithelial cells are necessary or sufficient for alterations in blood vessel formation. We show that renal epithelium-specific deletion of Vhl in mice causes increased medullary vascularization and that this phenotype is completely rescued by Hif1a co-deletion, but not by co-deletion of Hif2a. A physiological consequence of changes in the blood vessels of the vasa recta in Vhl-deficient mice is a diabetes insipidus phenotype of excretion of large amounts of highly diluted urine. This constitutive diuresis is fully compensated by increased water consumption and mice do not show any signs of dehydration, renal failure or salt wasting and blood electrolyte levels remain unchanged. Co-deletion of Hif1a, but not Hif2a, with Vhl, fully restored kidney morphology and function, correlating with the rescue of the vasculature. We hypothesize that the increased medullary vasculature alters salt uptake from the renal interstitium, resulting in a disruption of the osmotic gradient and impaired urinary concentration. Taken together, our study characterizes a new mouse model for a form of diabetes insipidus and non-obstructive hydronephrosis and provides new insights into the physiological and pathophysiological effects of HIF-1α stabilization on the vasculature in the kidney.
Collapse
Affiliation(s)
| | - Michal Rajski
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Sabine Harlander
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ian J Frew
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Abstract
The von Hippel–Lindau (VHL) gene is a two-hit tumor suppressor gene and is linked to the development of the most common form of kidney cancer, clear cell renal carcinoma; blood vessel tumors of the retina, cerebellum, and spinal cord called hemangioblastomas; and tumors of the sympathoadrenal nervous system called paragangliomas. The VHL gene product, pVHL, is the substrate recognition subunit of a cullin-dependent ubiquitin ligase that targets the α subunits of hypoxia-inducible factor (HIF) for destruction when oxygen is plentiful. Mounting evidence implicates HIF2 in the pathogenesis of pVHL-defective tumors and has provided a conceptual foundation for the development of drugs to treat them that inhibit HIF2-responsive gene products such as VEGF and, more recently, HIF2 itself. pVHL has additional, noncanonical functions that are cancer relevant, including roles related to the primary cilium, chromosome stability, extracellular matrix formation, and survival signaling.
Collapse
Affiliation(s)
- William G. Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
7
|
Wang S, Liu JC, Ju Y, Pellecchia G, Voisin V, Wang DY, Leha L R, Ben-David Y, Bader GD, Zacksenhaus E. microRNA-143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCI Insight 2017; 2:93313. [PMID: 28768903 DOI: 10.1172/jci.insight.93313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/23/2017] [Indexed: 11/17/2022] Open
Abstract
The tumor suppressor PTEN is frequently inactivated in breast and other cancers; yet, germ-line mutations in this gene induce nonmalignant hamartomas, indicating dependency on additional cooperating events. Here we show that most tumors derived from conditional deletion of mouse pten in mammary epithelium are highly differentiated and lack transplantable tumor-initiating cells (TICs) capable of seeding new tumors following orthotopic injection of FACS-sorted or tumorsphere cells. A rare group of poorly differentiated tumors did harbor transplantable TICs. These transplantable tumors exhibited distinct molecular classification, signaling pathways, chromosomal aberrations, and mutational landscape, as well as reduced expression of microRNA-143/145 (miR-143/145). Stable knockdown of miR-143/145 conferred tumorigenic potential upon poorly transplantable pten-deficient tumor cells through a mechanism involving induction of RAS signaling, leading to increased sensitivity to MEK inhibition. In humans, miR-145 deficiency significantly correlated with elevated RAS-pathway activity in basal-like breast cancer, and patients with combined PTEN/miR-145 loss or PTEN-loss/high RAS-pathway activity exhibited poor clinical outcome. These results underscore a selective pressure for combined PTEN loss together with RAS-pathway activation, either through miR-145 loss or other mechanisms, in basal-like breast cancer, and a need to identify and prioritize these tumors for aggressive therapy.
Collapse
Affiliation(s)
- Sharon Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and
| | - Jeff C Liu
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - YoungJun Ju
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | | | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dong-Yu Wang
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Rajwinder Leha L
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, and State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, and
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine & Pathobiology, and.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
PI3K/PTEN/AKT Genetic Mouse Models of Endometrial Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:261-273. [DOI: 10.1007/978-3-319-43139-0_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Tracking the Clonal Evolution of Adenosquamous Carcinoma, a Rare Variant of Intraductal Papillary Mucinous Neoplasm of the Pancreas. Pancreas 2016; 45:915-8. [PMID: 27295533 DOI: 10.1097/mpa.0000000000000556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adenosquamous carcinoma (ASC) is an uncommon variant of pancreatic neoplasm. We sought to trace the mode of tumor progression using specimens of ASC associated with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. A resected specimen of the primary pancreatic ASC, developed in a 72-year-old man, was subjected to mutation profiling using amplicon-targeted sequencing and digital polymerase chain reaction. DNA was isolated from each histological compartment including noninvasive IPMN, squamous cell carcinoma (SCC), and adenocarcinoma (AC). Histologically, an IPMN with a large mural nodule was identified. The invasive tumor predominantly consisted of SCC, and a smaller AC was found around the lesion. Squamous metaplasias were sporadically distributed within benign IPMNs. Mutation alleles KRAS and GNAS were identified in all specimens of IPMN including the areas of squamous metaplasia. In addition, these mutations were found in SCC and AC. Clear transition from flat/low-papillary IPMN to SCC indicated a potent invasion front, and the SCC compartment was genetically unique, because the area has a higher frequency of mutation KRAS. The invasive tumors with distinct histological appearances shared the form of noninvasive IPMN as a common precursor, rather than de novo cancer, suggesting the significance of a genetic profiling scheme of tumors associated with IPMN.
Collapse
|
10
|
Hakim S, Dyson JM, Feeney SJ, Davies EM, Sriratana A, Koenig MN, Plotnikova OV, Smyth IM, Ricardo SD, Hobbs RM, Mitchell CA. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 2016; 25:2295-2313. [PMID: 27056978 DOI: 10.1093/hmg/ddw097] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.
Collapse
Affiliation(s)
- Sandra Hakim
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer M Dyson
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth M Davies
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monica N Koenig
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olga V Plotnikova
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ian M Smyth
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Robin M Hobbs
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
11
|
Lehmann H, Vicari D, Wild PJ, Frew IJ. Combined Deletion of Vhl and Kif3a Accelerates Renal Cyst Formation. J Am Soc Nephrol 2015; 26:2778-88. [PMID: 25788526 DOI: 10.1681/asn.2014090875] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/06/2015] [Indexed: 12/20/2022] Open
Abstract
A subset of familial and sporadic clear cell renal cell carcinomas (ccRCCs) is believed to develop from cystic precursor lesions. Loss of function of the von Hippel-Lindau tumor suppressor gene (VHL) predisposes renal epithelial cells to loss of the primary cilium in response to specific signals. Because the primary cilium suppresses renal cyst formation, loss of the cilium may be an initiating event in the formation of ccRCC. To test this hypothesis, we analyzed the consequences of inducible renal epithelium-specific deletion of Vhl together with ablation of the primary cilium via deletion of the kinesin family member 3A (Kif3a) gene. We developed a microcomputed tomography-based imaging approach to allow quantitative longitudinal monitoring of cystic burden, revealing that combined loss of Vhl and Kif3a shortened the latency of cyst initiation, increased the number of cysts per kidney, and increased the total cystic burden. In contrast with findings in other cystic models, cysts in Kif3a mutant mice did not display accumulation of hypoxia-inducible factor 1-α (HIF1α), and deletion of both Hif1a and Kif3a did not affect cyst development or progression. Vhl/Kif3a double mutation also increased the frequency of cysts that displayed multilayered epithelial growth, which correlated with an increased frequency of misoriented cystic epithelial cell divisions. These results argue against the involvement of HIF1α in promoting renal cyst growth and suggest that the formation of simple and atypical renal cysts that resemble ccRCC precursor lesions is greatly accelerated by the combined loss of Vhl and the primary cilium.
Collapse
Affiliation(s)
| | | | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Ian J Frew
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; and
| |
Collapse
|
12
|
Activated mutant p110α causes endometrial carcinoma in the setting of biallelic Pten deletion. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1104-13. [PMID: 25698082 DOI: 10.1016/j.ajpath.2014.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
PTEN and PIK3CA mutations occur with high frequency in uterine endometrioid carcinoma (UEC). Although PTEN mutations are present in complex atypical hyperplasia and carcinoma, PIK3CA mutations are restricted to carcinoma. We generated mouse models harboring Pten loss and/or activated Pik3ca in the endometrial epithelium to investigate their respective roles in the pathogenesis of UEC. Presence of an activated mutant Pik3ca on the background of Pten loss led to aggressive disease, with 100% of mice exhibiting carcinoma. Expression of Pik3ca with E545K mutation alone was unable to cause hyperplasia or cancer in the uterus and did not activate Akt as effectively as Pten deletion in short-term cultures of mouse endometrial epithelium, likely explaining the lack of phenotype in vivo. We also report that nuclear localization of FOXO1 correlated with PTEN mutational status irrespective of the PIK3CA status in endometrial cancer cell lines. Furthermore, gene expression profiles resulting from Pten loss or activation of Pik3ca in primary mouse endometrial epithelial cells exhibit minimal overlap. Thus, Pten and Pik3ca have distinct consequences on the activation of the phosphatidylinositol 3-kinase pathway in endometrial epithelium and are likely to affect other nonoverlapping cellular mechanisms involved in the development and progression of the most common type of uterine cancer.
Collapse
|
13
|
Schmid S, Gillessen S, Binet I, Brändle M, Engeler D, Greiner J, Hader C, Heinimann K, Kloos P, Krek W, Krull I, Stoeckli SJ, Sulz MC, van Leyen K, Weber J, Rothermundt C, Hundsberger T. Management of von hippel-lindau disease: an interdisciplinary review. Oncol Res Treat 2014; 37:761-71. [PMID: 25531723 DOI: 10.1159/000369362] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited tumour predisposition syndrome with an incidence of 1:36,000 newborns, the estimated prevalence in Europe is about 1-9/100,000. It is associated with an increased risk of developing various benign and malignant tumours, thus affecting multiple organs at different time points in the life of a patient. Disease severity and diversity as well as age at first symptoms vary considerably, and diagnostic delay due to failure of recognition is a relevant issue. The identification of a disease-causing VHL germline mutation subsequently allows family members at risk to undergo predictive genetic testing after genetic counselling. Clinical management of patients and families should optimally be offered as an interdisciplinary approach. Prophylactic screening programs are a cornerstone of care, and have markedly improved median overall survival of affected patients. The aim of this review is to give an overview of the heterogeneous manifestations of the VHL syndrome and to highlight the diagnostic and therapeutic challenges characteristic for this orphan disease. A comprehensive update of the underlying genetic and molecular principles is additionally provided. We also describe how the St. Gallen VHL multidisciplinary group is organised as an example of interdisciplinary cooperation in a tertiary hospital in Switzerland.
Collapse
Affiliation(s)
- Sabine Schmid
- Division of Haematology and Oncology, Cantonal Hospital St. Gallen, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene 2014; 34:2631-9. [DOI: 10.1038/onc.2014.197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
|
15
|
[p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumor aggressiveness in humans]. DER PATHOLOGE 2013; 34 Suppl 2:180-8. [PMID: 24196610 DOI: 10.1007/s00292-013-1859-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Type II endometrial carcinomas are a highly aggressive group of tumor subtypes that are frequently associated with inactivation of the TP53 tumor suppressor gene. We show that mice with endometrium-specific deletion of the Trp53 gene initially exhibited histological changes that are identical to known precursor lesions of type II endometrial carcinomas in humans and later developed carcinomas representing all type II subtypes. The mTORC1 signalling pathway was frequently activated in these precursor lesions and tumors, suggesting a genetic cooperation between this pathway and Trp53 deficiency in tumor initiation. Consistent with this idea, analyses of 521 human endometrial carcinomas identified frequent mTORC1 pathway activation in type I as well as type II endometrial carcinoma subtypes. The mTORC1 pathway activation and p53 expression or mutation status each independently predicted poor patient survival. We suggest that molecular alterations in p53 and the mTORC1 pathway play different roles in the initiation of the different endometrial cancer subtypes but combined p53 inactivation and mTORC1 pathway activation are unifying pathogenic features among histologically diverse subtypes of late stage aggressive endometrial tumors.
Collapse
|
16
|
Albers J, Rajski M, Schönenberger D, Harlander S, Schraml P, von Teichman A, Georgiev S, Wild PJ, Moch H, Krek W, Frew IJ. Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO Mol Med 2013; 5:949-64. [PMID: 23606570 PMCID: PMC3779454 DOI: 10.1002/emmm.201202231] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/03/2022] Open
Abstract
The combinations of genetic alterations that cooperate with von Hippel–Lindau (VHL) mutation to cause clear cell renal cell carcinoma (ccRCC) remain poorly understood. We show that the TP53 tumour suppressor gene is mutated in approximately 9% of human ccRCCs. Combined deletion of Vhl and Trp53 in primary mouse embryo fibroblasts causes proliferative dysregulation and high rates of aneuploidy. Deletion of these genes in the epithelium of the kidney induces the formation of simple cysts, atypical cysts and neoplasms, and deletion in the epithelia of the genital urinary tract leads to dysplasia and tumour formation. Kidney cysts display a reduced frequency of primary cilia and atypical cysts and neoplasms exhibit a pro-proliferative signature including activation of mTORC1 and high expression of Myc, mimicking several cellular and molecular alterations seen in human ccRCC and its precursor lesions. As the majority of ccRCC is associated with functional inactivation of VHL, our findings suggest that for a subset of ccRCC, loss of p53 function represents a critical event in tumour development.
Collapse
Affiliation(s)
- Joachim Albers
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Creasy D, Bube A, de Rijk E, Kandori H, Kuwahara M, Masson R, Nolte T, Reams R, Regan K, Rehm S, Rogerson P, Whitney K. Proliferative and nonproliferative lesions of the rat and mouse male reproductive system. Toxicol Pathol 2013; 40:40S-121S. [PMID: 22949412 DOI: 10.1177/0192623312454337] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and differential diagnosis for classifying microscopic lesions observed in the male reproductive system of laboratory rats and mice, with color microphotographs illustrating examples of some lesions. The standardized nomenclature presented in this document is also available for society members electronically on the Internet (http://goreni.org). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and aging lesions as well as lesions induced by exposure to test materials. A widely accepted and utilized international harmonization of nomenclature for lesions of the male reproductive system in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Dianne Creasy
- Huntingdon Life Sciences, East Millstone, New Jersey 08875, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pawłowski R, Mühl SM, Sulser T, Krek W, Moch H, Schraml P. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer 2012; 132:E11-7. [DOI: 10.1002/ijc.27822] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
|
19
|
Park S, Chan CC. Von Hippel-Lindau disease (VHL): a need for a murine model with retinal hemangioblastoma. Histol Histopathol 2012; 27:975-84. [PMID: 22763871 PMCID: PMC3407271 DOI: 10.14670/hh-27.975] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Von Hippel-Lindau (VHL) disease is a highly penetrant autosomal dominant systemic malignancy that gives rise to cystic and highly vascularized tumors in a constellation of organs. Patients with VHL disease commonly present with hemangioblastomas in the central nervous system and the eye while other manifestations include pheochromocytoma, clear cell renal cell carcinoma, endolymphatic sac tumors of the middle ear, pancreatic cystadenomas, epididymal and broad ligament cystadenomas. Animal models inactivating the VHL gene product in various organ tissues have been constructed over the past 15 years to parse its HIF-associated mechanisms and its link to tumorigenesis. These models, despite advancing our understanding the molecular role of VHL, are by and large unable to recapitulate the more common features of human VHL disease. Up to date, no model exists that develop retinal hemangioblastomas, the most common clinical manifestation. The purpose of this review is: (1) to discuss the need for an ocular VHL model, (2) to review the animal models that recapitulate clinical VHL disease and (3) to propose potential mechanisms of tumorigenesis for the development of ocular VHL.
Collapse
Affiliation(s)
- Stanley Park
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Wild PJ, Ikenberg K, Fuchs TJ, Rechsteiner M, Georgiev S, Fankhauser N, Noske A, Roessle M, Caduff R, Dellas A, Fink D, Moch H, Krek W, Frew IJ. p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans. EMBO Mol Med 2012; 4:808-24. [PMID: 22678923 PMCID: PMC3494078 DOI: 10.1002/emmm.201101063] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/13/2022] Open
Abstract
Type II endometrial carcinomas are a highly aggressive group of tumour subtypes that are frequently associated with inactivation of the TP53 tumour suppressor gene. We show that mice with endometrium-specific deletion of Trp53 initially exhibited histological changes that are identical to known precursor lesions of type II endometrial carcinomas in humans and later developed carcinomas representing all type II subtypes. The mTORC1 signalling pathway was frequently activated in these precursor lesions and tumours, suggesting a genetic cooperation between this pathway and Trp53 deficiency in tumour initiation. Consistent with this idea, analyses of 521 human endometrial carcinomas identified frequent mTORC1 pathway activation in type I as well as type II endometrial carcinoma subtypes. mTORC1 pathway activation and p53 expression or mutation status each independently predicted poor patient survival. We suggest that molecular alterations in p53 and the mTORC1 pathway play different roles in the initiation of the different endometrial cancer subtypes, but that combined p53 inactivation and mTORC1 pathway activation are unifying pathogenic features among histologically diverse subtypes of late stage aggressive endometrial tumours.
Collapse
Affiliation(s)
- Peter J Wild
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Over the last two decades molecular studies of inherited tumor syndromes that are associated with the development of kidney cancer have led to the identification of genes and biochemical pathways, which play key roles in the malignant transformation of renal epithelial cells. Some of these findings have broad biological impact and extend beyond renal cancer. This review's focus is on the von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) oxygen-sensing pathway and its role in physiology, energy metabolism and tumorigenesis.
Collapse
Affiliation(s)
- Volker H Haase
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Yeung CH, Wang K, Cooper TG. Why are epididymal tumours so rare? Asian J Androl 2012; 14:465-75. [PMID: 22522502 DOI: 10.1038/aja.2012.20] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epididymal tumour incidence is at most 0.03% of all male cancers. It is an enigma why the human epididymis does not often succumb to cancer, when it expresses markers of stem and cancer cells, and constitutively expresses oncogenes, pro-proliferative and pro-angiogenic factors that allow tumour cells to escape immunosurveillance in cancer-prone tissues. The privileged position of the human epididymis in evading tumourigenicity is reflected in transgenic mouse models in which induction of tumours in other organs is not accompanied by epididymal neoplasia. The epididymis appears to: (i) prevent tumour initiation (it probably lacks stem cells and has strong anti-oxidative mechanisms, active tumour suppressors and inactive oncogene products); (ii) foster tumour monitoring and destruction (by strong immuno-surveillance and -eradication, and cellular senescence); (iii) avert proliferation and angiogenesis (with persistent tight junctions, the presence of anti-angiogenic factors and misplaced pro-angiogenic factors), which together (iv) promote dormancy and restrict dividing cells to hyperplasia. Epididymal cells may be rendered non-responsive to oncogenic stimuli by the constitutive expression of factors generally inducible in tumours, and resistant to the normal epididymal environment, which mimics that of a tumour niche promoting tumour growth. The threshold for tumour initiation may thus be higher in the epididymis than in other organs. Several anti-tumour mechanisms are those that maintain spermatozoa quiescent and immunologically silent, so the low incidence of cancer in the epididymis may be a consequence of its role in sperm maturation and storage. Understanding these mechanisms may throw light on cancer prevention and therapy in general.
Collapse
Affiliation(s)
- Ching-Hei Yeung
- Shandong Stem Cell Engineering and Technology Research Centre, YuHuangDing Hospital, Yantai, China
| | | | | |
Collapse
|
23
|
Nogales FF, Goyenaga P, Preda O, Nicolae A, Vieites B, Ruiz-Marcellan MC, Pedrosa A, Merino MJ. An analysis of five clear cell papillary cystadenomas of mesosalpinx and broad ligament: four associated with von Hippel-Lindau disease and one aggressive sporadic type. Histopathology 2012; 60:748-57. [PMID: 22296276 DOI: 10.1111/j.1365-2559.2011.04151.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS Clear cell papillary cystadenoma (CCPC) is associated with von Hippel-Lindau disease (VHLD), but rarely involves mesosalpinx and broad ligament (M/BL). This study provides new data about its behaviour and immunophenotype. METHODS AND RESULTS We performed an analysis of four benign cases of CCPC of M/BL with either characteristic clinical features or genetic markers [loss of heterozygosity (LOH)] of VHLD in patients ranging from 24 to 36 years and a sporadic case in a 52-year-old presenting with peritoneal metastases. All CCPCs were papillary but had solid and tubular areas. Haemorrhage, thrombosis and scarring were constant features and related to an unusual pattern of sub-epithelial vascularity. All clear or oxyphilic cells co-expressed cytokeratin 7 (CK7), CAM5.2 and vimentin, with strong apical CD10 and nuclear paired box gene 2 (PAX2) immunoreactivity. Three cases also showed positivity for VHL40, epithelial membrane antigen (EMA), Wilms' tumour suppressor gene (WT-1) and cancer antigen 125 (CA125) but only one expressed renal cell carcinoma (RCC) antigen. Vascular plexus overexpressed nuclear and cytoplasmic WT-1. CONCLUSION The VHLD-associated cases appeared to be benign, but the sporadic case exhibited a low malignant potential. CCPCs show histological and immunophenotypical similarities with the recently reported clear cell papillary RCC, although the previously unreported apical CD10 and nuclear PAX2 expression may be related to their mesonephric origin. CCPC has a distinctive sub-epithelial vascular pattern that is consistent with its pathogenesis.
Collapse
Affiliation(s)
- Francisco F Nogales
- Departments of Pathology, Hospital Universitario San Cecilio, Granada, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cummins TD, Mendenhall MD, Lowry MN, Korte EA, Barati MT, Khundmiri SJ, Salyer SA, Klein JB, Powell DW. Elongin C is a mediator of Notch4 activity in human renal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1748-57. [PMID: 22001063 DOI: 10.1016/j.bbapap.2011.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/12/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Notch proteins (Notch 1-4) are a family of trans-membrane cell surface receptors that are converted into transcriptional regulators when activated by interactions with cell surface ligands on adjacent cells. Ligand-binding stimulates proteolytic cleavage of the trans-membrane domain, releasing an active intracellular domain (ICD) that translocates to the nucleus and impacts transcription. In transit, the ICD may interact with regulatory proteins that modulate the expression and transcriptional activity. We have found that Notch4(ICD) expression is enhanced in the tubule cells of fibrotic kidneys from diabetic mice and humans and identified Notch4(ICD) interacting proteins that could be pertinent to normal and pathological functions. Using proteomic techniques, several components of the Elongin C complex were identified as candidate Notch4(ICD) interactors. Elongin C complexes can function as ubiquitin ligases capable of regulating proteasomal degradation of specific protein substrates. Our studies indicate that ectopic Elongin C expression stimulates Notch4(ICD) degradation and inhibits its transcriptional activity in human kidney tubule HK11 cells. Blocking Elongin C mediated degradation by MG132 indicates the potential for ubiquitin-mediated Elongin C regulation of Notch4(ICD). Functional interaction of Notch4(ICD) and Elongin C provides novel insight into regulation of Notch signaling in epithelial cell biology and disease.
Collapse
Affiliation(s)
- Timothy D Cummins
- Departments of Biochemistry and Molecular Biology, University of Kentucky, KY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene 2011; 31:2247-57. [PMID: 21996733 DOI: 10.1038/onc.2011.442] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) has attracted intensive interest not only because its mutations predispose carriers to devastating tumors, but also because it is involved in oxygen sensing under physiological conditions. VHL loss-of-function mutations result in organ-specific tumors, such as hemangioblastoma of the central nervous system and renal cell carcinoma, both untreatable with conventional chemotherapies. The VHL protein is best known as an E3 ubiquitin ligase that targets hypoxia-inducible factor-α (HIF-α), but many diverse, non-canonical cellular functions have also been assigned to VHL, mainly based on studies in cell culture systems. As such, although the HIF-dependent role of VHL is critical, the full spectrum of pathophysiological functions of VHL is still unresolved. Such understanding requires careful cross-referencing with physiologically relevant experimental models. Studies in model systems, such as Caenorhabditis elegans, Drosophila, zebrafish and mouse have provided critical in vivo confirmation of the VHL-HIF pathway, and verification of potentially important cellular functions including microtubule stabilization and epithelial morphogenesis. More recently, animal models have also suggested systemic roles of VHL in hematopoiesis, metabolic homeostasis and inflammation. In this review, the studies performed in model organisms will be summarized and placed in context with existing clinical and in vitro data.
Collapse
|
26
|
von Teichman A, Compérat E, Behnke S, Storz M, Moch H, Schraml P. VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma. Mod Pathol 2011; 24:571-8. [PMID: 21151099 DOI: 10.1038/modpathol.2010.222] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multilocular cystic renal cell carcinoma is a rare renal cell carcinoma with an excellent prognosis. To clarify the relationship with typical clear cell renal cell carcinoma, we evaluated 15 cases of multilocular cystic renal cell carcinomas diagnosed according to the 2004 WHO classification. Von Hippel Lindau (VHL) gene mutations were determined by whole genome amplification and direct sequencing. Carbonic anhydrase 9 (CAIX), a hypoxia-inducible factor (HIF) target, paired box gene 2 (PAX2), cyclin-dependent kinase inhibitor p27 and glycogen synthase kinase 3-β (GSK3β) were immunohistochemically evaluated as members of the VHL protein (pVHL)- and phosphatase and tensin homolog (PTEN)-controlled pathways. VHL mutations were identified in 3 of 12 (25%) tumors. Inactivated GSK3β, decreased PTEN expression and PAX2 positivity were observed in the vast majority of the multilocular cystic renal cell carcinomas. Strong nuclear staining of p27 was seen in 14 of 15 cases. Compared with multilocular cystic renal cell carcinomas, expression frequencies of PAX2, p-GSK3β, PTEN and CAIX were similar in a set of low-grade, early-stage clear cell renal cell carcinomas, whereas only 30% had strong p27 positivity. These results are consistent with the hypothesis that multilocular cystic renal cell carcinomas are related at the molecular level with clear cell renal cell carcinomas. Maintenance of a strong subcellular p27 expression in all multilocular cystic renal cell carcinomas analyzed may in part explain the excellent prognosis of these tumor patients.
Collapse
Affiliation(s)
- Adriana von Teichman
- University Hospital Zurich, Institute of Surgical Pathology, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
van Rooijen E, Santhakumar K, Logister I, Voest E, Schulte-Merker S, Giles R, van Eeden F. A Zebrafish Model for VHL and Hypoxia Signaling. Methods Cell Biol 2011; 105:163-90. [DOI: 10.1016/b978-0-12-381320-6.00007-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Haase VH. The VHL tumor suppressor: master regulator of HIF. Curr Pharm Des 2010; 15:3895-903. [PMID: 19671042 DOI: 10.2174/138161209789649394] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 12/11/2022]
Abstract
Hypoxia-Inducible Factors (HIFs) are heterodimeric oxygen-sensitive basic helix-loop-helix transcription factors that play central roles in cellular adaptation to low oxygen environments. The von-Hippel Lindau tumor suppressor (pVHL) is the substrate recognition component of an E3 ubiquitin ligase and functions as a master regulator of HIF activity by targeting the hydroxylated HIF-alpha subunit for ubiquitylation and rapid proteasomal degradation under normoxic conditions. Mutations in pVHL can be found in familial and sporadic hemangioblastomas, clear cell carcinomas of the kidney, pheochromocytomas and inherited forms of erythrocytosis, illustrating the importance of disrupted molecular oxygen sensing in the pathogenesis of these diseases. Tissue-specific gene targeting of pVHL in mice has demonstrated that efficient execution of HIF proteolysis is critically important for normal tissue physiology, and has provided novel insights into the functional consequences of HIF activation on the cellular and tissue level. Here we focus on the contribution of individual HIF transcription factors to the development of VHL phenotypes and discuss how the pVHL/HIF axis could be exploited pharmacologically.
Collapse
Affiliation(s)
- Volker H Haase
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Zhang P, Ying L, Xu R, Ge S, Mei W, Li F, Dai B, Lu J, Qian G. Tumor-Specific, Hypoxia-Regulated, WW Domain-Containing Oxidoreductase-Expressing Adenovirus Inhibits Human Non-Small Cell Lung Cancer Growth In Vivo. Hum Gene Ther 2010; 21:27-39. [DOI: 10.1089/hum.2009.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ping Zhang
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Ying
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rang Xu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Shengfang Ge
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wenhan Mei
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Feng Li
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Bingbing Dai
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jian Lu
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Institutes of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
30
|
Dahinden C, Ingold B, Wild P, Boysen G, Luu VD, Montani M, Kristiansen G, Sulser T, Bühlmann P, Moch H, Schraml P. Mining tissue microarray data to uncover combinations of biomarker expression patterns that improve intermediate staging and grading of clear cell renal cell cancer. Clin Cancer Res 2009; 16:88-98. [PMID: 20028743 DOI: 10.1158/1078-0432.ccr-09-0260] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor stage and nuclear grade are the most important prognostic parameters of clear cell renal cell carcinoma (ccRCC). The progression risk of ccRCC remains difficult to predict particularly for tumors with organ-confined stage and intermediate differentiation grade. Elucidating molecular pathways deregulated in ccRCC may point to novel prognostic parameters that facilitate planning of therapeutic approaches. EXPERIMENTAL DESIGN Using tissue microarrays, expression patterns of 15 different proteins were evaluated in over 800 ccRCC patients to analyze pathways reported to be physiologically controlled by the tumor suppressors von Hippel-Lindau protein and phosphatase and tensin homologue (PTEN). Tumor staging and grading were improved by performing variable selection using Cox regression and a recursive bootstrap elimination scheme. RESULTS Patients with pT2 and pT3 tumors that were p27 and CAIX positive had a better outcome than those with all remaining marker combinations. A prolonged survival among patients with intermediate grade (grade 2) correlated with both nuclear p27 and cytoplasmic PTEN expression, as well as with inactive, nonphosphorylated ribosomal protein S6. By applying graphical log-linear modeling for over 700 ccRCC for which the molecular parameters were available, only a weak conditional dependence existed between the expression of p27, PTEN, CAIX, and p-S6, suggesting that the dysregulation of several independent pathways are crucial for tumor progression. CONCLUSIONS The use of recursive bootstrap elimination, as well as graphical log-linear modeling for comprehensive tissue microarray (TMA) data analysis allows the unraveling of complex molecular contexts and may improve predictive evaluations for patients with advanced renal cancer.
Collapse
Affiliation(s)
- Corinne Dahinden
- Department of Urology, University Hospital Zurich, Center for Systems Physiology and Metabolic Diseases, ETH Zurich, and Institute of Surgical Pathology, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P, Hergovich A, Moch H, Meraldi P, Krek W. VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 2009; 11:994-1001. [PMID: 19620968 DOI: 10.1038/ncb1912] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 04/09/2009] [Indexed: 12/15/2022]
|
32
|
Clustering of sebaceous gland carcinoma, papillary thyroid carcinoma and breast cancer in a woman as a new cancer susceptibility disorder: a case report. J Med Case Rep 2009; 3:6905. [PMID: 19830129 PMCID: PMC2759639 DOI: 10.4076/1752-1947-3-6905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/02/2009] [Indexed: 12/17/2022] Open
Abstract
Introduction Multiple distinct tumors arising in a single individual or within members of a family raise the suspicion of a genetic susceptibility disorder. Case presentation We present the case of a 52-year-old Caucasian woman diagnosed with sebaceous gland carcinoma of the eyelid, followed several years later with subsequent diagnoses of breast cancer and papillary carcinoma of the thyroid. Although the patient was also exposed to radiation from a pipe used in the oil field industry, the constellation of neoplasms in this patient suggests the manifestation of a known hereditary susceptibility cancer syndrome. However, testing for the most likely candidates such as Muir-Torre and Cowden syndrome proved negative. Conclusion We propose that our patient's clustering of neoplasms either represents a novel cancer susceptibility disorder, of which sebaceous gland carcinoma is a characteristic feature, or is a variant of the Muir-Torre syndrome.
Collapse
|
33
|
Kaelin WG. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer 2009; 115:2262-72. [PMID: 19402056 DOI: 10.1002/cncr.24232] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Germline inactivation of the VHL tumor suppressor gene is associated with an increased risk of clear cell carcinoma of the kidney in the context of von Hippel-Lindau (VHL) disease. Somatic VHL mutations are also common in nonhereditary (sporadic) clear cell carcinomas. The VHL protein (pVHL) has multiple functions that might be linked to tumor suppression, including targeting the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. HIF, especially HIF2alpha, appears to play a causal role in clear cell renal carcinogenesis based on genotype-phenotype correlations in VHL disease, laboratory experiments with human VHL-/- renal carcinoma cell lines, and genetically engineered mouse models. Deregulation of HIF almost certainly accounts for the high levels of vascular endothelial growth factor (VEGF) observed in kidney cancer and relates to their sensitivity to VEGF inhibitors. In addition, the beneficial effects of mammalian target of rapamycin (mTOR) inhibitors are likely due to, at least partly, their ability to down-regulate HIF. pVHL, in a HIF-independent manner, also regulates a specialized structure called the primary cilium and regulates apoptosis via factors such as NFkappaB. Loss of the primary cilium probably facilitates the development of preneoplastic renal cysts, whereas increased NFkappaB might contribute to the resistance of kidney cancers to conventional cytotoxic agents.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, 44 Binney Street, Mayer 457, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Abstract
The von Hippel-Lindau disease is caused by inactivating germline mutations of the VHL tumour suppressor gene and is associated with an increased risk of a variety of tumours in an allele-specific manner. The role of the heterodimeric transcription factor hypoxia-inducible factor (HIF) in the pathogenesis of VHL-defective tumours has been more firmly established during the past 5 years. In addition, there is now a greater appreciation of HIF-independent VHL functions that are relevant to tumour development, including maintenance of the primary cilium, regulation of extracellular matrix formation and turnover, and modulation of cell death in certain cell types following growth factor withdrawal or in response to other forms of stress.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789, USA.
| |
Collapse
|
35
|
Moch H. Funktionen des VHL-Proteins bei Entstehung und Progression von Nierenzellkarzinomen. DER PATHOLOGE 2008; 29 Suppl 2:149-52. [DOI: 10.1007/s00292-008-1034-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Moch H. Molekulare Basis der zielgerichteten Therapien bei metastasierenden Nierenzellkarzinomen. DER PATHOLOGE 2008; 29 Suppl 2:184-6. [DOI: 10.1007/s00292-008-1035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Abstract
Mutations in the von Hippel-Lindau tumor suppressor gene VHL occur in various inherited and sporadically occurring tumors. The protein encoded by VHL--pVHL--bears no known enzymatic activities but interacts with numerous protein partners. With the identification of distinct pVHL-containing multiprotein complexes, a refined portrait of pVHL tumor suppressor function has arisen. In general, pVHL acts as a multipurpose adaptor protein that controls a diverse array of gene expression programs, as well as extracellular matrix assembly and microtubule-based processes, by linking various target proteins to appropriate enzymatic activities. These findings provide an evermore complex but coherent view of how pVHL functions molecularly and of the consequences of dysregulation of these diverse molecular activities on tumor formation.
Collapse
Affiliation(s)
- Ian J Frew
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|