1
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
2
|
Petitgas C, Seugnet L, Dulac A, Matassi G, Mteyrek A, Fima R, Strehaiano M, Dagorret J, Chérif-Zahar B, Marie S, Ceballos-Picot I, Birman S. Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in Drosophila. eLife 2024; 12:RP88510. [PMID: 38700995 PMCID: PMC11068357 DOI: 10.7554/elife.88510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.
Collapse
Affiliation(s)
- Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Laurent Seugnet
- Integrated Physiology of the Brain Arousal Systems (WAKING), Lyon Neuroscience Research Centre, INSERM/CNRS/UCBL1BronFrance
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Giorgio Matassi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of UdineUdineItaly
- UMR “Ecology and Dynamics of Anthropogenic Systems” (EDYSAN), CNRS, Université de Picardie Jules VerneAmiensFrance
| | - Ali Mteyrek
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Rebecca Fima
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Marion Strehaiano
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Joana Dagorret
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| | - Sandrine Marie
- Laboratory of Metabolic Diseases, Cliniques Universitaires Saint-Luc, Université catholique de LouvainBrusselsBelgium
| | - Irène Ceballos-Picot
- Metabolomic and Proteomic Biochemistry Laboratory, Necker-Enfants Malades Hospital and Paris Cité UniversityParisFrance
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research UniversityParisFrance
| |
Collapse
|
3
|
Adapting Drosophila melanogaster Cell Lines to Serum-Free Culture Conditions. G3-GENES GENOMES GENETICS 2020; 10:4541-4551. [PMID: 33028628 PMCID: PMC7718738 DOI: 10.1534/g3.120.401769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Successful Drosophila cell culture relies on media containing xenogenic components such as fetal bovine serum to support continuous cell proliferation. Here, we report a serum-free culture condition that supports the growth and proliferation of Drosophila S2R+ and Kc167 cell lines. Importantly, the gradual adaptation of S2R+ and Kc167 cells to a media lacking serum was supported by supplementing the media with adult Drosophila soluble extract, commonly known as fly extract. The utility of these adapted cells lines is largely unchanged. The adapted cells exhibited robust proliferative capacity and a transfection efficiency that was comparable to control cells cultured in serum-containing media. Transcriptomic data indicated that the S2R+ cells cultured with fly extract retain their hemocyte-specific transcriptome profile, and there were no global changes in the transcriptional output of cell signaling pathways. Our metabolome studies indicate that there were very limited metabolic changes. In fact, the cells were likely experiencing less oxidative stress when cultured in the serum-free media supplemented with fly extract. Overall, the Drosophila cell culture conditions reported here consequently provide researchers with an alternative and physiologically relevant resource to address cell biological research questions.
Collapse
|
4
|
Wang C, Spradling AC. An abundant quiescent stem cell population in Drosophila Malpighian tubules protects principal cells from kidney stones. eLife 2020; 9:54096. [PMID: 32175841 PMCID: PMC7093152 DOI: 10.7554/elife.54096] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
Adult Drosophila Malpighian tubules have low rates of cell turnover but are vulnerable to damage caused by stones, like their mammalian counterparts, kidneys. We show that Drosophilarenal stem cells (RSCs) in the ureter and lower tubules comprise a unique, unipotent regenerative compartment. RSCs respond only to loss of nearby principal cells (PCs), cells critical for maintaining ionic balance. Large polyploid PCs are outnumbered by RSCs, which replace each lost cell with multiple PCs of lower ploidy. Notably, RSCs do not replenish principal cells or stellate cells in the upper tubules. RSCs generate daughters by asymmetric Notch signaling, yet RSCs remain quiescent (cell cycle-arrested) without damage. Nevertheless, the capacity for RSC-mediated repair extends the lifespan of flies carrying kidney stones. We propose that abundant, RSC-like stem cells exist in other tissues with low rates of turnover where they may have been mistaken for differentiated tissue cells.
Collapse
Affiliation(s)
- Chenhui Wang
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| | - Allan C Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, United States
| |
Collapse
|
5
|
Ghimire S, Terhzaz S, Cabrero P, Romero MF, Davies SA, Dow JAT. Targeted renal knockdown of Na +/H + exchanger regulatory factor Sip1 produces uric acid nephrolithiasis in Drosophila. Am J Physiol Renal Physiol 2019; 317:F930-F940. [PMID: 31364377 DOI: 10.1152/ajprenal.00551.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nephrolithiasis is one of the most common kidney diseases, with poorly understood pathophysiology, but experimental study has been hindered by lack of experimentally tractable models. Drosophila melanogaster is a useful model organism for renal diseases because of genetic and functional similarities of Malpighian (renal) tubules with the human kidney. Here, we demonstrated function of the sex-determining region Y protein-interacting protein-1 (Sip1) gene, an ortholog of human Na+/H+ exchanger regulatory factor (NHERF1), in Drosophila Malpighian tubules and its impact on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, and the phenotype was also observed in renal stellate cell-specific RNA interference Sip1 knockdown in otherwise normal flies, confirming a renal etiology. This phenotype was abolished in rosy mutant flies (which model human xanthinuria) and by the xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was acidifying the tubule. SIP1 was shown to collocate with Na+/H+ exchanger isoform 2 (NHE2) and with moesin in stellate cells. Knockdown of NHE2 specifically to the stellate cells also increased renal uric acid stone formation, and so a model was developed in which SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid stone formation. Drosophila renal tubules may thus offer a useful model for urate nephrolithiasis.
Collapse
Affiliation(s)
- Saurav Ghimire
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Selim Terhzaz
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Shireen A Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Chintapalli VR, Wang J, Herzyk P, Davies SA, Dow JAT. Data-mining the FlyAtlas online resource to identify core functional motifs across transporting epithelia. BMC Genomics 2013; 14:518. [PMID: 23895496 PMCID: PMC3734111 DOI: 10.1186/1471-2164-14-518] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 07/26/2013] [Indexed: 11/23/2022] Open
Abstract
Background Comparative analysis of tissue-specific transcriptomes is a powerful technique to uncover tissue functions. Our FlyAtlas.org provides authoritative gene expression levels for multiple tissues of Drosophila melanogaster (1). Although the main use of such resources is single gene lookup, there is the potential for powerful meta-analysis to address questions that could not easily be framed otherwise. Here, we illustrate the power of data-mining of FlyAtlas data by comparing epithelial transcriptomes to identify a core set of highly-expressed genes, across the four major epithelial tissues (salivary glands, Malpighian tubules, midgut and hindgut) of both adults and larvae. Method Parallel hypothesis-led and hypothesis-free approaches were adopted to identify core genes that underpin insect epithelial function. In the former, gene lists were created from transport processes identified in the literature, and their expression profiles mapped from the flyatlas.org online dataset. In the latter, gene enrichment lists were prepared for each epithelium, and genes (both transport related and unrelated) consistently enriched in transporting epithelia identified. Results A key set of transport genes, comprising V-ATPases, cation exchangers, aquaporins, potassium and chloride channels, and carbonic anhydrase, was found to be highly enriched across the epithelial tissues, compared with the whole fly. Additionally, a further set of genes that had not been predicted to have epithelial roles, were co-expressed with the core transporters, extending our view of what makes a transporting epithelium work. Further insights were obtained by studying the genes uniquely overexpressed in each epithelium; for example, the salivary gland expresses lipases, the midgut organic solute transporters, the tubules specialize for purine metabolism and the hindgut overexpresses still unknown genes. Conclusion Taken together, these data provide a unique insight into epithelial function in this key model insect, and a framework for comparison with other species. They also provide a methodology for function-led datamining of FlyAtlas.org and other multi-tissue expression datasets.
Collapse
Affiliation(s)
- Venkateswara R Chintapalli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
7
|
Scaraffia PY, Tan G, Isoe J, Wysocki VH, Wells MA, Miesfeld RL. Discovery of an alternate metabolic pathway for urea synthesis in adult Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A 2008; 105:518-23. [PMID: 18182492 PMCID: PMC2206568 DOI: 10.1073/pnas.0708098105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 11/18/2022] Open
Abstract
We demonstrate the presence of an alternate metabolic pathway for urea synthesis in Aedes aegypti mosquitoes that converts uric acid to urea via an amphibian-like uricolytic pathway. For these studies, female mosquitoes were fed a sucrose solution containing (15)NH4Cl, [5-(15)N]-glutamine, [(15)N]-proline, allantoin, or allantoic acid. At 24 h after feeding, the feces were collected and analyzed in a mass spectrometer. Specific enzyme inhibitors confirmed that mosquitoes incorporate (15)N from (15)NH4Cl into [5-(15)N]-glutamine and use the (15)N of the amide group of glutamine to produce labeled uric acid. More importantly, we found that [(15)N2]-uric acid can be metabolized to [(15)N]-urea and be excreted as nitrogenous waste through an uricolytic pathway. Ae. aegypti express all three genes in this pathway, namely, urate oxidase, allantoinase, and allantoicase. The functional relevance of these genes in mosquitoes was shown by feeding allantoin or allantoic acid, which significantly increased unlabeled urea levels in the feces. Moreover, knockdown of urate oxidase expression by RNA interference demonstrated that this pathway is active in females fed blood or (15)NH4Cl based on a significant increase in uric acid levels in whole-body extracts and a reduction in [(15)N]-urea excretion, respectively. These unexpected findings could lead to the development of metabolism-based strategies for mosquito control.
Collapse
|
8
|
Clark RF, Elgin SC. Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila. Nucleic Acids Res 1992; 20:6067-74. [PMID: 1461737 PMCID: PMC334474 DOI: 10.1093/nar/20.22.6067] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Su(var)205 gene of Drosophila melanogaster encodes heterochromatin protein 1 (HP1), a protein located preferentially within beta-heterochromatin. Mutation of this gene has been associated with dominant suppression of position-effect variegation. We have cloned and sequenced the gene encoding HP1 from Drosophila virilis, a distantly related species. Comparison of the predicted amino acid sequence with Drosophila melanogaster HP1 shows two regions of strong homology, one near the N-terminus (57/61 amino acids identical) and the other near the C-terminus (62/68 amino acids identical) of the protein. Little homology is seen in the 5' and 3' untranslated portions of the gene, as well as in the intronic sequences, although intron/exon boundaries are generally conserved. A comparison of the deduced amino acid sequences of HP1-like proteins from other species shows that the cores of the N-terminal and C-terminal domains have been conserved from insects to mammals. The high degree of conservation suggests that these N- and C-terminal domains could interact with other macromolecules in the formation of the condensed structure of heterochromatin.
Collapse
Affiliation(s)
- R F Clark
- Department of Biology, Washington University, St Louis, MO 63130
| | | |
Collapse
|
9
|
Affiliation(s)
- M J de Hoop
- Laboratory of Biochemistry, Groningen University, The Netherlands
| | | |
Collapse
|
10
|
Hilliker AJ, Duyf B, Evans D, Phillips JP. Urate-null rosy mutants of Drosophila melanogaster are hypersensitive to oxygen stress. Proc Natl Acad Sci U S A 1992; 89:4343-7. [PMID: 1316606 PMCID: PMC49078 DOI: 10.1073/pnas.89.10.4343] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has been proposed that uric acid is an important scavenger of deleterious oxygen radicals in biological systems [Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. (1981) Proc. Natl. Acad. Sci. USA 78, 6858-6852]. We report here an in vivo investigation of the oxygen defense role of uric acid through an analysis of mutants of the rosy (ry) gene of Drosophila melanogaster. The ry gene is the structural gene for the molybdoenzyme, xanthine dehydrogenase; xanthine dehydrogenase-null ry mutants are therefore unable to synthesize urate. The rationale of our approach was to measure the response of urate-null ry mutants to extraordinary oxygen stress as imposed by exposure to radical-generating agents and as conferred by a genetic defect in superoxide dismutase, an established oxygen defense function. We show that urate-null mutants of the ry locus are hypersensitive to paraquat, ionizing radiation, and hyperoxia. Furthermore, compound mutants doubly deficient for uric acid and Cu/Zn-containing superoxide dismutase are synthetic lethals, which are unable to complete metamorphosis under normal growth conditions. These experiments demonstrate unambiguously the importance of urate in oxygen defense in vivo and support our earlier proposal that the molybdoenzyme genetic system plays a critical role in oxygen defense in Drosophila. They also form the basis for our proposal that metamorphosis in Drosophila imposes a crisis of oxygen stress on the developing imago against which uric acid plays an important organ-specific defense. Finally, the results provide a basis for understanding the syndrome of phenotypes, including the hallmark dull brown eye color, which characterizes mutants of this classic genetic system of Drosophila.
Collapse
Affiliation(s)
- A J Hilliker
- Department of Molecular Biology and Genetics, University of Guelph, ON, Canada
| | | | | | | |
Collapse
|
11
|
Friedman TB, Burnett JB, Lootens S, Steinman R, Wallrath LL. The urate oxidase gene of Drosophila pseudoobscura and Drosophila melanogaster: evolutionary changes of sequence and regulation. J Mol Evol 1992; 34:62-77. [PMID: 1556745 DOI: 10.1007/bf00163853] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The urate oxidase (UO) transcription unit of Drosophila pseudoobscura was cloned, sequenced, and compared to the UO transcription unit from Drosophila melanogaster. In both species the UO coding region is divided into two exons of approximately equal size. The deduced D. pseudoobscura and D. melanogaster UO peptides have 346 and 352 amino acid residues, respectively. The nucleotide sequences of the D. pseudoobscura and D. melanogaster UO protein-coding regions are 82.2% identical whereas the deduced amino acid sequences are 87.6% identical with 42 amino acid changes, 33 of which occur in the first exon. Although the UO gene is expressed exclusively within the cells of the Malpighian tubules in both of these species, the temporal patterns of UO gene activity during development are markedly different. UO enzyme activity, UO protein, and UO mRNA are found in the third instar larva and adult of D. melanogaster but only in the adult stage of D. pseudoobscura. The intronic sequences and the extragenic 5' and 3' flanking regions of the D. pseudoobscura and D. melanogaster UO genes are highly divergent with the exception of eight small islands of conserved sequence along 772 bp 5' of the UO protein-coding region. These islands of conserved sequence are possible UO cis-acting regulatory elements as they reside along the 5' flanking DNA of the D. melanogaster UO gene that is capable of conferring a wild-type D. melanogaster pattern of UO regulation on a UO-lacZ fusion gene.
Collapse
Affiliation(s)
- T B Friedman
- Graduate Program in Genetics, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
12
|
Wallrath LL, Friedman TB. Species differences in the temporal pattern of Drosophila urate oxidase gene expression are attributed to trans-acting regulatory changes. Proc Natl Acad Sci U S A 1991; 88:5489-93. [PMID: 2062830 PMCID: PMC51902 DOI: 10.1073/pnas.88.13.5489] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Drosophila melanogaster urate oxidase (UO)-encoding gene is expressed in the third-instar larva and adult. In contrast, the Drosophila pseudoobscura UO gene is only expressed in the adult, whereas the Drosophila virilis UO gene is expressed only in the third-instar larva. UO activity in these three Drosophila species is detected exclusively within the Malpighian tubules. By using P-element mediated germ-line transformation, UO genes from D. pseudoobscura and D. virilis were integrated into the D. melanogaster genome. The D. virilis and D. pseudoobscura UO transgenes were expressed in the third-instar larva and adult Malpighian tubules, which is the D. melanogaster temporal pattern of UO gene expression. These observations indicate that differences in the temporal patterns of regulation of UO genes among these three Drosophila species are not likely to be due to evolutionary changes in the sequence or complement of UO cis-acting regulatory elements. The species differences in UO regulation are probably the result of changes in one or more trans-acting factors required for UO gene expression in the third-instar larval and adult stages.
Collapse
Affiliation(s)
- L L Wallrath
- Genetics Graduate Program, Michigan State University, East Lansing 48824
| | | |
Collapse
|
13
|
Friedman TB, Owens KN, Burnett JB, Saura AO, Wallrath LL. The faint band/interband region 28C2 to 28C4-5(-) of the Drosophila melanogaster salivary gland polytene chromosomes is rich in transcripts. MOLECULAR & GENERAL GENETICS : MGG 1991; 226:81-7. [PMID: 1903504 DOI: 10.1007/bf00273590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urate oxidase mRNA and five other transcripts map along 38 kb of DNA in the region 28C on the Drosophila melanogaster second chromosome. Three biotinylated restriction fragments from this 38 kb of DNA, one from each end and one from the middle, were individually hybridized in situ to slightly stretched salivary gland polytene chromosomes. The data from these in situ hybridizations in combination with the transcription map of the 38 kb of DNA indicate that: (i) there are six discrete RNA species encoded along the 38 kb of DNA and (ii) these six transcripts map to the faint band/interband region which includes the proximal edge of 28C1, the three faint bands, 28C2, 28C3 and 28C4-5(-), and the adjacent interband chromatin. Our data are consistent with the few published studies directly demonstrating that faint band/interband regions of the Drosophila melanogaster salivary gland polytene chromosomes code for a high density of transcripts.
Collapse
Affiliation(s)
- T B Friedman
- Graduate Program in Genetics, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|