1
|
Falke K, Schröder E, Mosel S, Yürük CN, Feldmann S, Gül D, Stahl P, Stauber RH, Knauer SK. Old Passengers as New Drivers: Chromosomal Passenger Proteins Engage in Translesion Synthesis. Cells 2024; 13:1804. [PMID: 39513910 PMCID: PMC11544903 DOI: 10.3390/cells13211804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Survivin is known for its dual biological role in apoptosis inhibition and mitotic progression. In addition to its being part of the chromosomal passenger complex (CPC), recent findings suggest additional roles for Survivin in the DNA damage response, further contributing to therapy resistance. In this study, we investigated the role of Survivin and the CPC proteins in the cellular response to irradiation with a focus on DNA replication processes. As is known, ionizing radiation leads to an increased expression of Survivin and its accumulation in nuclear foci, which we now know to be specifically localized to centromeric heterochromatin. The depletion of Survivin and Aurora B increases the DNA damage marker γH2AX, indicative of an impaired repair capacity. The presence of Survivin and the CPC in nuclear foci that we already identified during the S phase co-localize with the proliferating cell nuclear antigen (PCNA), further implying a potential role during replication. Indeed, Survivin knockdown reduced replication fork speed as assessed via DNA fiber assays. Mechanistically, we identified a PIP-box motif in INCENP mediating the interaction with PCNA to assist in managing damage-induced replication stress. Survivin depletion forces cells to undergo unphysiological genome replication via mitotic DNA synthesis (MiDAS), resulting in chromosome breaks. Finally, we revealed that Aurora B kinase liberates Pol η by phosphorylating polymerase delta-interacting protein 2 (POLDIP2) to resume the replication of damaged sites via translesion synthesis. In this study, we assigned a direct function to the CPC in the transition from stalled replication forks to translesion synthesis, further emphasizing the ubiquitous overexpression of Survivin particularly in tumors. This study, for the first time, assigns a direct function to the chromosomal passenger complex, CPC, including Survivin, Aurora B kinase, Borealin, and INCENP, in the transition from stalled replication forks (involving PCNA binding) to translesion synthesis (liberating Pol η by phosphorylating POLDIP2), and thus in maintaining genomic integrity.
Collapse
Affiliation(s)
- Katharina Falke
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Elisabeth Schröder
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Stefanie Mosel
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Cansu N. Yürük
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Sophie Feldmann
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Désirée Gül
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.G.); (R.H.S.)
| | - Paul Stahl
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Roland H. Stauber
- Molecular and Cellular Oncology, University Medical Center Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany; (D.G.); (R.H.S.)
| | - Shirley K. Knauer
- Institute for Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
2
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Técher H, Gopaul D, Heuzé J, Bouzalmad N, Leray B, Vernet A, Mettling C, Moreaux J, Pasero P, Lin YL. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat Commun 2024; 15:5423. [PMID: 38926338 PMCID: PMC11208572 DOI: 10.1038/s41467-024-49740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-β was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, CNRS UMR7284 - INSERM U1081, Nice, France
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jonathan Heuzé
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Nail Bouzalmad
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Baptiste Leray
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Audrey Vernet
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jérôme Moreaux
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
4
|
Egger T, Morano L, Blanchard MP, Basbous J, Constantinou A. Spatial organization and functions of Chk1 activation by TopBP1 biomolecular condensates. Cell Rep 2024; 43:114064. [PMID: 38578830 DOI: 10.1016/j.celrep.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
Assembly of TopBP1 biomolecular condensates triggers activation of the ataxia telangiectasia-mutated and Rad3-related (ATR)/Chk1 signaling pathway, which coordinates cell responses to impaired DNA replication. Here, we used optogenetics and reverse genetics to investigate the role of sequence-specific motifs in the formation and functions of TopBP1 condensates. We propose that BACH1/FANCJ is involved in the partitioning of BRCA1 within TopBP1 compartments. We show that Chk1 is activated at the interface of TopBP1 condensates and provide evidence that these structures arise at sites of DNA damage and in primary human fibroblasts. Chk1 phosphorylation depends on the integrity of a conserved arginine motif within TopBP1's ATR activation domain (AAD). Its mutation uncouples Chk1 activation from TopBP1 condensation, revealing that optogenetically induced Chk1 phosphorylation triggers cell cycle checkpoints and slows down replication forks in the absence of DNA damage. Together with previous work, these data suggest that the intrinsically disordered AAD encodes distinct molecular steps in the ATR/Chk1 pathway.
Collapse
Affiliation(s)
- Tom Egger
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Laura Morano
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| | - Marie-Pierre Blanchard
- Montpellier Ressources Imageries, BioCampus, Université de Montpellier, CNRS, Montpellier, France
| | - Jihane Basbous
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France.
| | - Angelos Constantinou
- Institut de Génétique Humaine, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
5
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
6
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
7
|
Martí-Clúa J. Methods for Inferring Cell Cycle Parameters Using Thymidine Analogues. BIOLOGY 2023; 12:885. [PMID: 37372169 DOI: 10.3390/biology12060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Tritiated thymidine autoradiography, 5-bromo-2'-deoxyuridine (BrdU) 5-chloro-2'-deoxyuridine (CldU), 5-iodo-2'-deoxyuridine (IdU), and 5-ethynyl-2'-deoxyiridine (EdU) labeling have been used for identifying the fraction of cells undergoing the S-phase of the cell cycle and to follow the fate of these cells during the embryonic, perinatal, and adult life in several species of vertebrate. In this current review, I will discuss the dosage and times of exposition to the aforementioned thymidine analogues to label most of the cells undergoing the S-phase of the cell cycle. I will also show how to infer, in an asynchronous cell population, the duration of the G1, S, and G2 phases, as well as the growth fraction and the span of the whole cell cycle on the base of some labeling schemes involving a single administration, continuous nucleotide analogue delivery, and double labeling with two thymidine analogues. In this context, the choice of the optimal dose of BrdU, CldU, IdU, and EdU to label S-phase cells is a pivotal aspect to produce neither cytotoxic effects nor alter cell cycle progression. I hope that the information presented in this review can be of use as a reference for researchers involved in the genesis of tissues and organs.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología, Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia, Facultad de Biociencias, Institut de Neurociències, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Gupta P, Majumdar AG, Patro BS. Non-enzymatic function of WRN RECQL helicase regulates removal of topoisomerase-I-DNA covalent complexes and triggers NF-κB signaling in cancer. Aging Cell 2022; 21:e13625. [PMID: 35582959 PMCID: PMC9197415 DOI: 10.1111/acel.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022] Open
Abstract
Mutation in Werner (WRN) RECQL helicase is associated with premature aging syndrome (Werner syndrome, WS) and predisposition to multiple cancers. In patients with solid cancers, deficiency of the WRN RECQL helicase is paradoxically associated with enhanced overall survival in response to treatment with TOP1 inhibitors, which stabilize pathological TOP1‐DNA‐covalent‐complexes (TOP1cc) on the genome. However, the underlying mechanism of WRN in development of chemoresistance to TOP1 inhibitors is not yet explored. Our whole‐genome transcriptomic analysis for ~25,000 genes showed robust activation of NF‐κB‐dependent prosurvival genes in response to TOP1cc. CRISPR‐Cas9 knockout, shRNA silencing, and under‐expression of WRN confer high‐sensitivity of multiple cancers to TOP1 inhibitor. We demonstrated that WRN orchestrates TOP1cc repair through proteasome‐dependent and proteasome‐independent process, unleashing robust ssDNA generation. This in turn ensues signal transduction for CHK1 mediated NF‐κB‐activation through IκBα‐degradation and nuclear localization of p65 protein. Intriguingly, our site‐directed mutagenesis and rescue experiments revealed that neither RECQL‐helicase nor DNA‐exonuclease enzyme activity of WRN (WRNE84A, WRNK577M, and WRNE84A‐K577M) were required for TOP1cc removal, ssDNA generation and signaling for NF‐κB activation. In correlation with patient data and above results, the TOP1 inhibitor‐based targeted therapy showed that WRN‐deficient melanoma tumors were highly sensitive to TOP1 inhibition in preclinical in vivo mouse model. Collectively, our findings identify hitherto unknown non‐enzymatic role of WRN RECQL helicase in pathological mechanisms underlying TOP1cc processing and subsequent NF‐κB‐activation, offering a potential targeted therapy for WRN‐deficient cancer patients.
Collapse
Affiliation(s)
- Pooja Gupta
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Ananda Guha Majumdar
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| | - Birija Sankar Patro
- Bio‐Organic Division Bhabha Atomic Research Centre Trombay Mumbai India
- Homi Bhabha National Institute Anushaktinagar Mumbai India
| |
Collapse
|
9
|
Njauw CN, Ji Z, Pham DM, Simoneau A, Kumar R, Flaherty KT, Zou L, Tsao H. Oncogenic KIT Induces Replication Stress and Confers Cell Cycle Checkpoint Vulnerability in Melanoma. J Invest Dermatol 2022; 142:1413-1424.e6. [PMID: 34687746 DOI: 10.1016/j.jid.2021.07.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023]
Abstract
Acral and mucosal melanomas arise from sun-protected sites, disproportionately impact darker-skinned individuals, and exact higher mortality than common types of cutaneous melanoma. Genetically, acral and mucosal melanomas harbor more alterations of KIT than typical cutaneous melanomas. Because KIT-mutated melanomas remain largely treatment resistant, we set out to create a faithful murine KIT-driven allograft model to define newer therapeutic strategies. Using the prevalent human KITK642E activating mutation, the murine mKITK641E cellular avatars show features of transformation in vitro and tumorigenicity in immunocompetent C57BL/6J mice. mKITK641E cells proliferate more rapidly, exhibit greater chromosomal aberrations, and sustain three-dimensional spheroid expansion and aggressive tumor growth in C57BL/6J mice compared with their vector-controlled cells. We further verified the functional dependence of these cells on KITK641E with both genetic and pharmacologic suppression. Using these cells, we performed a screen of 199 kinase inhibitors and identified a selective vulnerability to Chk1/ATR inhibition in the KITK641E-activated cells. Mechanistically, we subsequently showed that KITK641E induces a significantly increased level of replication stress compared with murine vector‒controlled cells. These results showcase an allograft model of human KIT-driven melanomas, which uncovered an unappreciated role for replication stress in KIT melanomagenesis and implicated a possible therapeutic strategy with Chk1/ATR inhibitors.
Collapse
Affiliation(s)
- Ching-Ni Njauw
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhenyu Ji
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Duc Minh Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Antoine Simoneau
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Raj Kumar
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Keith T Flaherty
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lee Zou
- Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Mass General Cancer Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Batté A, van der Horst SC, Tittel-Elmer M, Sun SM, Sharma S, van Leeuwen J, Chabes A, van Attikum H. Chl1 helicase controls replication fork progression by regulating dNTP pools. Life Sci Alliance 2022; 5:5/4/e202101153. [PMID: 35017203 PMCID: PMC8761496 DOI: 10.26508/lsa.202101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Chl1 helicase affects RPA-dependent checkpoint activation after replication fork arrest by ensuring proper dNTP levels, thereby controlling replication fork progression under stress conditions. Eukaryotic cells have evolved a replication stress response that helps to overcome stalled/collapsed replication forks and ensure proper DNA replication. The replication checkpoint protein Mrc1 plays important roles in these processes, although its functional interactions are not fully understood. Here, we show that MRC1 negatively interacts with CHL1, which encodes the helicase protein Chl1, suggesting distinct roles for these factors during the replication stress response. Indeed, whereas Mrc1 is known to facilitate the restart of stalled replication forks, we uncovered that Chl1 controls replication fork rate under replication stress conditions. Chl1 loss leads to increased RNR1 gene expression and dNTP levels at the onset of S phase likely without activating the DNA damage response. This in turn impairs the formation of RPA-coated ssDNA and subsequent checkpoint activation. Thus, the Chl1 helicase affects RPA-dependent checkpoint activation in response to replication fork arrest by ensuring proper intracellular dNTP levels, thereby controlling replication fork progression under replication stress conditions.
Collapse
Affiliation(s)
- Amandine Batté
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Mireille Tittel-Elmer
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.,Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands
| | - Su Ming Sun
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jolanda van Leeuwen
- Center for Integrative Genomics, Université de Lausanne, Lausanne-Dorigny, Switzerland
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Pan Y, Yang Y, Huang R, Yang H, Huang Q, Ji Y, Dai J, Qiao K, Tang W, Xie L, Yin M, Ouyang J, Ning S, Su D. Ring finger protein 126 promotes breast cancer metastasis and serves as a potential target to improve the therapeutic sensitivity of ATR inhibitors. Breast Cancer Res 2022; 24:92. [PMID: 36539893 PMCID: PMC9764525 DOI: 10.1186/s13058-022-01586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/AIMS This study explores the relationship between the E3 ubiquitin ligase Ring finger protein 126 (RNF126) and early breast cancer metastasis and tests the hypothesis that RNF126 determines the efficacy of inhibitors targeting Ataxia telangiectasia mutated and Rad3-related kinase (ATR). METHODS Various metastasis-related genes were identified by univariable Cox proportional hazards regression analysis based on the GSE11121 dataset. The RNF126-related network modules were identified by WGCNA, whereas cell viability, invasion, and migration assays were performed to evaluate the biological characteristics of breast cancer cells with or without RNF126 knockdown. MTT, immunoblotting, immunofluorescence, and DNA fiber assays were conducted to determine the efficiency of ATR inhibitor in cells with or without RNF126 knockdown. RESULTS RNF126 was associated with early breast cancer metastasis. RNF126 promoted breast cancer cell proliferation, growth, migration, and invasion. ATR inhibitors were more effective at killing breast cancer cells with intact RNF126 due to replication stress compared with the corresponding cells with RNF126 knockdown. Cyclin-dependent kinase 2 (CDK2) was involved in regulating replication stress in breast cancer cells with intact RNF126. CONCLUSION A high level of expression of RNF126 in early breast cancer patients without lymph node metastases may indicate a high-risk type of metastatic disease, possibly due to RNF126, which may increase breast cancer cell proliferation and invasion. RNF126-expressing breast cancer cells exhibit CDK2-mediated replication stress that makes them potential targets for ATR inhibitors.
Collapse
Affiliation(s)
- You Pan
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Yuchao Yang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Rong Huang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Huawei Yang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Qinghua Huang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Yinan Ji
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Jingxing Dai
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Kun Qiao
- grid.412651.50000 0004 1808 3502Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150000 China
| | - Wei Tang
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Longgui Xie
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Ming Yin
- grid.284723.80000 0000 8877 7471Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jun Ouyang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Medical Biomechanics & Nation Key Discipline of Human Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Shipeng Ning
- grid.256607.00000 0004 1798 2653Department of Breast Surgery, Key Laboratory of Breast Cancer Diagnosis and Treatment Research of Guangxi Department of Education, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| | - Danke Su
- grid.256607.00000 0004 1798 2653Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530000 China
| |
Collapse
|
13
|
Kemiha S, Poli J, Lin YL, Lengronne A, Pasero P. Toxic R-loops: Cause or consequence of replication stress? DNA Repair (Amst) 2021; 107:103199. [PMID: 34399314 DOI: 10.1016/j.dnarep.2021.103199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023]
Abstract
Transcription-replication conflicts (TRCs) represent a potential source of endogenous replication stress (RS) and genomic instability in eukaryotic cells but the mechanisms that underlie this instability remain poorly understood. Part of the problem could come from non-B DNA structures called R-loops, which are formed of a RNA:DNA hybrid and a displaced ssDNA loop. In this review, we discuss different scenarios in which R-loops directly or indirectly interfere with DNA replication. We also present other types of TRCs that may not depend on R-loops to impede fork progression. Finally, we discuss alternative models in which toxic RNA:DNA hybrids form at stalled forks as a consequence - but not a cause - of replication stress and interfere with replication resumption.
Collapse
Affiliation(s)
- Samira Kemiha
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Jérôme Poli
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
14
|
Saha LK, Murai Y, Saha S, Jo U, Tsuda M, Takeda S, Pommier Y. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1-DNA complexes. Nucleic Acids Res 2021; 49:10493-10506. [PMID: 34551432 DOI: 10.1093/nar/gkab777] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA-protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1-DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1-DNA complexes.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yasuhisa Murai
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sourav Saha
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ukhyun Jo
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Masataka Tsuda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.,Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Castillo-Guzman D, Chédin F. Defining R-loop classes and their contributions to genome instability. DNA Repair (Amst) 2021; 106:103182. [PMID: 34303066 PMCID: PMC8691176 DOI: 10.1016/j.dnarep.2021.103182] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/20/2023]
Abstract
R-loops are non-B DNA structures that form during transcription when the nascent RNA anneals to the template DNA strand forming a RNA:DNA hybrid. Understanding the genomic distribution and function of R-loops is an important goal, since R-loops have been implicated in a number of adaptive and maladaptive processes under physiological and pathological conditions. Based on R-loop mapping datasets, we propose the existence of two main classes of R-loops, each associated with unique characteristics. Promoter-paused R-loops (Class I) are short R-loops that form at high frequency during promoter-proximal pausing by RNA polymerase II. Elongation-associated R-loops (Class II) are long structures that occur throughout gene bodies at modest frequencies. We further discuss the relationships between each R-loop class with instances of genome instability and suggest that increased class I R-loops, resulting from enhanced promoter-proximal pausing, represent the main culprits for R-loop mediated genome instability under pathological conditions.
Collapse
Affiliation(s)
- Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
16
|
McClure AW, Diffley JF. Rad53 checkpoint kinase regulation of DNA replication fork rate via Mrc1 phosphorylation. eLife 2021; 10:69726. [PMID: 34387546 PMCID: PMC8387023 DOI: 10.7554/elife.69726] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
The Rad53 DNA checkpoint protein kinase plays multiple roles in the budding yeast cell response to DNA replication stress. Key amongst these is its enigmatic role in safeguarding DNA replication forks. Using DNA replication reactions reconstituted with purified proteins, we show Rad53 phosphorylation of Sld3/7 or Dbf4-dependent kinase blocks replication initiation whilst phosphorylation of Mrc1 or Mcm10 slows elongation. Mrc1 phosphorylation is necessary and sufficient to slow replication forks in complete reactions; Mcm10 phosphorylation can also slow replication forks, but only in the absence of unphosphorylated Mrc1. Mrc1 stimulates the unwinding rate of the replicative helicase, CMG, and Rad53 phosphorylation of Mrc1 prevents this. We show that a phosphorylation-mimicking Mrc1 mutant cannot stimulate replication in vitro and partially rescues the sensitivity of a rad53 null mutant to genotoxic stress in vivo. Our results show that Rad53 protects replication forks in part by antagonising Mrc1 stimulation of CMG unwinding.
Collapse
Affiliation(s)
- Allison W McClure
- Chromosome Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - John Fx Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
17
|
Organization of DNA Replication Origin Firing in Xenopus Egg Extracts: The Role of Intra-S Checkpoint. Genes (Basel) 2021; 12:genes12081224. [PMID: 34440398 PMCID: PMC8394201 DOI: 10.3390/genes12081224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
During cell division, the duplication of the genome starts at multiple positions called replication origins. Origin firing requires the interaction of rate-limiting factors with potential origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters which is proposed to be regulated by the intra-S checkpoint. By modelling the unchallenged, the checkpoint-inhibited and the checkpoint protein Chk1 over-expressed replication pattern of single DNA molecules from Xenopus sperm chromatin replicated in egg extracts, we demonstrate that the quantitative modelling of data requires: (1) a segmentation of the genome into regions of low and high probability of origin firing; (2) that regions with high probability of origin firing escape intra-S checkpoint regulation and (3) the variability of the rate of DNA synthesis close to replication forks is a necessary ingredient that should be taken in to account in order to describe the dynamic of replication origin firing. This model implies that the observed origin clustering emerges from the apparent synchrony of origin firing in regions with high probability of origin firing and challenge the assumption that the intra-S checkpoint is the main regulator of origin clustering.
Collapse
|
18
|
Técher H, Pasero P. The Replication Stress Response on a Narrow Path Between Genomic Instability and Inflammation. Front Cell Dev Biol 2021; 9:702584. [PMID: 34249949 PMCID: PMC8270677 DOI: 10.3389/fcell.2021.702584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of eukaryotic cells is particularly at risk during the S phase of the cell cycle, when megabases of chromosomal DNA are unwound to generate two identical copies of the genome. This daunting task is executed by thousands of micro-machines called replisomes, acting at fragile structures called replication forks. The correct execution of this replication program depends on the coordinated action of hundreds of different enzymes, from the licensing of replication origins to the termination of DNA replication. This review focuses on the mechanisms that ensure the completion of DNA replication under challenging conditions of endogenous or exogenous origin. It also covers new findings connecting the processing of stalled forks to the release of small DNA fragments into the cytoplasm, activating the cGAS-STING pathway. DNA damage and fork repair comes therefore at a price, which is the activation of an inflammatory response that has both positive and negative impacts on the fate of stressed cells. These new findings have broad implications for the etiology of interferonopathies and for cancer treatment.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue Contre le Cancer, Montpellier, France
| |
Collapse
|
19
|
Calzetta NL, González Besteiro MA, Gottifredi V. PARP Activity Fine-tunes the DNA Replication Choreography of Chk1-depleted Cells. J Mol Biol 2021; 433:166949. [PMID: 33744317 DOI: 10.1016/j.jmb.2021.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Checkpoint Kinase 1 (Chk1) prevents DNA damage by adjusting the replication choreography in the face of replication stress. Chk1 depletion provokes slow and asymmetrical fork movement, yet the signals governing such changes remain unclear. We sought to investigate whether poly(ADP-ribose) polymerases (PARPs), key players of the DNA damage response, intervene in the DNA replication of Chk1-depleted cells. We demonstrate that PARP inhibition selectively alleviates the reduced fork elongation rates, without relieving fork asymmetry in Chk1-depleted cells. While the contribution of PARPs to fork elongation is not unprecedented, we found that their role in Chk1-depleted cells extends beyond fork movement. PARP-dependent fork deceleration induced mild dormant origin firing upon Chk1 depletion, augmenting the global rates of DNA synthesis. Thus, we have identified PARPs as novel regulators of replication fork dynamics in Chk1-depleted cells.
Collapse
Affiliation(s)
- Nicolás Luis Calzetta
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Marina Alejandra González Besteiro
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - Vanesa Gottifredi
- Fundación Instituto Leloir - Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo de Investigaciones Científicas y Técnicas, Avenida Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
20
|
Klotz-Noack K, Klinger B, Rivera M, Bublitz N, Uhlitz F, Riemer P, Lüthen M, Sell T, Kasack K, Gastl B, Ispasanie SSS, Simon T, Janssen N, Schwab M, Zuber J, Horst D, Blüthgen N, Schäfer R, Morkel M, Sers C. SFPQ Depletion Is Synthetically Lethal with BRAF V600E in Colorectal Cancer Cells. Cell Rep 2021; 32:108184. [PMID: 32966782 DOI: 10.1016/j.celrep.2020.108184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 04/28/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncoproteins such as the BRAFV600E kinase endow cancer cells with malignant properties, but they also create unique vulnerabilities. Targeting of BRAFV600E-driven cytoplasmic signaling networks has proved ineffective, as patients regularly relapse with reactivation of the targeted pathways. We identify the nuclear protein SFPQ to be synthetically lethal with BRAFV600E in a loss-of-function shRNA screen. SFPQ depletion decreases proliferation and specifically induces S-phase arrest and apoptosis in BRAFV600E-driven colorectal and melanoma cells. Mechanistically, SFPQ loss in BRAF-mutant cancer cells triggers the Chk1-dependent replication checkpoint, results in decreased numbers and reduced activities of replication factories, and increases collision between replication and transcription. We find that BRAFV600E-mutant cancer cells and organoids are sensitive to combinations of Chk1 inhibitors and chemically induced replication stress, pointing toward future therapeutic approaches exploiting nuclear vulnerabilities induced by BRAFV600E.
Collapse
Affiliation(s)
- Kathleen Klotz-Noack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bertram Klinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Maria Rivera
- EPO Experimentelle Pharmakologie und Onkologie Berlin-Buch GmbH, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Natalie Bublitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Uhlitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Pamela Riemer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Mareen Lüthen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Sell
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Katharina Kasack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bastian Gastl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Sylvia S S Ispasanie
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Tincy Simon
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; University of Tuebingen, 72074 Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch - Institute of Clinical Pharmacology, Auerbachstraße 112, 70376 Stuttgart, Germany; Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University of Tuebingen, Auf der Morgenstelle 8, 72074 Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, VBC, 1030 Vienna, Austria
| | - David Horst
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils Blüthgen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; IRI Life Sciences & Institute of Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reinhold Schäfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany; Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Markus Morkel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Sers
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health. Laboratory of Molecular Tumor Pathology and Systems Biology, Institute of Pathology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Pocasap P, Nonpunya A, Weerapreeyakul N. Pinus kesiya Royle ex Gordon induces apoptotic cell death in hepatocellular carcinoma HepG2 cell via intrinsic pathway by PARP and Topoisomerase I suppression. Biomed Pharmacother 2021; 139:111628. [PMID: 33940508 DOI: 10.1016/j.biopha.2021.111628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022] Open
Abstract
Pinus kesiya Royle ex Gordon (PK), widely found in Southeast Asia, has been traditionally used for the treatment of several illnesses. Our previous studies showed that PK was highly cytotoxicity against liver cancer cells. The detailed mechanism of anticancer action of 50% hydro-ethanolic extract of PK's twig was, therefore, investigated in hepatocellular carcinoma HepG2 cells. Cytotoxicity of PK was determined by using NR assay, followed by determination of the mode of cell death by flow cytometry. The apoptosis-inducing effect was determined based on caspases activity, mitochondria membrane potential change, and expression of proteins related to apoptosis by western blot. The biomolecular alteration in the PK-treated HepG2 cells was investigated by FTIR microspectroscopy. Inhibition of topoisomerase I enzyme was determined by using DNA relaxation assay. Results showed that PK displayed high selective cytotoxicity and induced apoptosis against HepG2. FTIR microspectroscopy indicated that PK altered major biomolecules in HepG2 different from melphalan (a positive control), indicating a different mechanism of anticancer action. PK induced apoptotic cell death through the intrinsic pathway by increasing caspases 9 and 3/7 activity, increasing Bax, and decreasing Bcl-2 expression leading to mitochondrial membrane potential changes. PK also inhibited Top I and PARP activity that triggered an intrinsic apoptotic pathway. The phytochemical test presented terpenoids (i.e., α-pinene confirmed by GC-MS), alkaloids, steroids, xanthone, reducing sugar, and saponin. α-Pinene exhibited low cytotoxicity against HepG2, therefore, several terpene derivatives may work synergistically for inducing apoptosis. Our data demonstrated that PK has the potential for further study with chemotherapeutic purposes.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand.
| | - Apiyada Nonpunya
- Merz Healthcare (Thailand) Company Limited, Bangkok 10110 Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
22
|
Murai Y, Jo U, Murai J, Jenkins LM, Huang SYN, Chakka S, Chen L, Cheng K, Fukuda S, Takebe N, Pommier Y. SLFN11 Inactivation Induces Proteotoxic Stress and Sensitizes Cancer Cells to Ubiquitin Activating Enzyme Inhibitor TAK-243. Cancer Res 2021; 81:3067-3078. [PMID: 33863777 DOI: 10.1158/0008-5472.can-20-2694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Schlafen11 (SLFN11) inactivation occurs in approximately 50% of cancer cell lines and in a large fraction of patient tumor samples, which leads to chemoresistance. Therefore, new therapeutic approaches are needed to target SLFN11-deficient cancers. To that effect, we conducted a drug screen with the NCATS mechanistic drug library of 1,978 compounds in isogenic SLFN11-knockout (KO) and wild-type (WT) leukemia cell lines. Here we report that TAK-243, a first-in-class ubiquitin activating enzyme UBA1 inhibitor in clinical development, causes preferential cytotoxicity in SLFN11-KO cells; this effect is associated with claspin-mediated DNA replication inhibition by CHK1 independently of ATR. Additional analyses showed that SLFN11-KO cells exhibit consistently enhanced global protein ubiquitylation, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), and protein aggregation. TAK-243 suppressed global protein ubiquitylation and activated the UPR transducers PERK, phosphorylated eIF2α, phosphorylated IRE1, and ATF6 more effectively in SLFN11-KO cells than in WT cells. Proteomic analysis using biotinylated mass spectrometry and RNAi screening also showed physical and functional interactions of SLFN11 with translation initiation complexes and protein folding machinery. These findings uncover a previously unknown function of SLFN11 as a regulator of protein quality control and attenuator of ER stress and UPR. Moreover, they suggest the potential value of TAK-243 in SLFN11-deficient tumors. SIGNIFICANCE: This study uncovers that SLFN11 deficiency induces proteotoxic stress and sensitizes cancer cells to TAK-243, suggesting that profiling SLFN11 status can serve as a therapeutic biomarker for cancer therapy.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Sirisha Chakka
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Lu Chen
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Ken Cheng
- National Center for Advancing Translational Sciences, Functional Genomics Laboratory, NIH, Rockville, Maryland
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.,Division of Cancer Treatment and Diagnosis, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
23
|
Thomas A, Takahashi N, Rajapakse VN, Zhang X, Sun Y, Ceribelli M, Wilson KM, Zhang Y, Beck E, Sciuto L, Nichols S, Elenbaas B, Puc J, Dahmen H, Zimmermann A, Varonin J, Schultz CW, Kim S, Shimellis H, Desai P, Klumpp-Thomas C, Chen L, Travers J, McKnight C, Michael S, Itkin Z, Lee S, Yuno A, Lee MJ, Redon CE, Kindrick JD, Peer CJ, Wei JS, Aladjem MI, Figg WD, Steinberg SM, Trepel JB, Zenke FT, Pommier Y, Khan J, Thomas CJ. Therapeutic targeting of ATR yields durable regressions in small cell lung cancers with high replication stress. Cancer Cell 2021; 39:566-579.e7. [PMID: 33848478 PMCID: PMC8048383 DOI: 10.1016/j.ccell.2021.02.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/11/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Small cell neuroendocrine cancers (SCNCs) are recalcitrant cancers arising from diverse primary sites that lack effective treatments. Using chemical genetic screens, we identified inhibition of ataxia telangiectasia and rad3 related (ATR), the primary activator of the replication stress response, and topoisomerase I (TOP1), nuclear enzyme that suppresses genomic instability, as synergistically cytotoxic in small cell lung cancer (SCLC). In a proof-of-concept study, we combined M6620 (berzosertib), first-in-class ATR inhibitor, and TOP1 inhibitor topotecan in patients with relapsed SCNCs. Objective response rate among patients with SCLC was 36% (9/25), achieving the primary efficacy endpoint. Durable tumor regressions were observed in patients with platinum-resistant SCNCs, typically fatal within weeks of recurrence. SCNCs with high neuroendocrine differentiation, characterized by enhanced replication stress, were more likely to respond. These findings highlight replication stress as a potentially transformative vulnerability of SCNCs, paving the way for rational patient selection in these cancers, now treated as a single disease.
Collapse
Affiliation(s)
- Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yilun Sun
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Beck
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Elenbaas
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Janusz Puc
- EMD Serono Research and Development Institute Inc., Biopharma R&D, Translational Innovation Platform Oncology, Billerica, MA 01821, USA; A business of Merck KGaA, Darmstadt, Germany
| | - Heike Dahmen
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Astrid Zimmermann
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Jillian Varonin
- Technology Transfer Center, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD 20850, USA
| | - Christopher W Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirity Shimellis
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carleen Klumpp-Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Jameson Travers
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Crystal McKnight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sam Michael
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica D Kindrick
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Douglas Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank T Zenke
- Merck KGaA, Biopharma R&D, Translational Innovation Platform Oncology, Frankfurter Street 250, 64293 Darmstadt, Germany
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, MD 20850, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Ho K, Luo H, Zhu W, Tang Y. Critical role of SMG7 in activation of the ATR-CHK1 axis in response to genotoxic stress. Sci Rep 2021; 11:7502. [PMID: 33820915 PMCID: PMC8021557 DOI: 10.1038/s41598-021-86957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
CHK1 is a crucial DNA damage checkpoint kinase and its activation, which requires ATR and RAD17, leads to inhibition of DNA replication and cell cycle progression. Recently, we reported that SMG7 stabilizes and activates p53 to induce G1 arrest upon DNA damage; here we show that SMG7 plays a critical role in the activation of the ATR-CHK1 axis. Following genotoxic stress, SMG7-null cells exhibit deficient ATR signaling, indicated by the attenuated phosphorylation of CHK1 and RPA32, and importantly, unhindered DNA replication and fork progression. Through its 14-3-3 domain, SMG7 interacts directly with the Ser635-phosphorylated RAD17 and promotes chromatin retention of the 9-1-1 complex by the RAD17-RFC, an essential step to CHK1 activation. Furthermore, through maintenance of CHK1 activity, SMG7 controls G2-M transition and facilitates orderly cell cycle progression during recovery from replication stress. Taken together, our data reveals SMG7 as an indispensable signaling component in the ATR-CHK1 pathway during genotoxic stress response.
Collapse
Affiliation(s)
- Kathleen Ho
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Hongwei Luo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
| | - Wei Zhu
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA
- Key Laboratory of State Ethnic Affairs Commission for Biological Technology, College of Life Science, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Yi Tang
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY, 12208, USA.
| |
Collapse
|
25
|
Schilling EM, Scherer M, Rothemund F, Stamminger T. Functional regulation of the structure-specific endonuclease FEN1 by the human cytomegalovirus protein IE1 suggests a role for the re-initiation of stalled viral replication forks. PLoS Pathog 2021; 17:e1009460. [PMID: 33770148 PMCID: PMC8026080 DOI: 10.1371/journal.ppat.1009460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/07/2021] [Accepted: 03/08/2021] [Indexed: 11/19/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a member of the family of structure-specific endonucleases implicated in regulation of DNA damage response and DNA replication. So far, knowledge on the role of FEN1 during viral infections is limited. Previous publications indicated that poxviruses encode a conserved protein that acts in a manner similar to FEN1 to stimulate homologous recombination, double-strand break (DSB) repair and full-size genome formation. Only recently, cellular FEN1 has been identified as a key component for hepatitis B virus cccDNA formation. Here, we report on a novel functional interaction between Flap endonuclease 1 (FEN1) and the human cytomegalovirus (HCMV) immediate early protein 1 (IE1). Our results provide evidence that IE1 manipulates FEN1 in an unprecedented manner: we observed that direct IE1 binding does not only enhance FEN1 protein stability but also phosphorylation at serine 187. This correlates with nucleolar exclusion of FEN1 stimulating its DSB-generating gap endonuclease activity. Depletion of FEN1 and inhibition of its enzymatic activity during HCMV infection significantly reduced nascent viral DNA synthesis demonstrating a supportive role for efficient HCMV DNA replication. Furthermore, our results indicate that FEN1 is required for the formation of DSBs during HCMV infection suggesting that IE1 acts as viral activator of FEN1 in order to re-initiate stalled replication forks. In summary, we propose a novel mechanism of viral FEN1 activation to overcome replication fork barriers at difficult-to-replicate sites in viral genomes.
Collapse
Affiliation(s)
| | - Myriam Scherer
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | | |
Collapse
|
26
|
Kim W, Zhao F, Gao H, Qin S, Hou J, Deng M, Kloeber JA, Huang J, Zhou Q, Guo G, Gao M, Zeng X, Zhu S, Tu X, Wu Z, Zhang Y, Yin P, Kaufmann SH, Luo K, Lou Z. USP13 regulates the replication stress response by deubiquitinating TopBP1. DNA Repair (Amst) 2021; 100:103063. [PMID: 33592542 DOI: 10.1016/j.dnarep.2021.103063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
The DNA replication stress-induced checkpoint activated through the TopBP1-ATR axis is important for maintaining genomic stability. However, the regulation of TopBP1 in DNA-damage responses remains unclear. In this study, we identify the deubiquitinating enzyme (DUB) USP13 as an important regulator of TopBP1. Mechanistically, USP13 binds to TopBP1 and stabilizes TopBP1 by deubiquitination. Depletion of USP13 impedes ATR activation and hypersensitizes cells to replication stress-inducing agents. Furthermore, high USP13 expression enhances the replication stress response, promotes cancer cell chemoresistance, and is correlated with poor prognosis of cancer patients. Overall, these findings suggest that USP13 is a novel deubiquitinating enzyme for TopBP1 and coordinates the replication stress response.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Jing Hou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiangyu Zeng
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yong Zhang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Marin PA, Obonaga R, Pavani RS, da Silva MS, de Araujo CB, Lima AA, Avila CC, Cestari I, Machado CR, Elias MC. ATR Kinase Is a Crucial Player Mediating the DNA Damage Response in Trypanosoma brucei. Front Cell Dev Biol 2020; 8:602956. [PMID: 33415107 PMCID: PMC7783291 DOI: 10.3389/fcell.2020.602956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom. Trypanosoma brucei is a divergent pathogenic protozoan parasite that causes human African trypanosomiasis (HAT), a neglected disease that can be fatal when left untreated. The proper signaling and accuracy of DNA repair is fundamental to T. brucei not only to ensure parasite survival after genotoxic stress but also because DSBs are involved in the process of generating antigenic variations used by this parasite to evade the host immune system. DSBs trigger a strong DNA damage response and efficient repair process in T. brucei, but it is unclear how these processes are coordinated. Here, by knocking down ATR in T. brucei using two different approaches (conditional RNAi and an ATR inhibitor), we show that ATR is required to mediate intra-S and partial G1/S checkpoint responses. ATR is also involved in replication fork stalling, is critical for H2A histone phosphorylation in a small group of cells and is necessary for the recruitment and upregulation of the HR-mediated DNA repair protein RAD51 after ionizing radiation (IR) induces DSBs. In summary, this work shows that apical ATR kinase plays a central role in signal transduction and is critical for orchestrating the DNA damage response in T. brucei.
Collapse
Affiliation(s)
- Paula Andrea Marin
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Ricardo Obonaga
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Raphael Souza Pavani
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Marcelo Santos da Silva
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Christiane Bezerra de Araujo
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - André Arruda Lima
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Carla Cristi Avila
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| | - Igor Cestari
- Institute of Parasitology, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Carlos Renato Machado
- Biochemical and Immunology Department, Institute of Biomedical Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maria Carolina Elias
- Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
28
|
Prendergast L, McClurg UL, Hristova R, Berlinguer-Palmini R, Greener S, Veitch K, Hernandez I, Pasero P, Rico D, Higgins JMG, Gospodinov A, Papamichos-Chronakis M. Resolution of R-loops by INO80 promotes DNA replication and maintains cancer cell proliferation and viability. Nat Commun 2020; 11:4534. [PMID: 32913330 PMCID: PMC7484789 DOI: 10.1038/s41467-020-18306-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/18/2020] [Indexed: 02/04/2023] Open
Abstract
Collisions between the DNA replication machinery and co-transcriptional R-loops can impede DNA synthesis and are a major source of genomic instability in cancer cells. How cancer cells deal with R-loops to proliferate is poorly understood. Here we show that the ATP-dependent chromatin remodelling INO80 complex promotes resolution of R-loops to prevent replication-associated DNA damage in cancer cells. Depletion of INO80 in prostate cancer PC3 cells leads to increased R-loops. Overexpression of the RNA:DNA endonuclease RNAse H1 rescues the DNA synthesis defects and suppresses DNA damage caused by INO80 depletion. R-loops co-localize with and promote recruitment of INO80 to chromatin. Artificial tethering of INO80 to a LacO locus enabled turnover of R-loops in cis. Finally, counteracting R-loops by INO80 promotes proliferation and averts DNA damage-induced death in cancer cells. Our work suggests that INO80-dependent resolution of R-loops promotes DNA replication in the presence of transcription, thus enabling unlimited proliferation in cancers.
Collapse
Affiliation(s)
- Lisa Prendergast
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, UK
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, Manchester, UK
| | - Urszula L McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Rossitsa Hristova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Sarah Greener
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Katie Veitch
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Inmaculada Hernandez
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002 and University of Montpellier, Equipe Labéllisée Ligue Contre le Cancer, 34090, Montpellier, France
| | - Daniel Rico
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Manolis Papamichos-Chronakis
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
29
|
Harnessing DNA Replication Stress for Novel Cancer Therapy. Genes (Basel) 2020; 11:genes11090990. [PMID: 32854236 PMCID: PMC7564951 DOI: 10.3390/genes11090990] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
DNA replication is the fundamental process for accurate duplication and transfer of genetic information. Its fidelity is under constant stress from endogenous and exogenous factors which can cause perturbations that lead to DNA damage and defective replication. This can compromise genomic stability and integrity. Genomic instability is considered as one of the hallmarks of cancer. In normal cells, various checkpoints could either activate DNA repair or induce cell death/senescence. Cancer cells on the other hand potentiate DNA replicative stress, due to defective DNA damage repair mechanism and unchecked growth signaling. Though replicative stress can lead to mutagenesis and tumorigenesis, it can be harnessed paradoxically for cancer treatment. Herein, we review the mechanism and rationale to exploit replication stress for cancer therapy. We discuss both established and new approaches targeting DNA replication stress including chemotherapy, radiation, and small molecule inhibitors targeting pathways including ATR, Chk1, PARP, WEE1, MELK, NAE, TLK etc. Finally, we review combination treatments, biomarkers, and we suggest potential novel methods to target DNA replication stress to treat cancer.
Collapse
|
30
|
Promonet A, Padioleau I, Liu Y, Sanz L, Biernacka A, Schmitz AL, Skrzypczak M, Sarrazin A, Mettling C, Rowicka M, Ginalski K, Chedin F, Chen CL, Lin YL, Pasero P. Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites. Nat Commun 2020; 11:3940. [PMID: 32769985 PMCID: PMC7414224 DOI: 10.1038/s41467-020-17858-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
R-loops have both positive and negative impacts on chromosome functions. To identify toxic R-loops in the human genome, here, we map RNA:DNA hybrids, replication stress markers and DNA double-strand breaks (DSBs) in cells depleted for Topoisomerase I (Top1), an enzyme that relaxes DNA supercoiling and prevents R-loop formation. RNA:DNA hybrids are found at both promoters (TSS) and terminators (TTS) of highly expressed genes. In contrast, the phosphorylation of RPA by ATR is only detected at TTS, which are preferentially replicated in a head-on orientation relative to the direction of transcription. In Top1-depleted cells, DSBs also accumulate at TTS, leading to persistent checkpoint activation, spreading of γ-H2AX on chromatin and global replication fork slowdown. These data indicate that fork pausing at the TTS of highly expressed genes containing R-loops prevents head-on conflicts between replication and transcription and maintains genome integrity in a Top1-dependent manner.
Collapse
Affiliation(s)
- Alexy Promonet
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Ismaël Padioleau
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
- Institut Gustave Roussy, Villejuif, France
| | - Yaqun Liu
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anne-Lyne Schmitz
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Amélie Sarrazin
- BioCampus Montpellier, CNRS et Université de Montpellier, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Montpellier, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Frédéric Chedin
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS, UMR3244, Sorbonne Université, Paris, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS et Université de Montpellier, Equipe labélisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
31
|
Marzi L, Sun Y, Huang SYN, James A, Difilippantonio S, Pommier Y. The Indenoisoquinoline LMP517: A Novel Antitumor Agent Targeting both TOP1 and TOP2. Mol Cancer Ther 2020; 19:1589-1597. [PMID: 32430490 PMCID: PMC7415565 DOI: 10.1158/1535-7163.mct-19-1064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
The camptothecin derivatives topoisomerase I (TOP1) inhibitors, irinotecan and topotecan, are FDA approved for the treatment of colorectal, ovarian, lung and breast cancers. Because of the chemical instability of camptothecins, short plasma half-life, drug efflux by the multidrug-resistance ABC transporters, and the severe diarrhea produced by irinotecan, indenoisoquinoline TOP1 inhibitors (LMP400, LMP776, and LMP744), which overcome these limitations, have been developed and are in clinical development. Further modifications of the indenoisoquinolines led to the fluoroindenoisoquinolines, one of which, LMP517, is the focus of this study. LMP517 showed better antitumor activity than its parent compound LMP744 against H82 (small cell lung cancer) xenografts. Genetic analyses in DT40 cells showed a dual TOP1 and TOP2 signature with selectivity of LMP517 for DNA repair-deficient tyrosyl DNA phosphodiesterase 2 (TDP2)- and Ku70-knockout cells. RADAR assays revealed that LMP517, and to a lesser extent LMP744, induce TOP2 cleavage complexes (TOP2cc) in addition to TOP1ccs. Histone γH2AX detection showed that, unlike classical TOP1 inhibitors, LMP517 targets cells independently of their position in the cell cycle. Our study establishes LMP517 as a dual TOP1 and TOP2 inhibitor with therapeutic potential.
Collapse
Affiliation(s)
- Laetitia Marzi
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Shar-Yin N Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Amy James
- Laboratory of Animal Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Simone Difilippantonio
- Laboratory of Animal Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
32
|
Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene 2020; 39:3245-3257. [PMID: 32086441 DOI: 10.1038/s41388-020-1220-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 11/08/2022]
Abstract
ATR and CHK1 play key roles in the protection and recovery of the stalled replication forks. Claspin, an adaptor for CHK1 activation, is essential for DNA damage signaling and efficient replication fork progression. Here, we show that tristetraprolin (TTP), an mRNA-binding protein, can modulate the replication stress response via stabilization of Claspin mRNA. TTP depletion compromised specifically in the phosphorylation of CHK1, but not p53 or H2AX among other ATR substrates, and produced CHK1-defective replication phenotypes including accumulation of stalled replication forks. Importantly, the expression of siRNA-resistant TTP in TTP-deficient cells restored CHK1 phosphorylation and reduced the number of stalled replication forks as close to the control cells. Besides, we found that TTP was required for efficient replication fork progression even in the absence of exogenous DNA damage in a Claspin-dependent manner. Mechanistically, TTP was able to bind to the 3'-untranslated region of Claspin mRNA to increase the stability of Claspin mRNA which eventually contributed to the subsequent ATR-CHK1 activation upon DNA damage. Taken together, our results revealed an intimate link between TTP-dependent Claspin mRNA stability and ATR-CHK1-dependent replication fork stability to maintain replication fork integrity and chromosomal stability.
Collapse
|
33
|
Mutreja K, Krietsch J, Hess J, Ursich S, Berti M, Roessler FK, Zellweger R, Patra M, Gasser G, Lopes M. ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links. Cell Rep 2019; 24:2629-2642.e5. [PMID: 30184498 PMCID: PMC6137818 DOI: 10.1016/j.celrep.2018.08.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Abstract
Interstrand cross-links (ICLs) are toxic DNA lesions interfering with DNA metabolism that are induced by widely used anticancer drugs. They have long been considered absolute roadblocks for replication forks, implicating complex DNA repair processes at stalled or converging replication forks. Recent evidence challenged this view, proposing that single forks traverse ICLs by yet elusive mechanisms. Combining ICL immunolabeling and single-molecule approaches in human cells, we now show that ICL induction leads to global replication fork slowing, involving forks not directly challenged by ICLs. Active fork slowing is linked to rapid recruitment of RAD51 to replicating chromatin and to RAD51/ZRANB3-mediated fork reversal. This global modulation of fork speed and architecture requires ATR activation, promotes single-fork ICL traverse—here, directly visualized by electron microscopy—and prevents chromosomal breakage by untimely ICL processing. We propose that global fork slowing by remodeling provides more time for template repair and promotes bypass of residual lesions, limiting fork-associated processing. Fork slowing and reversal are also observed at forks not directly challenged by ICLs Fork reversal assists ICL traverse and limits DSBs associated with ICL unhooking ICL traverse can be directly visualized in human cells by electron microscopy ATR mediates global fork slowing and reversal upon different genotoxic treatments
Collapse
Affiliation(s)
- Karun Mutreja
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jana Krietsch
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jeannine Hess
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Sebastian Ursich
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matteo Berti
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fabienne K Roessler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Center for Microscopy and Image Analysis, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Malay Patra
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
34
|
Majumder A, Dharan AT, Baral I, Varghese PC, Mukherjee A, Subhadradevi L, Narayanan G, Dutta D. Histone chaperone HIRA dictate proliferation vs differentiation of chronic myeloid leukemia cells. FASEB Bioadv 2019; 1:525-537. [PMID: 32123848 PMCID: PMC6996362 DOI: 10.1096/fba.2019-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 02/24/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Abnormal proliferation and disrupted differentiation of hematopoietic progenitors mark leukemia. Histone cell cycle regulator A (HIRA), a histone chaperone, regulates hemogenic to hematopoietic transition involved in normal hematopoiesis. But, its role remains unexplored in leukemia, a case of dysregulated hematopoiesis. Here, the Cancer Cell Line Encyclopedia database analysis showed enhanced HIRA mRNA expression in cells of hematopoietic and lymphoid origin with maximal expression in the chronic myeloid leukemia (CML) cell line, K562. This observation was further endorsed by the induced expression of HIRA in CML patient samples compared to healthy individuals and Acute Myeloid Leukemia patients. Downregulation of HIRA in K562 cells displayed cell cycle arrest, loss in proliferation, presence of polyploidy with significant increase in CD41+ population thereby limiting proliferation but inducing differentiation of leukemia cells to megakaryocyte fate. Induced megakaryocyte differentiation of mouse Hira-knockout hematopoietic progenitors in vivo further confirmed the in vitro findings in leukemia cells. Molecular analysis showed the involvement of MKL1/GATA2/H3.3 axis in dictating differentiation of CML cells to megakaryocytes. Thus, HIRA could be exploited for differentiation induction therapy in CML and in chronic pathological conditions involving low platelet counts.
Collapse
Affiliation(s)
- Aditi Majumder
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Arya T. Dharan
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| | - Ishita Baral
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Pallavi Chinnu Varghese
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Ananda Mukherjee
- Cancer Research ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| | - Lakshmi Subhadradevi
- Department of Cancer ResearchRegional Cancer Centre, Medical College CampusThiruvananthapuramIndia
| | - Geetha Narayanan
- Department of Medical OncologyRegional Cancer Centre, Medical College CampusThiruvananthapuramIndia
| | - Debasree Dutta
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| |
Collapse
|
35
|
Murai J, Thomas A, Miettinen M, Pommier Y. Schlafen 11 (SLFN11), a restriction factor for replicative stress induced by DNA-targeting anti-cancer therapies. Pharmacol Ther 2019; 201:94-102. [PMID: 31128155 PMCID: PMC6708787 DOI: 10.1016/j.pharmthera.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Schlafen 11 (SLFN11) sensitizes cells to a broad range of anti-cancer drugs including platinum derivatives (cisplatin and carboplatin), inhibitors of topoisomerases (irinotecan, topotecan, doxorubicin, daunorubicin, mitoxantrone and etoposide), DNA synthesis inhibitors (gemcitabine, cytarabine, hydroxyurea and nucleoside analogues), and poly(ADPribose) polymerase (PARP) inhibitors (olaparib, rucaparib, niraparib and talazoparib). In spite of their different primary mechanisms of action, all these drugs damage DNA during S-phase, activate the intra-S-phase checkpoint and induce replication fork slowing and stalling with single-stranded DNA segments coated with replication protein A. Such situation with abnormal replication forks is known as replication stress. SLFN11 irreversibly blocks replication in cells under replication stress, explaining why SLFN11-positive cells are markedly more efficiently killed by DNA-targeting drugs than SLFN11-negative cells. SLFN11 is inactivated in ~50% of cancer cell lines and in a large fraction of tumors, and is linked with the native immune, interferon and T-cells responses, implying the translational relevance of measuring SLFN11 expression as a predictive biomarker of response and resistance in patients. SLFN11 is also a plausible epigenetic target for reactivation by inhibitors of histone deacetylases (HDAC), DNA methyltransferases (DNMT) and EZH2 histone methyltransferase and for combination of these epigenetic inhibitors with DNA-targeting drugs in cells lacking SLFN11 expression. In addition, resistance due to lack of SLFN11 expression in tumors is a potential indication for cell-cycle checkpoint inhibitors in combination with DNA-targeting therapies.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Anish Thomas
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
36
|
Lin YF, Shih HY, Shang ZF, Kuo CT, Guo J, Du C, Lee H, Chen BPC. PIDD mediates the association of DNA-PKcs and ATR at stalled replication forks to facilitate the ATR signaling pathway. Nucleic Acids Res 2019; 46:1847-1859. [PMID: 29309644 PMCID: PMC5829747 DOI: 10.1093/nar/gkx1298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), consisting of the DNA binding Ku70/80 heterodimer and the catalytic subunit DNA-PKcs, has been well characterized in the non-homologous end-joining mechanism for DNA double strand break (DSB) repair and radiation resistance. Besides playing a role in DSB repair, DNA-PKcs is required for the cellular response to replication stress and participates in the ATR-Chk1 signaling pathway. However, the mechanism through which DNA-PKcs is recruited to stalled replication forks is still unclear. Here, we report that the apoptosis mediator p53-induced protein with a death domain (PIDD) is required to promote DNA-PKcs activity in response to replication stress. PIDD is known to interact with PCNA upon UV-induced replication stress. Our results demonstrate that PIDD is required to recruit DNA-PKcs to stalled replication forks through direct binding to DNA-PKcs at the N’ terminal region. Disruption of the interaction between DNA-PKcs and PIDD not only compromises the ATR association and regulation of DNA-PKcs, but also the ATR signaling pathway, intra-S-phase checkpoint and cellular resistance to replication stress. Taken together, our results indicate that PIDD, but not the Ku heterodimer, mediates the DNA-PKcs activity at stalled replication forks and facilitates the ATR signaling pathway in the cellular response to replication stress.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Hung-Ying Shih
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Zeng-Fu Shang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Ching-Te Kuo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Jiaming Guo
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.,Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunying Du
- Department of Cancer and Cell Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
37
|
Han J, Guo D, Sun XY, Wang JM, Ouyang JM, Gui BS. Repair Effects of Astragalus Polysaccharides with Different Molecular Weights on Oxidatively Damaged HK-2 Cells. Sci Rep 2019; 9:9871. [PMID: 31285477 PMCID: PMC6614371 DOI: 10.1038/s41598-019-46264-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigated the repair effects of three Astragalus polysaccharides (APSs) with different molecular weights (Mws) on injured human renal proximal tubular epithelial (HK-2) cells to reveal the effect of Mw of polysaccharide on cell repair. A damage model was established by injuring HK-2 cells with 2.6 mM oxalate, and APS0, APS1, and APS2 with Mw of 11.03, 4.72, and 2.61 KDa were used to repair the damaged cells. After repair by APSs, the morphology of damaged HK-2 cells gradually returned to normal, the destruction of intercellular junctions recovered, intracellular reactive oxygen species production amount decreased, and their mitochondrial membrane potential increased. In addition, the cell cycle progression gradually normalized, lysosome integrity increased, and cell apoptotic rates obviously declined in the repaired cells. All three APSs could promote the expression of Keap1, Nrf2, SOD1, and CAT. In addition, the expression levels of inflammation markers containing MCP-1 and IL-6 decreased after APS repair. We deduced that APSs exert their repair function by activating the Nrf2-Keap1 signaling pathway and inhibiting inflammation. Among the APSs, APS1 with a moderate Mw provided the strongest repair effect. APSs may have a preventive effect on kidney stones.
Collapse
Affiliation(s)
- Jin Han
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, 510632, China.
| | - Bao-Song Gui
- Department of Nephrology, the Second Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
38
|
Huang LH, Han J, Ouyang JM, Gui BS. Shape-dependent adhesion and endocytosis of hydroxyapatite nanoparticles on A7R5 aortic smooth muscle cells. J Cell Physiol 2019; 235:465-479. [PMID: 31222743 DOI: 10.1002/jcp.28987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
The interaction between nanohydroxyapatite (HAP) and smooth muscle cells is an important step in vascular calcification. However, the effect of the shape of HAP on adhesion and endocytosis to aortic smooth muscle cells has been rarely reported. Four different morphological HAP crystals (H-Rod, H-Needle, H-Sphere, and H-Plate) were selected to interact with rat aortic smooth muscle cells (A7R5). Fluorescence-labeled HAP was used to detect crystal adhesion and endocytosis and then pretreated with different endocytic inhibitors to explore the pathway of endocytotic crystals. The distribution of crystals inside and outside the cells and the crystal localization in lysosomes was observed through laser confocal microscopy. The effect of crystal on the cell cycle and the changes in the expression of phosphatidylserine, osteopontin, α-actin, core binding factor alpha 1, and osterix on the surface of A7R5 cells were detected. The adhesion and endocytosis of HAP on A7R5 cells were closely related to crystal shapes and ranked as follows: H-Plate > H-Sphere > H-Needle > H-Rod. H-Sphere and H-Needle were internalized into the cells mainly via the clathrin-mediated pathway, whereas H-Plate and H-Rod were internalized into the cells mainly via macropinocytosis. The endocytosed nano-HAP was mainly distributed in the cell lysosome. The adhesion and endocytosis of HAP to A7R5 cells were positively correlated with the specific surface area, and contact area of HAP and negatively correlated with the absolute value of Zeta and contact angle of HAP. This study provided insights into the effect of crystal morphology on vascular calcification and its mechanism.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Jin Han
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, China
| | - Bao-Song Gui
- Department of Nephrology, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Hegedüs É, Kókai E, Nánási P, Imre L, Halász L, Jossé R, Antunovics Z, Webb MR, El Hage A, Pommier Y, Székvölgyi L, Dombrádi V, Szabó G. Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:10649-10668. [PMID: 30445637 PMCID: PMC6237785 DOI: 10.1093/nar/gky743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Molecular combing and gel electrophoretic studies revealed endogenous nicks with free 3'OH ends at ∼100 kb intervals in the genomic DNA (gDNA) of unperturbed and G1-synchronized Saccharomyces cerevisiae cells. Analysis of the distribution of endogenous nicks by Nick ChIP-chip indicated that these breaks accumulated at active RNA polymerase II (RNAP II) promoters, reminiscent of the promoter-proximal transient DNA breaks of higher eukaryotes. Similar periodicity of endogenous nicks was found within the ribosomal rDNA cluster, involving every ∼10th of the tandemly repeated 9.1 kb units of identical sequence. Nicks were mapped by Southern blotting to a few narrow regions within the affected units. Three of them were overlapping the RNAP II promoters, while the ARS-containing IGS2 region was spared of nicks. By using a highly sensitive reverse-Southwestern blot method to map free DNA ends with 3'OH, nicks were shown to be distinct from other known rDNA breaks and linked to the regulation of rDNA silencing. Nicks in rDNA and the rest of the genome were typically found at the ends of combed DNA molecules, occasionally together with R-loops, comprising a major pool of vulnerable sites that are connected with transcriptional regulation.
Collapse
Affiliation(s)
- Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Halász
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rozenn Jossé
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | - Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
JMJD2 promotes acquired cisplatin resistance in non-small cell lung carcinoma cells. Oncogene 2019; 38:5643-5657. [PMID: 30967636 DOI: 10.1038/s41388-019-0814-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
Abstract
Platinum-based drugs such as cisplatin (CP) are the first-line chemotherapy for non-small-cell lung carcinoma (NSCLC). Unfortunately, NSCLC has a low response rate to CP and acquired resistance always occurs. Histone methylation regulates chromatin structure and is implicated in DNA repair. We hypothesize histone methylation regulators are involved in CP resistance. We therefore screened gene expression of known histone methyltransferases and demethylases in three NSCLC cell lines with or without acquired resistance to CP. JMJD2s are a family of histone demethylases that remove tri-methyl groups from H3K9 and H3K36. We found expression of several JMJD2 family genes upregulated in CP-resistant cells, with JMJD2B expression being upregulated in all three CP-resistant NSCLC cell lines. Further analysis showed increased JMJD2 protein expression coincided with decreased H3K9me3 and H3K36me3. Chemical inhibitors of JMJD2-family proteins increased H3K9me3 and H3K36me3 levels and sensitized resistant cells to CP. Mechanistic studies showed that JMJD2 inhibition decreased chromatin association of ATR and Chk1 and inhibited the ATR-Chk1 replication checkpoint. Our results reveal that JMJD2 demethylases are potential therapeutic targets to overcome CP resistance in NSCLC.
Collapse
|
41
|
Falquet B, Rass U. Structure-Specific Endonucleases and the Resolution of Chromosome Underreplication. Genes (Basel) 2019; 10:E232. [PMID: 30893921 PMCID: PMC6470701 DOI: 10.3390/genes10030232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Complete genome duplication in every cell cycle is fundamental for genome stability and cell survival. However, chromosome replication is frequently challenged by obstacles that impede DNA replication fork (RF) progression, which subsequently causes replication stress (RS). Cells have evolved pathways of RF protection and restart that mitigate the consequences of RS and promote the completion of DNA synthesis prior to mitotic chromosome segregation. If there is entry into mitosis with underreplicated chromosomes, this results in sister-chromatid entanglements, chromosome breakage and rearrangements and aneuploidy in daughter cells. Here, we focus on the resolution of persistent replication intermediates by the structure-specific endonucleases (SSEs) MUS81, SLX1-SLX4 and GEN1. Their actions and a recently discovered pathway of mitotic DNA repair synthesis have emerged as important facilitators of replication completion and sister chromatid detachment in mitosis. As RS is induced by oncogene activation and is a common feature of cancer cells, any advances in our understanding of the molecular mechanisms related to chromosome underreplication have important biomedical implications.
Collapse
Affiliation(s)
- Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
- Faculty of Natural Sciences, University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland.
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
42
|
Murai J, Pommier Y. PARP Trapping Beyond Homologous Recombination and Platinum Sensitivity in Cancers. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055914] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) have recently been approved for the treatment of ovarian and breast cancers with BRCA mutations, as well as for maintenance therapies regardless of BRCA mutation for ovarian and primary peritoneal cancers that previously responded to platinum-based chemotherapy. The rationale of these indications is derived from the facts that cancer cells with BRCA mutations are defective in homologous recombination (HR), which confers synthetic lethality with PARPis, and that some of the sensitivity-determining factors for PARPis are shared with platinums. Although BRCA1 and BRCA2 are central for HR, more players within and beyond HR are emerging as response determinants to PARPis. Furthermore, there are similarities as well as differences in the DNA lesions and repair pathways induced by PARPis, platinums, and camptothecin topoisomerase 1 (TOP1) inhibitors. Here we review the sensitivity-determining factors for PARPis and the rationale for using PARPis as single agents and in combination therapy for cancers.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
43
|
Murai J, Tang SW, Leo E, Baechler SA, Redon CE, Zhang H, Al Abo M, Rajapakse VN, Nakamura E, Jenkins LMM, Aladjem MI, Pommier Y. SLFN11 Blocks Stressed Replication Forks Independently of ATR. Mol Cell 2019; 69:371-384.e6. [PMID: 29395061 DOI: 10.1016/j.molcel.2018.01.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
SLFN11 sensitizes cancer cells to a broad range of DNA-targeted therapies. Here we show that, in response to replication stress induced by camptothecin, SLFN11 tightly binds chromatin at stressed replication foci via RPA1 together with the replication helicase subunit MCM3. Unlike ATR, SLFN11 neither interferes with the loading of CDC45 and PCNA nor inhibits the initiation of DNA replication but selectively blocks fork progression while inducing chromatin opening across replication initiation sites. The ATPase domain of SLFN11 is required for chromatin opening, replication block, and cell death but not for the tight binding of SLFN11 to chromatin. Replication stress by the CHK1 inhibitor Prexasertib also recruits SLFN11 to nascent replicating DNA together with CDC45 and PCNA. We conclude that SLFN11 is recruited to stressed replication forks carrying extended RPA filaments where it blocks replication by changing chromatin structure across replication sites.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elisabetta Leo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Simone A Baechler
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Muthana Al Abo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eijiro Nakamura
- DSK project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Sun XY, Wang JM, Ouyang JM, Kuang L. Antioxidant Activities and Repair Effects on Oxidatively Damaged HK-2 Cells of Tea Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5297539. [PMID: 30584463 PMCID: PMC6280578 DOI: 10.1155/2018/5297539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 01/04/2023]
Abstract
This study aims at investigating the antioxidant activity and repair effect of green tea polysaccharide (TPS) with different molecular weights (Mw) on damaged human kidney proximal tubular epithelial cells (HK-2). Scavenging activities on hydroxyl radical (·OH) and ABTS radical and reducing power of four kinds of TPS with Mw of 10.88 (TPS0), 8.16 (TPS1), 4.82 (TPS2), and 2.31 kDa (TPS3) were detected. A damaged cell model was established using 2.6 mmol/L oxalate to injure HK-2 cells. Then, different concentrations of TPSs were used to repair the damaged cells. Index changes of subcellular organelles of HK-2 cells were detected before and after repair. The four kinds of TPSs possessed radical scavenging activity and reducing power, wherein TPS2 with moderate Mw presented the strongest antioxidant activity. After repair by TPSs, cell morphology of damaged HK-2 cells was gradually restored to normal conditions. Reactive oxygen species production decreased, and mitochondrial membrane potential (Δψm) of repaired cells increased. Cells of G1 phase arrest were inhibited, and cell proportion in the S phase increased. Lysosome integrity improved, and cell apoptotic rates significantly reduced in the repaired group. The four kinds of TPSs with varying Mw displayed antioxidant activity and repair effect on the mitochondria, lysosomes, and intracellular DNA. TPS2, with moderate Mw, showed the strongest antioxidant activity and repair effect; it may become a potential drug for prevention and treatment of kidney stones.
Collapse
Affiliation(s)
- Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Min Wang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Li Kuang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Bacal J, Moriel-Carretero M, Pardo B, Barthe A, Sharma S, Chabes A, Lengronne A, Pasero P. Mrc1 and Rad9 cooperate to regulate initiation and elongation of DNA replication in response to DNA damage. EMBO J 2018; 37:e99319. [PMID: 30158111 PMCID: PMC6213276 DOI: 10.15252/embj.201899319] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023] Open
Abstract
The S-phase checkpoint maintains the integrity of the genome in response to DNA replication stress. In budding yeast, this pathway is initiated by Mec1 and is amplified through the activation of Rad53 by two checkpoint mediators: Mrc1 promotes Rad53 activation at stalled forks, and Rad9 is a general mediator of the DNA damage response. Here, we have investigated the interplay between Mrc1 and Rad9 in response to DNA damage and found that they control DNA replication through two distinct but complementary mechanisms. Mrc1 rapidly activates Rad53 at stalled forks and represses late-firing origins but is unable to maintain this repression over time. Rad9 takes over Mrc1 to maintain a continuous checkpoint signaling. Importantly, the Rad9-mediated activation of Rad53 slows down fork progression, supporting the view that the S-phase checkpoint controls both the initiation and the elongation of DNA replication in response to DNA damage. Together, these data indicate that Mrc1 and Rad9 play distinct functions that are important to ensure an optimal completion of S phase under replication stress conditions.
Collapse
Affiliation(s)
- Julien Bacal
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - María Moriel-Carretero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Benjamin Pardo
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Antoine Barthe
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Armelle Lengronne
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Equipe Labellisée Ligue contre le Cancer, Université de Montpellier, Montpellier, France
| |
Collapse
|
46
|
Sokka M, Koalick D, Hemmerich P, Syväoja JE, Pospiech H. The ATR-Activation Domain of TopBP1 Is Required for the Suppression of Origin Firing during the S Phase. Int J Mol Sci 2018; 19:ijms19082376. [PMID: 30104465 PMCID: PMC6121618 DOI: 10.3390/ijms19082376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022] Open
Abstract
The mammalian DNA replication program is controlled at two phases, the licensing of potential origins of DNA replication in early gap 1 (G1), and the selective firing of a subset of licenced origins in the synthesis (S) phase. Upon entry into the S phase, serine/threonine-protein kinase ATR (ATR) is required for successful completion of the DNA replication program by limiting unnecessary dormant origin activation. Equally important is its activator, DNA topoisomerase 2-binding protein 1 (TopBP1), which is also required for the initiation of DNA replication after a rise in S-phase kinase levels. However, it is unknown how the ATR activation domain of TopBP1 affects DNA replication dynamics. Using human cells conditionally expressing a TopBP1 mutant deficient for ATR activation, we show that functional TopBP1 is required in suppressing local dormant origin activation. Our results demonstrate a regulatory role for TopBP1 in the local balancing of replication fork firing within the S phase.
Collapse
Affiliation(s)
- Miiko Sokka
- Department of Biology, University of Eastern Finland, FI-80101 Joensuu, Finland.
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Dennis Koalick
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
| | - Peter Hemmerich
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
| | - Juhani E Syväoja
- Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| | - Helmut Pospiech
- Leibniz Institute on Aging-Fritz Lipmann Institute, DE-07745 Jena, Germany.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland.
| |
Collapse
|
47
|
Guo D, Yu K, Sun XY, Ouyang JM. Structural Characterization and Repair Mechanism of Gracilaria lemaneiformis Sulfated Polysaccharides of Different Molecular Weights on Damaged Renal Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7410389. [PMID: 30174781 PMCID: PMC6098909 DOI: 10.1155/2018/7410389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Natural Gracilaria lemaneiformis sulfated polysaccharide (GLP0, molecular weight = 622 kDa) was degraded by H2O2 to obtain seven degraded fragments, namely, GLP1, GLP2, GLP3, GLP4, GLP5, GLP6, and GLP7, with molecular weights of 106, 49.6, 10.5, 6.14, 5.06, 3.71, and 2.42 kDa, respectively. FT-IR and NMR results indicated that H2O2 degradation does not change the structure of GLP polysaccharides, whereas the content of the characteristic -OSO3H group (13.46% ± 0.10%) slightly increased than that of the natural polysaccharide (13.07%) after degradation. The repair effects of the polysaccharide fractions on oxalate-induced damaged human kidney proximal tubular epithelial cells (HK-2) were compared. When 60 μg/mL of each polysaccharide was used to repair the damaged HK-2 cells, cell viability increased and the cell morphology was restored, as determined by HE staining. The amount of lactate dehydrogenase released decreased from 16.64% in the injured group to 7.55%-13.87% in the repair groups. The SOD activity increased, and the amount of MDA released decreased. Moreover, the mitochondrial membrane potential evidently increased. All polysaccharide fractions inhibited S phase arrest through the decreased percentage of cells in the S phase and the increased percentage of cells in the G2/M phase. These results reveal that all GLP fractions exhibited repair effect on oxalate-induced damaged HK-2 cells. The repair ability is closely correlated with the molecular weight of the fractions. GLP2 with molecular weight of about 49.6 kDa exhibited the strongest repair effect, and GLP with higher or lower molecular weight than 49.6 kDa showed decreased repair ability. Our results can provide references for inhibiting the formation of kidney stones and developing original anti-stone polysaccharide drugs.
Collapse
Affiliation(s)
- Da Guo
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Kai Yu
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
48
|
The Tip of an Iceberg: Replication-Associated Functions of the Tumor Suppressor p53. Cancers (Basel) 2018; 10:cancers10080250. [PMID: 30060597 PMCID: PMC6115784 DOI: 10.3390/cancers10080250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor suppressor p53 is a transcriptional factor broadly mutated in cancer. Most inactivating and gain of function mutations disrupt the sequence-specific DNA binding domain, which activates target genes. This is perhaps the main reason why most research has focused on the relevance of such transcriptional activity for the prevention or elimination of cancer cells. Notwithstanding, transcriptional regulation may not be the only mechanism underlying its role in tumor suppression and therapeutic responses. In the past, a direct role of p53 in DNA repair transactions that include the regulation of homologous recombination has been suggested. More recently, the localization of p53 at replication forks has been demonstrated and the effect of p53 on nascent DNA elongation has been explored. While some data sets indicate that the regulation of ongoing replication forks by p53 may be mediated by p53 targets such as MDM2 (murine double minute 2) and polymerase (POL) eta other evidences demonstrate that p53 is capable of controlling DNA replication by directly interacting with the replisome and altering its composition. In addition to discussing such findings, this review will also analyze the impact that p53-mediated control of ongoing DNA replication has on treatment responses and tumor suppressor abilities of this important anti-oncogene.
Collapse
|
49
|
Rimmelé P, Esposito M, Delestré L, Guervilly JH, Ridinger-Saison M, Despras E, Moreau-Gachelin F, Rosselli F, Guillouf C. The Spi1/PU.1 transcription factor accelerates replication fork progression by increasing PP1 phosphatase in leukemia. Oncotarget 2018; 8:37104-37114. [PMID: 28415748 PMCID: PMC5514894 DOI: 10.18632/oncotarget.16183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Oncogenes trigger replicative stress that can lead to genetic instability, which participates in cancer progression. Thus, determining how cells cope with replicative stress can help our understanding of oncogenesis and lead to the identification of new antitumor treatment targets. We previously showed that constitutive overexpression of the oncogenic transcription factor Spi1/PU.1 leads to pre-leukemic cells that have a shortened S phase duration with an increased replication fork speed and increased mutability in the absence of DNA breaks. Here, we demonstrate that the S phase checkpoint protein CHK1 is maintained in a low phosphorylation state in Spi1/PU.1-overexpressing cells and provide evidence that this is not due to negative control of its primary kinase ATR. Notably, we found that the expression of the CHK1 phosphatase PP1α is increased in Spi1/PU.1-overexpressing cells. By exogenously modulating its activity, we demonstrate that PP1α is required to maintain CHK1 in a dephosphorylated state and, more importantly, that it is responsible for the accelerated replication fork progression in Spi1/PU.1-overexpressing cells. These results identify a novel pathway by which an oncogene influences replication in the absence of DNA damage.
Collapse
Affiliation(s)
| | - Michela Esposito
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France
| | - Laure Delestré
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France
| | - Jean-Hugues Guervilly
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | | | - Emmanuelle Despras
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | | | - Filippo Rosselli
- Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,CNRS UMR8200, Equipe Labellisée La Ligue Contre Le Cancer, Villejuif, France
| | - Christel Guillouf
- Institut Curie, Paris, France.,Inserm U830, Paris, France.,Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Inserm U1170, Villejuif, France.,CNRS, Paris, France
| |
Collapse
|
50
|
Murai J, Feng Y, Yu GK, Ru Y, Tang SW, Shen Y, Pommier Y. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. Oncotarget 2018; 7:76534-76550. [PMID: 27708213 PMCID: PMC5340226 DOI: 10.18632/oncotarget.12266] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPIs) kill cancer cells by trapping PARP1 and PARP2. Talazoparib, the most potent PARPI inhibitor (PARPI), exhibits remarkable selectivity among the NCI-60 cancer cell lines beyond BRCA inactivation. Our genomic analyses reveal high correlation between response to talazoparib and Schlafen 11 (SLFN11) expression. Causality was established in four isogenic SLFN11-positive and -negative cell lines and extended to olaparib. Response to the talazoparib-temozolomide combination was also driven by SLFN11 and validated in 36 small cell lung cancer cell lines, and in xenograft models. Resistance in SLFN11-deficient cells was caused neither by impaired drug penetration nor by activation of homologous recombination. Rather, SLFN11 induced irreversible and lethal replication inhibition, which was independent of ATR-mediated S-phase checkpoint. The resistance to PARPIs by SLFN11 inactivation was overcome by ATR inhibition, mechanistically because SLFN11-deficient cells solely rely on ATR activation for their survival under PARPI treatment. Our study reveals that SLFN11 inactivation, which is common (~45%) in cancer cells, is a novel and dominant resistance determinant to PARPIs.
Collapse
Affiliation(s)
- Junko Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ying Feng
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | | | - Yuanbin Ru
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Sai-Wen Tang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Current affiliation: Division of Blood and Marrow Transplantation, Department of Medicine, Stranford University School of Medicine, Stanford, CA, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., Novato, CA, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|