1
|
Kumaran G, Michaeli S. Eating the messenger (RNA): autophagy shapes the cellular RNA landscape. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6803-6807. [PMID: 34468738 PMCID: PMC8547149 DOI: 10.1093/jxb/erab385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
This article comments on: Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus EH, Scheuring D, Fehlmann T, Keller A, Simon M, Möhlmann T. 2021. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany 72, 6867–6881.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| | - Simon Michaeli
- Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
2
|
Aizawa S, Fujiwara Y, Contu VR, Hase K, Takahashi M, Kikuchi H, Kabuta C, Wada K, Kabuta T. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 2016; 12:565-78. [PMID: 27046251 PMCID: PMC4836006 DOI: 10.1080/15548627.2016.1145325] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.
Collapse
Affiliation(s)
- Shu Aizawa
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Yuuki Fujiwara
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,b Department of Electrical Engineering and Bioscience , Graduate School of Advanced Science and Engineering, Waseda University , Shinjuku-ku , Tokyo , Japan
| | - Viorica Raluca Contu
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,c Department of Neurology , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Katsunori Hase
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,b Department of Electrical Engineering and Bioscience , Graduate School of Advanced Science and Engineering, Waseda University , Shinjuku-ku , Tokyo , Japan
| | - Masayuki Takahashi
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Hisae Kikuchi
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Chihana Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Keiji Wada
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Tomohiro Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| |
Collapse
|
3
|
Abstract
Macroautophagy/autophagy is a key catabolic process, essential for maintaining cellular homeostasis and survival through the removal and recycling of unwanted cellular material. Emerging evidence has revealed intricate connections between the RNA and autophagy research fields. While a majority of studies have focused on protein, lipid and carbohydrate catabolism via autophagy, accumulating data supports the view that several types of RNA and associated ribonucleoprotein complexes are specifically recruited to phagophores (precursors to autophagosomes) and subsequently degraded in the lysosome/vacuole. Moreover, recent studies have revealed a substantial number of novel autophagy regulators with RNA-related functions, indicating roles for RNA and associated proteins not only as cargo, but also as regulators of this process. In this review, we discuss widespread evidence of RNA catabolism via autophagy in yeast, plants and animals, reviewing the molecular mechanisms and biological importance in normal physiology, stress and disease. In addition, we explore emerging evidence of core autophagy regulation mediated by RNA-binding proteins and noncoding RNAs, and point to gaps in our current knowledge of the connection between RNA and autophagy. Finally, we discuss the pathological implications of RNA-protein aggregation, primarily in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Lisa B Frankel
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Michal Lubas
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| | - Anders H Lund
- a Biotech Research and Innovation Centre , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
4
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Park EA, Parker SL. On the expansion of ribosomal proteins and RNAs in eukaryotes. Amino Acids 2014; 46:1589-604. [PMID: 24633358 DOI: 10.1007/s00726-014-1704-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 01/11/2023]
Abstract
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, 38152, USA
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Balavoine S, Feldmann G, Lardeux B. Regulation of RNA degradation in cultured rat hepatocytes: effects of specific amino acids and insulin. J Cell Physiol 1993; 156:56-62. [PMID: 7686166 DOI: 10.1002/jcp.1041560109] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The regulation of RNA degradation by specific amino acids and insulin was investigated in cultured rat hepatocytes from fed rats previously injected in vivo with [6-(14)C]orotic acid. The effects of three groups of amino acids were compared to those of a complete amino acid mixture. The first one consisted of the eight amino acids (leucine, proline, glutamine, histidine, phenylalanine, tyrosine, methionine, tryptophan) previously found to be particularly effective in the control of proteolysis. The two other groups were defined from our study with single additions of amino acids, one consisting of proline, asparagine, glutamine, alanine, phenylalanine, and leucine and the other including the latter group with serine, histidine, and tyrosine. The results showed that these three groups were able to strongly inhibit deprivation-induced RNA breakdown at one and ten times normal plasma concentrations but to a lower extent than the complete amino acid mixture. Six amino acids (proline, asparagine, glutamine, alanine, phenylalanine, leucine) inhibited individually RNA degradation by more than 20%. However, the deletions of proline, asparagine, glutamine, or alanine from the group of these six amino acids were not followed by a loss of inhibitory effect. On the contrary, an important loss of inhibition was observed when leucine and phenylalanine were deleted. Furthermore, only these two amino acids exhibited an additive inhibitory effect. Thus leucine and phenylalanine could be considered as important inhibitors of RNA breakdown in cultured rat hepatocytes. Finally, insulin which had no significant effect on RNA degradation in the absence of amino acids, was able to potentiate the inhibitory effect of different amino acid groups.
Collapse
Affiliation(s)
- S Balavoine
- Laboratoire de Biologie Cellulaire, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier-Bichat, Université Paris 7, France
| | | | | |
Collapse
|
7
|
Pisoni RL, Thoene JG. The transport systems of mammalian lysosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:351-73. [PMID: 1751541 DOI: 10.1016/0304-4157(91)90002-e] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R L Pisoni
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor 48109-2029
| | | |
Collapse
|
8
|
Balavoine S, Feldmann G, Lardeux B. Rates of RNA degradation in isolated rat hepatocytes. Effects of amino acids and inhibitors of lysosomal function. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:617-23. [PMID: 1693572 DOI: 10.1111/j.1432-1033.1990.tb15530.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. RNA degradation in isolated rat hepatocytes was measured as the release of radioactive cytidine from fed rats previously labeled in vivo for 60 h with [6-14C]orotic acid. Rates were determined from the linear accumulation of [14C]cytidine between 30 and 120 min of incubation in the presence of 0.5 mM unlabeled cytidine to suppress reutilization. 2. In the absence of amino acids, rates of RNA degradation in isolated hepatocytes averaged 3.97%/h. A complete mixture of amino acids added at 10-20 times normal plasma concentration inhibited RNA degradation by 65-70%. However, at physiological concentrations of amino acids, RNA degradation in isolated rat hepatocytes was less responsive as compared to perfused rat livers. 3. Numerous and large autophagic vacuoles at various stages of digestion were identified throughout the cytoplasm of isolated hepatocytes after 2 h of incubation in the absence of amino acids. The addition of amino acids at 20 times normal plasma concentration abolished almost completely the appearance of autophagic vacuoles. Furthermore, prophylamine, which accumulates in lysosomes, suppressed RNA degradation by 65% and the inhibitor of autophagic vacuole formation, 3-methyladenine, inhibited 70-80% of the degradation. Taken together, these results strongly suggest a contribution of the lysosomal system in the increase of RNA degradation rates in isolated rat hepatocytes.
Collapse
Affiliation(s)
- S Balavoine
- Laboratoire de Biologie Cellulaire, Unité 327 de l'Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier-Bichat, Paris, France
| | | | | |
Collapse
|
9
|
Pisoni RL, Thoene JG. Detection and Characterization of a Nucleoside Transport System in Human Fibroblast Lysosomes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83669-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Kimball SR, Jefferson LS. Cellular mechanisms involved in the action of insulin on protein synthesis. DIABETES/METABOLISM REVIEWS 1988; 4:773-87. [PMID: 3069402 DOI: 10.1002/dmr.5610040806] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- S R Kimball
- Department of Physiology, College of Medicine, Pennsylvania State University, Hershey 17033
| | | |
Collapse
|
11
|
Lardeux BR, Mortimore GE. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47825-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Sylvester JE, Whiteman DA, Podolsky R, Pozsgay JM, Respess J, Schmickel RD. The human ribosomal RNA genes: structure and organization of the complete repeating unit. Hum Genet 1986; 73:193-8. [PMID: 3015766 DOI: 10.1007/bf00401226] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The complete repeating unit of the human ribosomal RNA gene has been reconstructed by the cloning of approximately 27 kilobases (kb) of non-transcribed spacer. The structure of this tandemly repeated gene can now be studied in its entirety. We report the analysis of spacer DNA by molecular cloning and its organization in the genome by Southern transfer analysis. These studies reveal both length and sequence variation of the spacer. Sequence variations are distributed throughout the spacer while the length variations exist near the 5' end of the transcript and just beyond the 3' end. The human spacer shares extensive homology with primates but little with other mammals. Within the primates the degree of homology reflects the rapid evolutionary changes characteristic of the primate group.
Collapse
|
13
|
Ashford AJ, Pain VM. Effect of diabetes on the rates of synthesis and degradation of ribosomes in rat muscle and liver in vivo. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35621-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Welsh M, Nielsen DA, MacKrell AJ, Steiner DF. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)38765-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Gronostajski RM, Goldberg AL, Pardee AB. The role of increased proteolysis in the atrophy and arrest of proliferation in serum-deprived fibroblasts. J Cell Physiol 1984; 121:189-98. [PMID: 6384241 DOI: 10.1002/jcp.1041210124] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
When cultured fibroblasts are deprived of serum, the degradation of long-lived proteins and RNA increases, the cells stop proliferating, and they decrease in size. To determine the role of the increased protein catabolism in these responses, we studied the effects of inhibitors of intralysosomal proteolysis in Balb/c 3T3 cells. When these cells were placed in serum-deficient medium (0.5% serum), the rate of degradation of long-lived proteins increased about twofold within 30 min. This increase was reduced by 50-70% with inhibitors of lysosomal thiol proteases (Ep475 and leupeptin) or agents that raise intralysosomal pH (chloroquine and NH4Cl). By contrast, these compounds had little or no effect on protein degradation in cells growing in 10% serum. Thus, in accord with prior studies, lysosomes appear to be the site of the increased proteolysis after serum deprivation. When 3T3 cells were deprived of serum for 24-48 hours, the rate of protein synthesis and the content of protein and RNA and cell volume decreased two- to fourfold. The protease inhibitor, Ep475, reduced this decrease in the rate of protein synthesis and the loss of cell protein and RNA. Cells deprived of serum and treated with Ep475 for 24-48 hours had about twice the rate of protein synthesis and two- to fourfold higher levels of protein and RNA than control cells deprived of serum. The Ep475-treated cells were also about 30% larger than the untreated cells. Thus, the protease-inhibitor prevented much of the atrophy induced by serum deprivation. The serum-deprived fibroblasts also stopped proliferating and accumulated in the G1 phase of the cell cycle. The cells treated with Ep475 accumulated in G1 in a manner identical to untreated serum-deprived cells. Other agents which inhibited protein breakdown in serum-deprived cells also did not prevent the arrest of cell proliferation. Thus the enhancement of proteolysis during serum deprivation appears necessary for the decrease in size and protein synthesis, but probably not for the cessation of cell proliferation. When cells deprived of serum in the presence or absence of Ep475 were stimulated to proliferate by the readdition of serum, the larger Ep475-treated cells began DNA synthesis 1-2 hours later than the smaller untreated cells. Thus, after treatment with Ep475, the rate of cell cycle transit following serum stimulation was not proportional to the cell's size, protein, or RNA content, or rate of protein synthesis.
Collapse
|
16
|
Cockle SM, Dean RT. An abnormality in intracellular protein degradation in fibroblasts from patients with I-cell disease. Clin Chim Acta 1984; 140:257-65. [PMID: 6467613 DOI: 10.1016/0009-8981(84)90207-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Degradation of endogenous proteins in five normal and five I-cell (mucolipidosis II) storage disease human fibroblasts was compared. In growing cultures (low density) long half-life proteins were degraded normally in each group of cells. However, the enhancement of proteolysis when confluence is reached, which we have characterised previously as being a lysosomal function, was less in the I-cell fibroblasts. The lysosomotropic agents ammonium chloride, pepstatin and Z-Phe-Ala-diazomethylketone, inhibited similarly proteolysis in growing and confluent cultures of both cell types. Leupeptin depressed proteolysis in both growth states for both cell types, but, whereas it failed to abolish the enhancement of degradation in confluent normal cells, surprisingly it depressed degradation in confluent I-cell fibroblasts to a lower rate than in growing I-cell fibroblasts. In spite of this, the inhibitory effects of ammonium chloride and leupeptin were not additive in either normal or I-cell fibroblasts, indicating that they act upon the same proteolytic mechanism(s). Non-lysosomal mechanisms may degrade short half-life proteins, and it seemed that turnover of such proteins was slower in I-cell fibroblasts. It is suggested that mutual regulation of participating proteolytic pathways may be responsible for the dysfunction of intracellular protein degradation in I-cell fibroblasts.
Collapse
|
17
|
Saha BK, Sameshima M, Sameshima F, Schlessinger D. Lysosomal enzyme activities and RNA turnover rates in growing and nongrowing WI-38 and HeLa cells. IN VITRO 1981; 17:816-24. [PMID: 6170571 DOI: 10.1007/bf02618449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Activities of three lysosomal enzymes--acid RNase. N-acetyl-beta-D-glucosaminidase and acid phosphatase--were determined during the growth cycles of WI-38 and HeLa cells, as well as in radiation-arrested WI-38 cells. In confluent and growth-arrested cultures of WI-38 cells, the lysosomal RNase increased six- to sevenfold; glucosaminidase, four- to fivefold; and phosphatase, two- to threefold. In HeLa cells, the lysosomal enzymes also increased in confluent cultures, but less than twofold; and the RNase level increased only transiently. In both WI-38 and HeLa cells, the rate of RNA breakdown also increased as cultures approached confluency. The rate of turnover of RNA, like the level of acid RNase, was higher in WI-38 cells than in HeLa cells (4 d half-life compared to 8 d). The increase in acid RNase could be prevented by incubation of cells in NH4Cl, but the rate of turnover in the presence of NH4Cl increased just as much when cells became confluent or stopped growth. The content of acid RNase could be changed more than 10-fold without altering the rate of RNA turnover. It is suggested that the increase in enzyme level is more important for possible autophagy or increased digestion of engulfed RNA, rather than for normal RNA turnover, when growth stops.
Collapse
|