1
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
2
|
Chen J, Xiong Z, Miller DE, Yu Z, McCroskey S, Bradford WD, Cavanaugh AM, Jaspersen SL. The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genet 2020; 16:e1008911. [PMID: 33332348 PMCID: PMC7775121 DOI: 10.1371/journal.pgen.1008911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids ‘rescues’ SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes. Ploidy is the number of whole sets of chromosomes in a species. Most eukaryotes alternate between a diploid (two copy) and haploid (one copy) state during their life and sexual cycle. However, as part of normal human development, specific tissues increase their DNA content. This gain of entire sets of chromosomes is known as polyploidization, and it is observed in invertebrates, plants and fungi, as well. Polyploidy is thought to improve fitness under stressful conditions and promote evolutionary diversity, but how ploidy is determined is poorly understood. Here, we use budding yeast to investigate mechanisms underlying the ploidy of wild-type cells and specific mutants that affect the centrosome, a conserved structure involved in chromosome segregation during cell division. Our work suggests that different scaling relationships (allometry) between the genome and cellular structures underlies alterations in ploidy. Furthermore, mutations in cellular structures with incompatible allometric relationships with the genome may drive genomic changes such duplications, which are underly the evolution of many species including both yeasts and humans.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zhiyong Xiong
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ann M. Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
4
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
5
|
Tam AS, Sihota TS, Milbury KL, Zhang A, Mathew V, Stirling PC. Selective defects in gene expression control genome instability in yeast splicing mutants. Mol Biol Cell 2018; 30:191-200. [PMID: 30462576 PMCID: PMC6589566 DOI: 10.1091/mbc.e18-07-0439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA processing mutants have been broadly implicated in genome stability, but mechanistic links are often unclear. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. In both cases, alterations in gene expression, rather than direct cis effects, are likely to contribute to instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, differing penetrance and selective effects on the transcriptome can lead to a range of phenotypes in conditional mutants of the spliceosome, including multiple routes to genome instability.
Collapse
Affiliation(s)
- Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tianna S Sihota
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Karissa L Milbury
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Anni Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Veena Mathew
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Francis JW, Goswami D, Novick SJ, Pascal BD, Weikum ER, Ortlund EA, Griffin PR, Kahn RA. Nucleotide Binding to ARL2 in the TBCD∙ARL2∙β-Tubulin Complex Drives Conformational Changes in β-Tubulin. J Mol Biol 2017; 429:3696-3716. [PMID: 28970104 DOI: 10.1016/j.jmb.2017.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Microtubules are highly dynamic tubulin polymers that are required for a variety of cellular functions. Despite the importance of a cellular population of tubulin dimers, we have incomplete information about the mechanisms involved in the biogenesis of αβ-tubulin heterodimers. In addition to prefoldin and the TCP-1 Ring Complex, five tubulin-specific chaperones, termed cofactors A-E (TBCA-E), and GTP are required for the folding of α- and β-tubulin subunits and assembly into heterodimers. We recently described the purification of a novel trimer, TBCD•ARL2•β-tubulin. Here, we employed hydrogen/deuterium exchange coupled with mass spectrometry to explore the dynamics of each of the proteins in the trimer. Addition of guanine nucleotides resulted in changes in the solvent accessibility of regions of each protein that led to predictions about each's role in tubulin folding. Initial testing of that model confirmed that it is ARL2, and not β-tubulin, that exchanges GTP in the trimer. Comparisons of the dynamics of ARL2 monomer to ARL2 in the trimer suggested that its protein interactions were comparable to those of a canonical GTPase with an effector. This was supported by the use of nucleotide-binding assays that revealed an increase in the affinity for GTP by ARL2 in the trimer. We conclude that the TBCD•ARL2•β-tubulin complex represents a functional intermediate in the β-tubulin folding pathway whose activity is regulated by the cycling of nucleotides on ARL2. The co-purification of guanine nucleotide on the β-tubulin in the trimer is also shown, with implications to modeling the pathway.
Collapse
Affiliation(s)
- Joshua W Francis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Devrishi Goswami
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Scott J Novick
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Bruce D Pascal
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Emily R Weikum
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
7
|
Al-Bassam J. Revisiting the tubulin cofactors and Arl2 in the regulation of soluble αβ-tubulin pools and their effect on microtubule dynamics. Mol Biol Cell 2017; 28:359-363. [PMID: 28137948 PMCID: PMC5341719 DOI: 10.1091/mbc.e15-10-0694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Soluble αβ-tubulin heterodimers are maintained at high concentration inside eukaryotic cells, forming pools that fundamentally drive microtubule dynamics. Five conserved tubulin cofactors and ADP ribosylation factor-like 2 regulate the biogenesis and degradation of αβ-tubulins to maintain concentrated soluble pools. Here I describe a revised model for the function of three tubulin cofactors and Arl2 as a multisubunit GTP-hydrolyzing catalytic chaperone that cycles to promote αβ-tubulin biogenesis and degradation. This model helps explain old and new data indicating these activities enhance microtubule dynamics in vivo via repair or removal of αβ-tubulins from the soluble pools.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Molecular Cellular Biology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
8
|
Makrantoni V, Ciesiolka A, Lawless C, Fernius J, Marston A, Lydall D, Stark MJR. A Functional Link Between Bir1 and the Saccharomyces cerevisiae Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3 (BETHESDA, MD.) 2017; 7:3203-3215. [PMID: 28754723 PMCID: PMC5592945 DOI: 10.1534/g3.117.300089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 11/18/2022]
Abstract
The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3∆ or chl4∆ in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3 Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1.
Collapse
Affiliation(s)
- Vasso Makrantoni
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adam Ciesiolka
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Conor Lawless
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Josefin Fernius
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - Adele Marston
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, EH9 3BF, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University, NE2 4HH, UK
| | - Michael J R Stark
- Centre for Gene Regulation and Expression, University of Dundee, DD1 5EH, UK
| |
Collapse
|
9
|
Newman LE, Schiavon CR, Zhou C, Kahn RA. The abundance of the ARL2 GTPase and its GAP, ELMOD2, at mitochondria are modulated by the fusogenic activity of mitofusins and stressors. PLoS One 2017; 12:e0175164. [PMID: 28380071 PMCID: PMC5381910 DOI: 10.1371/journal.pone.0175164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/21/2017] [Indexed: 12/05/2022] Open
Abstract
Mitochondria are essential, dynamic organelles that respond to a number of stressors with changes in morphology that are linked to several mitochondrial functions, though the mechanisms involved are poorly understood. We show that the levels of the regulatory GTPase ARL2 and its GAP, ELMOD2, are specifically increased at mitochondria in immortalized mouse embryo fibroblasts deleted for Mitofusin 2 (MFN2), but not MFN1. Elevated ARL2 and ELMOD2 in MEFs deleted for MFN2 could be reversed by re-introduction of MFN2, but only when the mitochondrial fragmentation in these MEFs was also reversed, demonstrating that reversal of elevated ARL2 and ELMOD2 requires the fusogenic activity of MFN2. Other stressors with links to mitochondrial morphology were investigated and several, including glucose or serum deprivation, also caused increases in ARL2 and ELMOD2. In contrast, a number of pharmacological inhibitors of energy metabolism caused increases in ARL2 without affecting ELMOD2 levels. Together we interpret these data as evidence of two ARL2-sensitive pathways in mitochondria, one affecting ATP levels that is independent of ELMOD2 and the other leading to mitochondrial fusion involving MFN2 that does involve ELMOD2.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cara R. Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Chengjing Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
McIntosh JR, Hays T. A Brief History of Research on Mitotic Mechanisms. BIOLOGY 2016; 5:E55. [PMID: 28009830 PMCID: PMC5192435 DOI: 10.3390/biology5040055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 11/16/2022]
Abstract
This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Thomas Hays
- Department of Genetics, Cell Biology and Development, Medical School and College of Biological Sciences, University of Minnesota, Saint Paul, MN 55455, USA.
| |
Collapse
|
11
|
Francis JW, Turn RE, Newman LE, Schiavon C, Kahn RA. Higher order signaling: ARL2 as regulator of both mitochondrial fusion and microtubule dynamics allows integration of 2 essential cell functions. Small GTPases 2016; 7:188-196. [PMID: 27400436 PMCID: PMC5129891 DOI: 10.1080/21541248.2016.1211069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
ARL2 is among the most highly conserved proteins, predicted to be present in the last eukaryotic common ancestor, and ubiquitously expressed. Genetic screens in multiple model organisms identified ARL2, and its cytosolic binding partner cofactor D (TBCD), as important in tubulin folding and microtubule dynamics. Both ARL2 and TBCD also localize to centrosomes, making it difficult to dissect these effects. A growing body of evidence also has found roles for ARL2 inside mitochondria, as a regulator of mitochondrial fusion. Other studies have revealed roles for ARL2, in concert with its closest paralog ARL3, in the traffic of farnesylated cargos between membranes and specifically to cilia and photoreceptor cells. Details of each of these signaling processes continue to emerge. We summarize those data here and speculate about the potential for cross-talk or coordination of cell regulation, termed higher order signaling, based upon the use of a common GTPase in disparate cell functions.
Collapse
Affiliation(s)
- Joshua W. Francis
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel E. Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Cara Schiavon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A. Curr Genet 2016; 63:253-274. [DOI: 10.1007/s00294-016-0633-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023]
|
13
|
Nithianantham S, Le S, Seto E, Jia W, Leary J, Corbett KD, Moore JK, Al-Bassam J. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics. eLife 2015. [PMID: 26208336 PMCID: PMC4574351 DOI: 10.7554/elife.08811] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microtubule dynamics and polarity stem from the polymerization of
αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones
and the Arl2 GTPase regulate α- and β-tubulin assembly into
heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their
physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone
consisting of tubulin cofactors TBCD, TBCE, and Arl2, and reveal a cage-like
structure for regulating αβ-tubulin. Biochemical assays and electron
microscopy structures of multiple intermediates show the sequential binding of
αβ-tubulin dimer followed by tubulin cofactor TBCC onto this chaperone,
forming a ternary complex in which Arl2 GTP hydrolysis is activated to alter
αβ-tubulin conformation. A GTP-state locked Arl2 mutant inhibits
ternary complex dissociation in vitro and causes severe defects in microtubule
dynamics in vivo. Our studies suggest a revised paradigm for tubulin cofactors and
Arl2 functions as a catalytic chaperone that regulates soluble
αβ-tubulin assembly and maintenance to support microtubule
dynamics. DOI:http://dx.doi.org/10.7554/eLife.08811.001 Cells contain a network of protein filaments called microtubules. These filaments are
involved in many biological processes; for example, they help cells keep the right
shape, and they help to transport proteins and other materials inside cells. Two proteins called α-tubulin and β-tubulin are the building blocks of
microtubules. The filaments are very dynamic structures that can rapidly change
length as individual tubulin units are either added or removed to the filament ends.
Several proteins known as tubulin cofactors and an enzyme called Arl2 help to build a
vast pool of tubulin units that are able attach to the microtubules. These
units—called αβ-tubulin—are formed by α-tubulin
and β-tubulin binding to each other, but it not clear exactly what roles the
tubulin cofactors and Arl2 play in this process. Nithianantham et al. used a combination of microscopy and biochemical techniques to
study how the tubulin cofactors and Arl2 are organised, and their role in the
assembly of microtubules in yeast. The experiments show that Arl2 and two tubulin
cofactors associate with each other to form a stable ‘complex’ that has
a cage-like structure. A molecule of αβ-tubulin binds to the complex,
followed by another cofactor called TBCC. This activates the enzyme activity of Arl2,
which releases the energy needed to alter the shape of the αβ-tubulin.
Nithianantham et al. also found that yeast cells with a mutant form of Arl2 that
lacked enzyme activity had problems forming microtubules. Together, these findings show that the tubulin cofactors and Arl2 form a complex that
regulates the assembly and maintenance of αβ-tubulin. The next
challenge is to understand how this regulation influences the way that microtubules
grow and shrink inside cells. DOI:http://dx.doi.org/10.7554/eLife.08811.002
Collapse
Affiliation(s)
- Stanley Nithianantham
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| | - Sinh Le
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| | - Elbert Seto
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| | - Weitao Jia
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| | - Julie Leary
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, University of California, San Diego, San Diego, United States
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, United States
| | - Jawdat Al-Bassam
- Department of Molecular Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
14
|
Gonçalves J, Tavares A, Carvalhal S, Soares H. Revisiting the tubulin folding pathway: new roles in centrosomes and cilia. Biomol Concepts 2015; 1:423-34. [PMID: 25962015 DOI: 10.1515/bmc.2010.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosomes and cilia are critical eukaryotic organelles which have been in the spotlight in recent years given their implication in a myriad of cellular and developmental processes. Despite their recognized importance and intense study, there are still many open questions about their biogenesis and function. In the present article, we review the existing data concerning members of the tubulin folding pathway and related proteins, which have been identified at centrosomes and cilia and were shown to have unexpected roles in these structures.
Collapse
|
15
|
Newman LE, Zhou CJ, Mudigonda S, Mattheyses AL, Paradies E, Marobbio CMT, Kahn RA. The ARL2 GTPase is required for mitochondrial morphology, motility, and maintenance of ATP levels. PLoS One 2014; 9:e99270. [PMID: 24911211 PMCID: PMC4050054 DOI: 10.1371/journal.pone.0099270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023] Open
Abstract
ARF-like 2 (ARL2) is a member of the ARF family and RAS superfamily of regulatory GTPases, predicted to be present in the last eukaryotic common ancestor, and essential in a number of model genetic systems. Though best studied as a regulator of tubulin folding, we previously demonstrated that ARL2 partially localizes to mitochondria. Here, we show that ARL2 is essential to a number of mitochondrial functions, including mitochondrial morphology, motility, and maintenance of ATP levels. We compare phenotypes resulting from ARL2 depletion and expression of dominant negative mutants and use these to demonstrate that the mitochondrial roles of ARL2 are distinct from its roles in tubulin folding. Testing of current models for ARL2 actions at mitochondria failed to support them. Rather, we found that knockdown of the ARL2 GTPase activating protein (GAP) ELMOD2 phenocopies two of three phenotypes of ARL2 siRNA, making it a likely effector for these actions. These results add new layers of complexity to ARL2 signaling, highlighting the need to deconvolve these different cell functions. We hypothesize that ARL2 plays essential roles inside mitochondria along with other cellular functions, at least in part to provide coupling of regulation between these essential cell processes.
Collapse
Affiliation(s)
- Laura E. Newman
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Cheng-jing Zhou
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samatha Mudigonda
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Alexa L. Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Eleonora Paradies
- Consiglio Nazionale delle Ricerche Institute of Biomembranes and Bioenergetics, Bari, Italy
| | | | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Abstract
The ARF-like (ARL) proteins, within the ARF family, are a collection of functionally diverse GTPases that share extensive (>40 %) identity with the ARFs and each other and are assumed to share basic mechanisms of regulation and a very incompletely documented degree of overlapping regulators. At least four ARLs were already present in the last eukaryotic common ancestor, along with one ARF, and these have been expanded to >20 members in mammals. We know little about the majority of these proteins so our review will focus on those about which the most is known, including ARL1, ARL2, ARL3, ARL4s, ARL6, ARL13s, and ARFRP1. From this fragmentary information we extract some generalizations and conclusions regarding the sources and extent of specificity and functions of the ARLs.
Collapse
Affiliation(s)
- Alfred Wittinghofer
- Max-Planck-Institute of Molecular Physiology, Dortmund, Nordrhein-Westfalen Germany
| |
Collapse
|
17
|
Chang SL, Lai HY, Tung SY, Leu JY. Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 2013; 9:e1003232. [PMID: 23358723 PMCID: PMC3554576 DOI: 10.1371/journal.pgen.1003232] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
Large-scale genome rearrangements have been observed in cells adapting to various selective conditions during laboratory evolution experiments. However, it remains unclear whether these types of mutations can be stably maintained in populations and how they impact the evolutionary trajectories. Here we show that chromosomal rearrangements contribute to extremely high copper tolerance in a set of natural yeast strains isolated from Evolution Canyon (EC), Israel. The chromosomal rearrangements in EC strains result in segmental duplications in chromosomes 7 and 8, which increase the copy number of genes involved in copper regulation, including the crucial transcriptional activator CUP2 and the metallothionein CUP1. The copy number of CUP2 is correlated with the level of copper tolerance, indicating that increasing dosages of a single transcriptional activator by chromosomal rearrangements has a profound effect on a regulatory pathway. By gene expression analysis and functional assays, we identified three previously unknown downstream targets of CUP2: PHO84, SCM4, and CIN2, all of which contributed to copper tolerance in EC strains. Finally, we conducted an evolution experiment to examine how cells maintained these changes in a fluctuating environment. Interestingly, the rearranged chromosomes were reverted back to the wild-type configuration at a high frequency and the recovered chromosome became fixed in less selective conditions. Our results suggest that transposon-mediated chromosomal rearrangements can be highly dynamic and can serve as a reversible mechanism during early stages of adaptive evolution.
Collapse
Affiliation(s)
- Shang-Lin Chang
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Huei-Yi Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Molecular Cell Biology, Taiwan International Graduate Program, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Stirling PC, Crisp MJ, Basrai MA, Tucker CM, Dunham MJ, Spencer FA, Hieter P. Mutability and mutational spectrum of chromosome transmission fidelity genes. Chromosoma 2011; 121:263-75. [PMID: 22198145 PMCID: PMC3350768 DOI: 10.1007/s00412-011-0356-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/07/2011] [Accepted: 12/08/2011] [Indexed: 01/10/2023]
Abstract
It has been more than two decades since the original chromosome transmission fidelity (Ctf) screen of Saccharomyces cerevisiae was published. Since that time the spectrum of mutations known to cause Ctf and, more generally, chromosome instability (CIN) has expanded dramatically as a result of systematic screens across yeast mutant arrays. Here we describe a comprehensive summary of the original Ctf genetic screen and the cloning of the remaining complementation groups as efforts to expand our knowledge of the CIN gene repertoire and its mutability in a model eukaryote. At the time of the original screen, it was impossible to predict either the genes and processes that would be overrepresented in a pool of random mutants displaying a Ctf phenotype or what the entire set of genes potentially mutable to Ctf would be. We show that in a collection of 136 randomly selected Ctf mutants, >65% of mutants map to 13 genes, 12 of which are involved in sister chromatid cohesion and/or kinetochore function. Extensive screening of systematic mutant collections has shown that ~350 genes with functions as diverse as RNA processing and proteasomal activity mutate to cause a Ctf phenotype and at least 692 genes are required for faithful chromosome segregation. The enrichment of random Ctf alleles in only 13 of ~350 possible Ctf genes suggests that these genes are more easily mutable to cause genome instability than the others. These observations inform our understanding of recurring CIN mutations in human cancers where presumably random mutations are responsible for initiating the frequently observed CIN phenotype of tumors.
Collapse
Affiliation(s)
- Peter C Stirling
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | | | | | | | | | | | | |
Collapse
|
19
|
Horner VL, Caspary T. Disrupted dorsal neural tube BMP signaling in the cilia mutant Arl13b hnn stems from abnormal Shh signaling. Dev Biol 2011; 355:43-54. [PMID: 21539826 DOI: 10.1016/j.ydbio.2011.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 03/22/2011] [Accepted: 04/14/2011] [Indexed: 12/22/2022]
Abstract
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13b(hnn), to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13b(hnn) mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13b(hnn) dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13b(hnn) mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13b(hnn) embryos indirectly causes dorsal defects.
Collapse
Affiliation(s)
- Vanessa L Horner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
20
|
Abstract
The Arf-like (Arl) small GTPases have a diverse range of functions in the eukaryotic cell. Metazoan Arl2 acts as a regulator of microtubule biogenesis, binding to the tubulin-specific chaperone cofactor D. Arl2 also has a mitochondrial function through its interactions with BART and ANT-1, the only member of the Ras superfamily to be found in this organelle to date. In the present study, we describe characterization of the Arl2 orthologue in the protozoan parasite Trypanosoma brucei. Modulation of TbARL2 expression in bloodstream form parasites by RNA interference (RNAi) causes inhibition of cleavage furrow formation, resulting in a severe defect in cytokinesis and the accumulation of multinucleated cells. RNAi of TbARL2 also results in loss of acetylated alpha-tubulin but not of total -tubulin from cellular microtubules. While overexpression of TbARL2(myc) also leads to a defect in cytokinesis, an excess of untagged protein has no effect on cell division, demonstrating the importance of the extreme C-terminus in correct function. TbARL2 overexpressing cells (either myc-tagged or untagged) have an increase in acetylated -tubulin. Our data indicate that Arl2 has a fundamentally conserved role in trypanosome microtubule biogenesis that correlates with -tubulin acetylation.
Collapse
|
21
|
Sarkar S, Haldar S, Hajra S, Sinha P. The budding yeast protein Sum1 functions independently of its binding partners Hst1 and Sir2 histone deacetylases to regulate microtubule assembly. FEMS Yeast Res 2010; 10:660-73. [PMID: 20608984 DOI: 10.1111/j.1567-1364.2010.00655.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The budding yeast protein Sum1 is a transcription factor that associates with the histone deacetylase Hst1p or, in its absence, with Sir2p to form repressed chromatin. In this study, SUM1 has been identified as an allele-specific dosage suppressor of mutations in the major alpha-tubulin-coding gene TUB1. When cloned in a 2mu vector, SUM1 suppressed the cold-sensitive and benomyl-hypersensitive phenotypes associated with the tub1-1 mutation. The suppression was Hst1p- and Sir2p-independent, suggesting that it was not mediated by deacetylation events associated with Sum1p when it functions along with its known partner histone deacetylases. This protein was confined to the nucleus, but did not colocalize with the microtubules nor did it bind to alpha- or beta-tubulin. Cells deleted of SUM1 showed hypersensitivity to benomyl and cold-sensitive growth, phenotypes exhibited by mutants defective in microtubule function and cytoskeletal defects. These observations suggest that Sum1p is a novel regulator of microtubule function. We propose that as a dosage suppressor, Sum1p promotes the formation of microtubules by increasing the availability of the alphabeta-heterodimer containing the mutant alpha-tubulin subunit.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
22
|
Chan K, Goldmark JP, Roth MB. Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature. Mol Biol Cell 2010; 21:2161-71. [PMID: 20462960 PMCID: PMC2893981 DOI: 10.1091/mbc.e09-07-0614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We show that Saccharomyces cerevisiae and Caenorhabditis elegans embryos experience high lethality at low temperature due to cell cycle errors and that anoxia-induced suspended animation prevents such lethality by preventing occurrence of such errors. The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.
Collapse
Affiliation(s)
- Kin Chan
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
23
|
Veltel S, Wittinghofer A. RPGR and RP2: targets for the treatment of X-linked retinitis pigmentosa? Expert Opin Ther Targets 2009; 13:1239-51. [PMID: 19702441 DOI: 10.1517/14728220903225016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Retinitis pigmentosa is the most important hereditary eye disease and there is currently no cure available. Although mutations were found in more than 40 genes in patients with retinitis pigmentosa, only two genes have thus far been found to be responsible for one of the most severe forms of the disease, X-linked retinitis pigmentosa. In this review, we highlight the current knowledge about the two gene products RPGR and RP2 and try to link genetic data from patients with functional data on the corresponding proteins. Based on the fact that recent gene therapeutic approaches for eye diseases are at a very promising stage, we discuss the potential of RPGR and RP2 as drug targets to treat retinitis pigmentosa.
Collapse
Affiliation(s)
- Stefan Veltel
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto Hahn-Street 11, 44227 Dortmund, Germany
| | | |
Collapse
|
24
|
Jo WJ, Loguinov A, Wintz H, Chang M, Smith AH, Kalman D, Zhang L, Smith MT, Vulpe CD. Comparative functional genomic analysis identifies distinct and overlapping sets of genes required for resistance to monomethylarsonous acid (MMAIII) and arsenite (AsIII) in yeast. Toxicol Sci 2009; 111:424-36. [PMID: 19635755 DOI: 10.1093/toxsci/kfp162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic is a human toxin and carcinogen commonly found as a contaminant in drinking water. Arsenite (As(III)) is the most toxic inorganic form, but recent evidence indicates that the metabolite monomethylarsonous acid (MMA(III)) is even more toxic. We have used a chemical genomics approach to identify the genes that modulate the cellular toxicity of MMA(III) and As(III) in the yeast Saccharomyces cerevisiae. Functional profiling using homozygous deletion mutants provided evidence of the requirement of highly conserved biological processes in the response against both arsenicals including tubulin folding, DNA double-strand break repair, and chromatin modification. At the equitoxic doses of 150 microM MMA(III) and 300 microM As(III), genes related to glutathione metabolism were essential only for resistance to the former, suggesting a higher potency of MMA(III) to disrupt glutathione metabolism than As(III). Treatments with MMA(III) induced a significant increase in glutathione levels in the wild-type strain, which correlated to the requirement of genes from the sulfur and methionine metabolic pathways and was consistent with the induction of oxidative stress. Based on the relative sensitivity of deletion strains deficient in GSH metabolism and tubulin folding processes, oxidative stress appeared to be the primary mechanism of MMA(III) toxicity whereas secondary to tubulin disruption in the case of As(III). Many of the identified yeast genes have orthologs in humans that could potentially modulate arsenic toxicity in a similar manner as their yeast counterparts.
Collapse
Affiliation(s)
- William J Jo
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yamamoto A, Nunoshiba T, Umezu K, Enomoto T, Yamamoto K. Phenyl hydroquinone, an Ames test-negative carcinogen, induces Hog1-dependent stress response signaling. FEBS J 2008; 275:5733-44. [DOI: 10.1111/j.1742-4658.2008.06700.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, Hieter P. Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell 2008; 30:248-58. [PMID: 18439903 DOI: 10.1016/j.molcel.2008.02.021] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/18/2008] [Accepted: 02/07/2008] [Indexed: 11/16/2022]
Abstract
The Saccharomyces cerevisiae gene deletion project revealed that approximately 20% of yeast genes are required for viability. The analysis of essential genes traditionally relies on conditional mutants, typically temperature-sensitive (ts) alleles. We developed a systematic approach (termed "diploid shuffle") useful for generating a ts allele for each essential gene in S. cerevisiae and for improved genetic manipulation of mutant alleles and gene constructs in general. Importantly, each ts allele resides at its normal genomic locus, flanked by specific cognate UPTAG and DNTAG bar codes. A subset of 250 ts mutants, including ts alleles for all uncharacterized essential genes and prioritized for genes with human counterparts, is now ready for distribution. The importance of this collection is demonstrated by biochemical and genetic screens that reveal essential genes involved in RNA processing and maintenance of chromosomal stability.
Collapse
Affiliation(s)
- Shay Ben-Aroya
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
27
|
The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat Struct Mol Biol 2008; 15:373-80. [DOI: 10.1038/nsmb.1396] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Accepted: 01/28/2008] [Indexed: 11/09/2022]
|
28
|
Cunningham LA, Kahn RA. Cofactor D functions as a centrosomal protein and is required for the recruitment of the gamma-tubulin ring complex at centrosomes and organization of the mitotic spindle. J Biol Chem 2008; 283:7155-65. [PMID: 18171676 DOI: 10.1074/jbc.m706753200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules are highly dynamic structures, composed of alpha/beta-tubulin heterodimers. Biosynthesis of the functional dimer involves the participation of several chaperones, termed cofactors A-E, that act on folding intermediates downstream of the cytosolic chaperonin CCT (1, 2). We show that cofactor D is also a centrosomal protein and that overexpression of either the full-length protein or either of two centrosome localization domains leads to the loss of anchoring of the gamma-tubulin ring complex and of nucleation of microtubule growth at centrosomes. In contrast, depletion of cofactor D by short interfering RNA results in mitotic spindle defects. Because none of these changes in cofactor D activity produced a change in the levels of alpha-or beta-tubulin, we conclude that these newly discovered functions for cofactor D are distinct from its previously described role in tubulin folding. Thus, we describe a new role for cofactor D at centrosomes that is important to its function in polymerization of tubulin and organization of the mitotic spindle.
Collapse
Affiliation(s)
- Leslie A Cunningham
- Department of Biochemistry and the Biochemistry, Cell, and Developmental Biology Program, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
29
|
Caspary T, Larkins CE, Anderson KV. The Graded Response to Sonic Hedgehog Depends on Cilia Architecture. Dev Cell 2007; 12:767-78. [PMID: 17488627 DOI: 10.1016/j.devcel.2007.03.004] [Citation(s) in RCA: 577] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Several studies have linked cilia and Hedgehog signaling, but the precise roles of ciliary proteins in signal transduction remain enigmatic. Here we describe a mouse mutation, hennin (hnn), that causes coupled defects in cilia structure and Sonic hedgehog (Shh) signaling. The hnn mutant cilia are short with a specific defect in the structure of the ciliary axoneme, and the hnn neural tube shows a Shh-independent expansion of the domain of motor neuron progenitors. The hnn mutation is a null allele of Arl13b, a small GTPase of the Arf/Arl family, and the Arl13b protein is localized to cilia. Double mutant analysis indicates that Gli3 repressor activity is normal in hnn embryos, but Gli activators are constitutively active at low levels. Thus, normal structure of the ciliary axoneme is required for the cell to translate different levels of Shh ligand into differential regulation of the Gli transcription factors that implement Hedgehog signals.
Collapse
Affiliation(s)
- Tamara Caspary
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
30
|
Vos LJ, Famulski JK, Chan GKT. How to build a centromere: from centromeric and pericentromeric chromatin to kinetochore assembly. Biochem Cell Biol 2007; 84:619-39. [PMID: 16936833 DOI: 10.1139/o06-078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The assembly of the centromere, a specialized region of DNA along with a constitutive protein complex which resides at the primary constriction and is the site of kinetochore formation, has been puzzling biologists for many years. Recent advances in the fields of chromatin, microscopy, and proteomics have shed a new light on this complex and essential process. Here we review recently discovered mechanisms and proteins involved in determining mammalian centromere location and assembly. The centromeric core protein CENP-A, a histone H3 variant, is hypothesized to designate centromere localization by incorporation into centromere-specific nucleosomes and is essential for the formation of a functional kinetochore. It has been found that centromere localization of centromere protein A (CENP-A), and therefore centromere determination, requires proteins involved in histone deacetylation, as well as base excision DNA repair pathways and proteolysis. In addition to the incorporation of CENP-A at the centromere, the formation of heterochromatin through histone methylation and RNA interference is also crucial for centromere formation. The assembly of the centromere and kinetochore is complex and interdependent, involving epigenetics and hierarchical protein-protein interactions.
Collapse
Affiliation(s)
- Larissa J Vos
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | | | | |
Collapse
|
31
|
Fedyanina OS, Mardanov PV, Tokareva EM, McIntosh JR, Grishchuk EL. Chromosome segregation in fission yeast with mutations in the tubulin folding cofactor D. Curr Genet 2006; 50:281-94. [PMID: 17004072 DOI: 10.1007/s00294-006-0095-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 07/19/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
Faithful chromosome segregation requires the combined activities of the microtubule-based mitotic spindle and the multiple proteins that form mitotic kinetochores. Here, we show that the fission yeast mitotic mutant, tsm1-512, is an allele of the tubulin folding chaperone, cofactor D. Chromosome segregation in this and in an additional cofactor D mutant depends on growth conditions that are monitored specifically by the mitotic checkpoint proteins Mad1, 2, 3 and Bub3. The temperature-sensitive mutants we have used disrupt the function of cofactor D to different extents, but both strains form a mitotic spindle in which the poles separate in anaphase. However, chromosome segregation is often unequal, apparently due to a defect in kinetochore-microtubule interactions. Mutations in cofactor D render cells particularly sensitive to the expression levels of a CENP-B-like protein, Abp1p, which works as an allele-specific, high-copy suppressor of cofactor D. This and other genetic interactions between cofactor D mutants and specific kinetochore and spindle components suggest their critical role in establishing the normal kinetochore-microtubule interface.
Collapse
|
32
|
Yan B, Wang H, Wang H, Zhuo D, Li F, Kon T, Dewhirst M, Li CY. Apoptotic DNA fragmentation factor maintains chromosome stability in a P53-independent manner. Oncogene 2006; 25:5370-6. [PMID: 16619042 DOI: 10.1038/sj.onc.1209535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA fragmentation factor (DFF)/caspase-activated DNase (CAD) is responsible for DNA fragmentation, a hallmark event during apoptosis. Although DNA fragmentation is an evolutionarily conserved process across species, its biological function is not clearly understood. In this study, we constructed cell lines expressing a mutant ICAD (inhibitor of CAD) protein that is resistant to caspase cleavage and therefore constantly binds to DFF/CAD and inhibits DNA fragmentation. We found that irradiation of these cells led to increased chromosome aberrations and aneuploidy when compared with their parental controls. The increased chromosome instability is observed irrespective of cellular P53 status, suggesting that the effect of DFF/CAD is independent of P53. Inhibition of apoptotic DNA fragmentation resulted in increased clonogenic survival of irradiated cells and a delay in removal of cells with DNA damages induced by radiation, an effect similar to that in cells with p53 mutations. Consistent with DFF/CAD's effect on clonogenic survival, tumors established from cells deficient in DNA fragmentation showed enhanced growth in nude mice. Therefore, our results suggest that DFF/CAD plays an important and P53-independent role in maintaining chromosome stability and suppressing tumor development.
Collapse
Affiliation(s)
- B Yan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17:2476-87. [PMID: 16525022 PMCID: PMC1446103 DOI: 10.1091/mbc.e05-10-0929] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arl2 and Arl3 are closely related members of the Arf family of regulatory GTPases that arose from a common ancestor early in eukaryotic evolution yet retain extensive structural, biochemical, and functional features. The presence of Arl3 in centrosomes, mitotic spindles, midzones, midbodies, and cilia are all supportive of roles in microtubule-dependent processes. Knockdown of Arl3 by siRNA resulted in changes in cell morphology, increased acetylation of alpha-tubulin, failure of cytokinesis, and increased number of binucleated cells. We conclude that Arl3 binds microtubules in a regulated manner to alter specific aspects of cytokinesis. In contrast, an excess of Arl2 activity, achieved by expression of the [Q70L]Arl2 mutant, caused the loss of microtubules and cell cycle arrest in M phase. Initial characterization of the underlying defects suggests a defect in the ability to polymerize tubulin in the presence of excess Arl2 activity. We also show that Arl2 is present in centrosomes and propose that its action in regulating tubulin polymerization is mediated at centrosomes. Somewhat paradoxically, no phenotypes were observed Arl2 expression was knocked down or Arl3 activity was increased in HeLa cells. We conclude that Arl2 and Arl3 have related but distinct roles at centrosomes and in regulating microtubule-dependent processes.
Collapse
Affiliation(s)
- Chengjing Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050, USA
| | | | | | | | | |
Collapse
|
34
|
Kühnel K, Veltel S, Schlichting I, Wittinghofer A. Crystal Structure of the Human Retinitis Pigmentosa 2 Protein and Its Interaction with Arl3. Structure 2006; 14:367-78. [PMID: 16472755 DOI: 10.1016/j.str.2005.11.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 10/24/2005] [Accepted: 11/01/2005] [Indexed: 11/29/2022]
Abstract
The crystal structure of human retinitis pigmentosa 2 protein (RP2) was solved to 2.1 angstroms resolution. It consists of an N-terminal beta helix and a C-terminal ferredoxin-like alpha/beta domain. RP2 is functionally and structurally related to the tubulin-specific chaperone cofactor C. Seven of nine known RP2 missense mutations identified in patients are located in the beta helix domain, and most of them cluster to the hydrophobic core and are likely to destabilize the protein. Two residues, Glu138 and the catalytically important Arg118, are solvent-exposed and form a salt bridge, indicating that Glu138 might be critical for positioning Arg118 for catalysis. RP2 is a specific effector protein of Arl3. The N-terminal 34 residues and beta helix domain of RP2 are required for this interaction. The abilitities of RP2 to bind Arl3 and cause retinitis pigmentosa seem to be correlated, since both the R118H and E138G mutants show a drastically reduced affinity to Arl3.
Collapse
Affiliation(s)
- Karin Kühnel
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
35
|
Abstract
Database mining and phylogenetic analysis of the Arf (ADP-ribosylation factor) superfamily revealed the presence in mammals of at least 22 members, including the six Arfs, two Sars and 14 Arl (Arf-like) proteins. At least six Arf family members were found in very early eukaryotes, including orthologues of Arf, Sar, Arl2, Arl3, Arl6 and Arl8. While roles for Arfs in membrane traffic are well known, those for most of the Arls remain unknown. Depletion in cells of the most closely related human Arf proteins, Arf1-Arf5, reveals specificities among their cellular roles and suggests that they may function in pairs at different steps in endocytic and secretory membrane traffic. In addition, recent results from a number of laboratories suggest that several of the Arl proteins may be involved in different aspects of microtubule-dependent functions. Thus, a second major role for Arf family GTPases, that of regulating microtubules, is emerging. Because membrane traffic is often dependent upon movement of vesicles along microtubules this raises the possibility that these two fundamental functions of Arf family members, regulation of vesicle traffic and microtubule dynamics, diverged from one function of Arfs in the earliest cells that has continued to branch and allow additional levels of regulation.
Collapse
|
36
|
Ye P, Peyser BD, Pan X, Boeke JD, Spencer FA, Bader JS. Gene function prediction from congruent synthetic lethal interactions in yeast. Mol Syst Biol 2005; 1:2005.0026. [PMID: 16729061 PMCID: PMC1681444 DOI: 10.1038/msb4100034] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 10/26/2005] [Indexed: 12/23/2022] Open
Abstract
We predicted gene function using synthetic lethal genetic interactions between null alleles in Saccharomyces cerevisiae. Phenotypic and protein interaction data indicate that synthetic lethal gene pairs function in parallel or compensating pathways. Congruent gene pairs, defined as sharing synthetic lethal partners, are in single pathway branches. We predicted benomyl sensitivity and nuclear migration defects using congruence; these phenotypes were uncorrelated with direct synthetic lethality. We also predicted YLL049W as a new member of the dynein–dynactin pathway and provided new supporting experimental evidence. We performed synthetic lethal screens of the parallel mitotic exit network (MEN) and Cdc14 early anaphase release pathways required for late cell cycle. Synthetic lethal interactions bridged genes in these pathways, and high congruence linked genes within each pathway. Synthetic lethal interactions between MEN and all components of the Sin3/Rpd3 histone deacetylase revealed a novel function for Sin3/Rpd3 in promoting mitotic exit in parallel to MEN. These in silico methods can predict phenotypes and gene functions and are applicable to genomic synthetic lethality screens in yeast and analogous RNA interference screens in metazoans.
Collapse
Affiliation(s)
- Ping Ye
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- The High-Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian D Peyser
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xuewen Pan
- The High-Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jef D Boeke
- The High-Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Forrest A Spencer
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA. Tel.: +1 410 614 2536; Fax: +1 410 614 8600; E-mail:
| | - Joel S Bader
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
- The High-Throughput Biology Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of BioMedical Engineering, Johns Hopkins University, 210C Clark Hall, 3400 N Charles St, Baltimore, MD 21218, USA. Tel.: +1 410 516 7417; Fax: +1 410 516 5294; E-mail:
| |
Collapse
|
37
|
Hanzal-Bayer M, Linari M, Wittinghofer A. Properties of the interaction of Arf-like protein 2 with PDEdelta. J Mol Biol 2005; 350:1074-82. [PMID: 15979089 DOI: 10.1016/j.jmb.2005.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/04/2005] [Accepted: 05/18/2005] [Indexed: 02/06/2023]
Abstract
Arf-like proteins (Arl) share certain characteristic features with the Arf subfamily of Ras superfamily proteins, but their function is unknown. Here, we show by a variety of spectroscopic techniques that Arl2, unlike most other Ras-related proteins, has micromolar rather than picomolar affinity for nucleotides. As a consequence of low affinity, nucleotide dissociation rates are rather fast, arguing that it is not regulated by guanine nucleotide exchange factors. Arl2 is isolated as prey in a yeast double hybrid screen using phosphodiesterase 6delta (PDEdelta) as bait. This interaction is dependent on GTP, and the binding of PDEdelta substantially stabilizes GTP binding, increasing affinity and decreasing dissociation rates by a similar factor. Among all Arl proteins tested, PDEdelta only interacted with the closely related proteins Arl2 and Arl3, strongly suggesting that Arl2/3 are specific regulators of PDEdelta.
Collapse
Affiliation(s)
- Michael Hanzal-Bayer
- Max-Planck-Institute for Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | |
Collapse
|
38
|
Li Y, Kelly WG, Logsdon JM, Schurko AM, Harfe BD, Hill-Harfe KL, Kahn RA. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 2005; 18:1834-50. [PMID: 15576487 DOI: 10.1096/fj.04-2273com] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ADP-ribosylation factor (Arf) and Arf-like (Arl) proteins are a family of highly conserved 21 kDa GTPases that emerged early in the evolution of eukaryotes. These proteins serve regulatory roles in vesicular traffic, lipid metabolism, microtubule dynamics, development, and likely other cellular processes. We found evidence for the presence of 6 Arf family members in the protist Giardia lamblia and 22 members in mammals. A phylogenetic analysis was performed to delineate the evolutionary relationships among Arf family members and to attempt to organize them by both their evolutionary origins and functions in cells and/or organisms. The approximately 100 protein sequences analyzed from animals, fungi, plants, and protists clustered into 11 groups, including Arfs, nine Arls, and Sar proteins. To begin functional analyses of the family in a metazoan model organism, we examined roles for all three C. elegans Arfs (Arf-1, Arf-3, and Arf-6) and three Arls (Arl-1, Arl-2, and Arl-3) by use of RNA-mediated interference (RNAi). Injection of double-stranded RNA (dsRNA) encoding Arf-1 or Arf-3 into N2 hermaphrodites produced embryonic lethality in their offspring and, later, sterility in the injected animals themselves. Injection of Arl-2 dsRNA resulted in a disorganized germline and sterility in early offspring, with later offspring exhibiting an early embryonic arrest. Thus, of the six Arf family members examined in C. elegans, at least three are required for embryogenesis. These data represent the first analysis of the role(s) of multiple members of this family in the development of a multicellular organism.
Collapse
Affiliation(s)
- Yawei Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Arl2 is a approximately 20 kDa GTPase in the ADP-ribosylation factor (Arf) family within the Ras superfamily with roles in microtubule dynamics that impact the cytoskeleton, cell division, and cytokinesis. Arl2 has been implicated as a regulator of the pathway responsible for formation of properly folded tubulin heterodimers and in adenine nucleotide transport in mitochondria. The identification and characterization of Arl2 binding partners and regulators of Arl2 activities are critical steps in the further dissection of these and likely other Arl2-dependent functions. This chapter describes methods for preparing recombinant Arl2, loading different radiolabeled guanine nucleotides onto the GTPase, identifying high-affinity Arl2 binding proteins, and assaying Arl2 GTPase activating proteins (GAPs). These methods may also prove useful for studies of other Arls or other GTPases.
Collapse
Affiliation(s)
- J Bradford Bowzard
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
40
|
Abstract
ADP-ribosylation factor (Arf) GTP-binding proteins are among the best-characterized members of the Ras superfamily of GTPases, with well-established functions in membrane-trafficking pathways. A recent watershed of genomic and structural information has identified a family of conserved related proteins: the Arf-like (Arl) GTPases. The best-characterized Arl protein, Arl2, regulates the folding of beta tubulin, and recent data suggest that Arl1 and Arf-related protein 1 (ARFRP1) are localized to the trans-Golgi network (TGN), where they function, in part, to regulate the tethering of endosome-derived transport vesicles. Other Arl proteins are localized to the cytosol, nucleus, cytoskeleton and mitochondria, which indicates that Arl proteins have diverse roles that are distinct from the known functions of traditional Arf GTPases.
Collapse
Affiliation(s)
- Christopher G Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | | | |
Collapse
|
41
|
Rodrigues-Pousada CA, Nevitt T, Menezes R, Azevedo D, Pereira J, Amaral C. Yeast activator proteins and stress response: an overview. FEBS Lett 2004; 567:80-5. [PMID: 15165897 DOI: 10.1016/j.febslet.2004.03.119] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 03/09/2004] [Accepted: 03/14/2004] [Indexed: 10/26/2022]
Abstract
Yeast, and especially Saccharomyces cerevisiae, are continuously exposed to rapid and drastic changes in their external milieu. Therefore, cells must maintain their homeostasis, which is achieved through a highly coordinated gene expression involving a plethora of transcription factors, each of them performing specific functions. Here, we discuss recent advances in our understanding of the function of the yeast activator protein family of eight basic-leucine zipper trans-activators that have been implicated in various forms of stress response.
Collapse
Affiliation(s)
- Claudina Amélia Rodrigues-Pousada
- Stress and Genomics Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, Apt. 127, 2781-901 Oeiras Codex, Portugal.
| | | | | | | | | | | |
Collapse
|
42
|
Fromherz S, Giddings TH, Gomez-Ospina N, Dutcher SK. Mutations in α-tubulin promote basal body maturation and flagellar assembly in the absence of δ-tubulin. J Cell Sci 2004; 117:303-14. [PMID: 14676280 DOI: 10.1242/jcs.00859] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated suppressors of the deletion allele of δ-tubulin, uni3-1, in the biflagellate green alga Chlamydomonas reinhardtii. The deletion of δ-tubulin produces cells that assemble zero, one or two flagella and have basal bodies composed primarily of doublet rather than triplet microtubules. Flagellar number is completely restored in the suppressed strains. Most of the uni3-1 suppressors map to the TUA2 locus, which encodes α2-tubulin. Twelve independent tua2 mutations were sequenced. Amino acids D205 or A208, which are nearly invariant residues in α-tubulin, were altered. The tua2 mutations on their own have a second phenotype - they make the cells colchicine supersensitive. Colchicine supersensitivity itself is not needed for suppression and colchicine cannot phenocopy the suppression. The suppressors partially restore the assembly of triplet microtubules. These results suggest that the δ-tubulin plays two roles: it is needed for extension or stability of the triplet microtubule and also for early maturation of basal bodies. We suggest that the mutant α-tubulin promotes the early maturation of the basal body in the absence of δ-tubulin, perhaps through interactions with other partners, and this allows assembly of the flagella.
Collapse
Affiliation(s)
- Sylvia Fromherz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
43
|
Shern JF, Sharer JD, Pallas DC, Bartolini F, Cowan NJ, Reed MS, Pohl J, Kahn RA. Cytosolic Arl2 is complexed with cofactor D and protein phosphatase 2A. J Biol Chem 2003; 278:40829-36. [PMID: 12912990 DOI: 10.1074/jbc.m308678200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arl2 is a member of the ADP-ribosylation factor family of 20-kDa GTPases that is highly conserved in eukaryotes. Recent results revealed that a portion of cellular Arl2 and its binding partner, BART, localize to mitochondria. Because approximately 90% of cellular Arl2 is cytosolic, we investigated properties of the soluble protein and found that it is stably bound in a complex that migrates in gel filtration medium with a predicted molecular mass of approximately 300 kDa. This complex was purified approximately 500-fold from the soluble fraction of bovine brain. Protein components were identified by mass spectroscopy and revealed the presence of four other proteins that include the tubulin folding cochaperone cofactor D and all three subunits of at least two protein phosphatase 2A (PP2A) protein phosphatase trimers. The presence of more than one PP2A B-type subunit and the low stoichiometry of Arl2 indicate that the purified preparation still contains a mixture of complexes that cannot currently be completely resolved. Thus, although all the soluble Arl2 in bovine brain is in high molecular mass complexes, only a portion of the total cellular cofactor D and PP2A are associated with the Arl2. We further show that the Arl2 in the complex cannot bind GTP and that complexed cofactor D does not efficiently participate in tubulin refolding reactions in a manner comparable with free cofactor D. Our data suggest functional roles for the cytosolic Arl2 complex in modulating tubulin and microtubule behavior as well as a possible role in apoptosis.
Collapse
Affiliation(s)
- Jack F Shern
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pot I, Measday V, Snydsman B, Cagney G, Fields S, Davis TN, Muller EGD, Hieter P. Chl4p and iml3p are two new members of the budding yeast outer kinetochore. Mol Biol Cell 2003; 14:460-76. [PMID: 12589047 PMCID: PMC149985 DOI: 10.1091/mbc.e02-08-0517] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Kinetochore proteins contribute to the fidelity of chromosome transmission by mediating the attachment of a specialized chromosomal region, the centromere, to the mitotic spindle during mitosis. In budding yeast, a subset of kinetochore proteins, referred to as the outer kinetochore, provides a link between centromere DNA-binding proteins of the inner kinetochore and microtubule-binding proteins. Using a combination of chromatin immunoprecipitation, in vivo localization, and protein coimmunoprecipitation, we have established that yeast Chl4p and Iml3p are outer kinetochore proteins that localize to the kinetochore in a Ctf19p-dependent manner. Chl4p interacts with the outer kinetochore proteins Ctf19p and Ctf3p, and Iml3p interacts with Chl4p and Ctf19p. In addition, Chl4p is required for the Ctf19p-Ctf3p and Ctf19p-Iml3p interactions, indicating that Chl4p is an important structural component of the outer kinetochore. These physical interaction dependencies provide insights into the molecular architecture and centromere DNA loading requirements of the outer kinetochore complex.
Collapse
Affiliation(s)
- Isabelle Pot
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada V5Z 4H4
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Tubulin folding cofactors control the availability of tubulin subunits and microtubule stability in eukaryotic cells. Recent work on Arabidopsis mutants has provided a new experimental system for understanding the cellular functions of tubulin folding cofactors.
Collapse
Affiliation(s)
- Dan Szymanski
- Department of Agronomy, Purdue University, 1150 Lilly Hall of Life Sciences, W. Lafayette, Indiana 47907-1150, USA.
| |
Collapse
|
46
|
Rosenwald AG, Rhodes MA, Van Valkenburgh H, Palanivel V, Chapman G, Boman A, Zhang CJ, Kahn RA. ARL1 and membrane traffic in Saccharomyces cerevisiae. Yeast 2002; 19:1039-56. [PMID: 12210899 DOI: 10.1002/yea.897] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To examine the functions of the Arf-like protein, Arl1p, in Saccharomyces cerevisiae, a null allele, arl1delta::HIS3, was constructed in two strains. In one background only, loss of ARL1 resulted in temperature-sensitive (ts) growth (suppressed on high-osmolarity media). Allelic variation at the SSD1 locus accounted for differences between strains. Strains lacking ARL1 exhibited several defects in membrane traffic. First, arl1delta strains secreted less protein as measured by TCA-precipitable radioactivity found in the media of [(35)S]-labelled cells. A portion of newly synthesized carboxypeptidase Y (CPY) was secreted rather than correctly targeted to the vacuole. Uptake of the fluid-phase marker, lucifer yellow, was reduced. All these phenotypes were exacerbated in an ssd1 background. The ts phenotype of the arl1deltassd1 strain was suppressed by YPT1, the yeast Rab1a homologue, suggesting that ARL1 and YPT1 have partially overlapping functions. These findings demonstrate that ARL1 encodes a regulator of membrane traffic.
Collapse
Affiliation(s)
- Anne G Rosenwald
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cowan NJ, Lewis SA. Type II chaperonins, prefoldin, and the tubulin-specific chaperones. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:73-104. [PMID: 11868281 DOI: 10.1016/s0065-3233(01)59003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N J Cowan
- Department of Biochemistry, NYU Medical Center, New York, New York 10016, USA
| | | |
Collapse
|
48
|
Ru HY, Chen RL, Lu WC, Chen JH. hBUB1 defects in leukemia and lymphoma cells. Oncogene 2002; 21:4673-9. [PMID: 12096343 DOI: 10.1038/sj.onc.1205585] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2000] [Revised: 04/15/2002] [Accepted: 05/20/2002] [Indexed: 11/08/2022]
Abstract
Tumorigenesis is a multi-step process involving a series of changes of cellular genes. Most solid tumors and hematopoietic malignancies often show abnormal chromosome numbers, the aneuploidy. The chromosomal aneuploidy keeps cells in the state of chromosomal instability (CIN) that will increase the mutation rate of cells affected and thus push them deeper into the process of tumorigenesis. The yeast genetic studies showed that normal distribution of chromosome during mitosis is under the surveillance of a set of genes, the spindle assembly checkpoint genes, that include the BUB and MAD gene groups and MPS. In some colorectal cancers with CIN it was found to have hBUB1 gene mutated and the mutated gene functions dominantly. We have examined a series of breast cancer cell lines with or without CIN for the hBUB1 gene mutation and found none. However, we detected various degrees of deletion in the coding sequences of the hBUB1 gene in cells from T lymphoblastic leukemia cell lines, Molt3 and Molt4, and cells from some acute lymphoblastic leukemia and Hodgkin's lymphoma patients. So far the lesions of deletion are in the kinetochore localization domain of the hBUB1 gene that may explain why the deletion lesions in the BUB1 gene cause aneuploidy in lymphoma and lymphoma cells. The deletions are heterozygous in nature. Like the mutated hBUB1 gene in colorectal cancer, the mutant hBUB1 cDNA from lymphoblastic leukemia cells behaves dominantly.
Collapse
Affiliation(s)
- Hon Yu Ru
- Institute of Medical Science, Tzu Chi University, Hualien, Taiwan, Republic of China
| | | | | | | |
Collapse
|
49
|
Caplow M, Fee L. Dissociation of the tubulin dimer is extremely slow, thermodynamically very unfavorable, and reversible in the absence of an energy source. Mol Biol Cell 2002; 13:2120-31. [PMID: 12058074 PMCID: PMC117629 DOI: 10.1091/mbc.e01-10-0089] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The finding that exchange of tubulin subunits between tubulin dimers (alpha-beta + alpha'beta' <--> alpha'beta + alphabeta') does not occur in the absence of protein cofactors and GTP hydrolysis conflicts with the assumption that pure tubulin dimer and monomer are in rapid equilibrium. This assumption underlies the many physical chemical measurements of the K(d) for dimer dissociation. To resolve this discrepancy we used surface plasmon resonance to determine the rate constant for dimer dissociation. The half-time for dissociation was approximately 9.6 h with tubulin-GTP, 2.4 h with tubulin-GDP, and 1.3 h in the absence of nucleotide. A Kd equal to 10(-11) M was calculated from the measured rate for dissociation and an estimated rate for association. Dimer dissociation was found to be reversible, and dimer formation does not require GTP hydrolysis or folding information from protein cofactors, because 0.2 microM tubulin-GDP incubated for 20 h was eluted as dimer when analyzed by size exclusion chromatography. Because 20 h corresponds to eight half-times for dissociation, only monomer would be present if dissociation were an irreversible reaction and if dimer formation required GTP or protein cofactors. Additional evidence for a 10(-11) M K(d) was obtained from gel exclusion chromatography studies of 0.02-2 nM tubulin-GDP. The slow dissociation of the tubulin dimer suggests that protein tubulin cofactors function to catalyze dimer dissociation, rather than dimer assembly. Assuming N-site-GTP dissociation is from monomer, our results agree with the 16-h half-time for N-site GTP in vitro and 33 h half-life for tubulin N-site-GTP in CHO cells.
Collapse
Affiliation(s)
- Michael Caplow
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA.
| | | |
Collapse
|
50
|
Antoshechkin I, Han M. The C. elegans evl-20 gene is a homolog of the small GTPase ARL2 and regulates cytoskeleton dynamics during cytokinesis and morphogenesis. Dev Cell 2002; 2:579-91. [PMID: 12015966 DOI: 10.1016/s1534-5807(02)00146-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo functions of ARF-like members of the Ras superfamily of GTPases are relatively unexplored. Here we describe the analysis of C. elegans evl-20 gene that encodes a functional homolog of human ARL2. Elimination of evl-20 function results in abnormal vulval, gonad, and male tail development and disrupts embryonic proliferation, hypodermal enclosure, and elongation. Loss of evl-20 function causes specific defects in the microtubule cytoskeleton, which is the likely molecular basis for the observed defects. EVL-20 is closely associated with both the cell cortex and astral microtubules, suggesting that it may directly interact with microtubule structures at those locations. Our data indicate that EVL-20 functions in the cytoplasm and at the plasma membrane to regulate cytoskeletal dynamics during cytokinesis and morphogenesis.
Collapse
Affiliation(s)
- Igor Antoshechkin
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|