1
|
Kono K, Ikui AE. A new cell cycle checkpoint that senses plasma membrane/cell wall damage in budding yeast. Bioessays 2017; 39. [PMID: 28211950 DOI: 10.1002/bies.201600210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In nature, cells face a variety of stresses that cause physical damage to the plasma membrane and cell wall. It is well established that evolutionarily conserved cell cycle checkpoints monitor various cellular perturbations, including DNA damage and spindle misalignment. However, the ability of these cell cycle checkpoints to sense a damaged plasma membrane/cell wall is poorly understood. To the best of our knowledge, our recent paper described the first example of such a checkpoint, using budding yeast as a model. In this review, we will discuss this important question as well as provide hypothetical explanations to be tested in the future.
Collapse
Affiliation(s)
- Keiko Kono
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Amy E Ikui
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, NY, USA
| |
Collapse
|
2
|
Plasma membrane/cell wall perturbation activates a novel cell cycle checkpoint during G1 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2016; 113:6910-5. [PMID: 27274080 DOI: 10.1073/pnas.1523824113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cellular wound healing or the repair of plasma membrane/cell wall damage (plasma membrane damage) occurs frequently in nature. Although various cellular perturbations, such as DNA damage, spindle misalignment, and impaired daughter cell formation, are monitored by cell cycle checkpoint mechanisms in budding yeast, whether plasma membrane damage is monitored by any of these checkpoints remains to be addressed. Here, we define the mechanism by which cells sense membrane damage and inhibit DNA replication. We found that the inhibition of DNA replication upon plasma membrane damage requires GSK3/Mck1-dependent degradation of Cdc6, a component of the prereplicative complex. Furthermore, the CDK inhibitor Sic1 is stabilized in response to plasma membrane damage, leading to cell integrity maintenance in parallel with the Mck1-Cdc6 pathway. Cells defective in both Cdc6 degradation and Sic1 stabilization failed to grow in the presence of plasma membrane damage. Taking these data together, we propose that plasma membrane damage triggers G1 arrest via Cdc6 degradation and Sic1 stabilization to promote the cellular wound healing process.
Collapse
|
3
|
McQueen J, van Dyk D, Young B, Loewen C, Measday V. The Mck1 GSK-3 kinase inhibits the activity of Clb2-Cdk1 post-nuclear division. Cell Cycle 2012; 11:3421-32. [PMID: 22918234 DOI: 10.4161/cc.21731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glycogen synthase kinase-3 homolog, Mck1, has been implicated in many cellular functions, from sporulation to calcium stress response in budding yeast. Here, we report a novel function for Mck1 in the inhibition of Clb2-Cdk1 activity post nuclear division. Clb2-Cdk1, the major mitotic cyclin-Cdk complex in yeast, accumulates before anaphase and must be inhibited in telophase for cells to exit mitosis and enter into the next cell cycle. We show that the mck1Δ mutant is highly sensitive to increased Clb2-Cdk1 activity caused either by overexpression of Clb2 or the Cdk1-activating phosphatase Mih1. Deletion of the Cdk1 inhibitory kinase, SWE1, in combination with a mck1Δ mutant results in a synthetic growth defect, suggesting that Mck1 and Swe1 function in parallel pathways to inhibit Clb2-Cdk1. We find that mck1Δ strains have a delay in mitotic exit as well as elevated levels of Clb2-Cdk1 activity post-nuclear division. Using a co-immunoprecipitation assay, we identify a physical interaction between Mck1 and both Clb2 and Mih1. Finally, we demonstrate that phosphorylation of purified Clb2 by Cdk1 is inhibited by catalytically active Mck1 but not catalytically inactive Mck1 in vitro. We propose that Mck1 inhibits the activity of Clb2-Cdk1 via interaction with Clb2. The mammalian glycogen synthase kinase-3 homolog has been implicated in cyclin inhibition, suggesting a conserved cell cycle function for both yeast and mammalian glycogen synthase kinases.
Collapse
Affiliation(s)
- Jennifer McQueen
- Genetics Graduate Program; University of British Columbia; Vancouver, BC Canada
| | | | | | | | | |
Collapse
|
4
|
Brazill DT, Thorner J, Martin GS. Mck1, a member of the glycogen synthase kinase 3 family of protein kinases, is a negative regulator of pyruvate kinase in the yeast Saccharomyces cerevisiae. J Bacteriol 1997; 179:4415-8. [PMID: 9209064 PMCID: PMC179270 DOI: 10.1128/jb.179.13.4415-4418.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An interaction between the Saccharomyces cerevisiae protein kinase Mck1 and pyruvate kinase (Pyk1) was detected by using the two-hybrid method. Purified Mck1 was able to phosphorylate purified Pyk1 on Ser in vitro. Pyruvate kinase activity was elevated in mck1 delta cells. Several of the phenotypes of mck1 delta mutants are similar to those observed in cells overexpressing PYK1. Co-overexpression of MCK1 suppressed all of the phenotypes associated with PYK1 overexpression. These results indicate that Mck1 negatively regulates pyruvate kinase activity, possibly by direct phosphorylation.
Collapse
Affiliation(s)
- D T Brazill
- Department of Molecular and Cell Biology, University of California at Berkeley, 94720, USA
| | | | | |
Collapse
|
5
|
Plyte SE, Feoktistova A, Burke JD, Woodgett JR, Gould KL. Schizosaccharomyces pombe skp1+ encodes a protein kinase related to mammalian glycogen synthase kinase 3 and complements a cdc14 cytokinesis mutant. Mol Cell Biol 1996; 16:179-91. [PMID: 8524294 PMCID: PMC230991 DOI: 10.1128/mcb.16.1.179] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report the cloning of the skp1+ gene, a Schizosaccharomyces pombe homolog of the glycogen synthase kinase 3 (GSK-3) family whose members in higher eukaryotes are involved in cell fate determination, nuclear signalling, and hormonal regulation. skp1 is 67% identical to mammalian GSK-3 beta and displays similar biochemical properties in vitro. Like GSK-3 beta, skp1 is phosphorylated on a conserved tyrosine residue, and this phosphorylation is required for efficient activity. skp1 is also phosphorylated at a serine which has been identified as S-335. Phosphorylation at this site is likely to inhibit its function. Unlike the mammalian enzyme, skp1 both tyrosine autophosphorylates in yeast cells and can phosphorylate other proteins on tyrosine in bacteria. The skp1+ gene is not essential. However, cells with deletions in skp1+ are sensitive to heat shock and exhibit defects in sporulation. Overexpression of wild-type skp1+ specifically complements cdc14-118, one of several mutations causing a defect in cytokinesis. In addition, certain phosphorylation site mutants induce a delay or block in cytokinesis when overexpressed. Together, these data identify novel interactions of a fission yeast GSK-3 homolog with elements of the cytokinesis machinery.
Collapse
Affiliation(s)
- S E Plyte
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | |
Collapse
|
6
|
Tung HY, Wang W, Chan CS. Regulation of chromosome segregation by Glc8p, a structural homolog of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. Mol Cell Biol 1995; 15:6064-74. [PMID: 7565759 PMCID: PMC230858 DOI: 10.1128/mcb.15.11.6064] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Ipl1 protein kinase is essential for proper chromosome segregation and cell viability in the budding yeast Saccharomyces cerevisiae. We have previously shown that the temperature-sensitive growth phenotype of conditional ipl1-1ts mutants can be suppressed by a partial loss-of-function mutation in the GLC7 gene, which encodes the catalytic subunit (PP1C) of protein phosphatase 1, thus suggesting that this enzyme acts in opposition to the Ipl1 protein kinase in regulating yeast chromosome segregation. We report here that the Glc8 protein, which is related in primary sequence to mammalian inhibitor 2, also participates in this regulation. Like inhibitor 2, the Glc8 protein is heat stable, exhibits anomalous electrophoretic mobility, and functions in vitro as an inhibitor of yeast as well as rabbit skeletal muscle PP1C. Interestingly, overexpression as well as deletion of the GLC8 gene results in a partial suppression of the temperature-sensitive growth phenotype of ipl1ts mutants and also moderately reduces the amount of protein phosphatase 1 activity which is assayable in crude yeast lysates. In addition, the chromosome missegregation phenotype caused by an increase in the dosage of GLC7 is totally suppressed by the glc8-delta 101::LEU2 deletion mutation. These findings together suggest that the Glc8 protein is involved in vivo in the activation of PP1C and that when the Glc8 protein is overproduced, it may also inhibit PP1C function. Furthermore, site-directed mutagenesis studies of GLC8 suggest that Thr-118 of the Glc8 protein, which is equivalent to Thr-72 of inhibitor 2, may play a central role in the ability of this protein to activate and/or inhibit PP1C in vivo.
Collapse
Affiliation(s)
- H Y Tung
- Protein and Peptide Research Laboratory, CFSR Biomedical Science Institute, Houston, Texas 77068, USA
| | | | | |
Collapse
|
7
|
Yoon HJ, Carbon J. Genetic and biochemical interactions between an essential kinetochore protein, Cbf2p/Ndc10p, and the CDC34 ubiquitin-conjugating enzyme. Mol Cell Biol 1995; 15:4835-42. [PMID: 7651401 PMCID: PMC230728 DOI: 10.1128/mcb.15.9.4835] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CBF2/NDC10/CTF14 encodes the 110-kDa subunit of CBF3, a key component of the yeast centromere/kinetochore. Overexpression of yeast CDC34 specifically suppresses the temperature-sensitive growth phenotype of the ndc10-1 mutation. Mutations in CDC34, which specifies a ubiquitin-conjugating enzyme, arrest yeast cells in the G1 phase of the cell cycle, with no intact spindles formed (M. G. Goebl, J. Yochem, S. Jentsch, J. P. McGrath, A. Varshavsky, and B. Byers, Science 241:1331-1335, 1988). The cdc34-2 mutation drastically alters the pattern of Cbf2p modification. Results of experiments using antibodies against Cbf2p and ubiquitin indicate that Cbf2p is ubiquitinated in vivo. Purified Cdc34p catalyzes the formation of Cbf2p-monoubiquitin conjugate in vitro. These data suggest that Cbf2p is an endogenous substrate of the CDC34 ubiquitin-conjugating enzyme and imply that ubiquitination of a kinetochore protein plays a regulatory role in kinetochore function.
Collapse
Affiliation(s)
- H J Yoon
- Department of Biological Sciences, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
8
|
Jiang W, Lim MY, Yoon HJ, Thorner J, Martin GS, Carbon J. Overexpression of the yeast MCK1 protein kinase suppresses conditional mutations in centromere-binding protein genes CBF2 and CBF5. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:360-6. [PMID: 7854321 DOI: 10.1007/bf00288609] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We find that overexpression in yeast of the yeast MCK1 gene, which encodes a meiosis and centromere regulatory kinase, suppresses the temperature-sensitive phenotype of certain mutations in essential centromere binding protein genes CBF2 and CBF5. Since Mck1p is a known serine/threonine protein kinase, this suppression is postulated to be due to Mck1p-catalyzed in vivo phosphorylation of centromere binding proteins. Evidence in support of this model was provided by the finding that purified Mck1p phosphorylates in vitro the 110 kDa subunit (Cbf2p) of the multimeric centromere binding factor CBF3. This phosphorylation occurs on both serine and threonine residues in Cbf2p.
Collapse
Affiliation(s)
- W Jiang
- Department of Biology, University of California, Santa Barbara 93106
| | | | | | | | | | | |
Collapse
|
9
|
Hoekstra MF, Dhillon N, Carmel G, DeMaggio AJ, Lindberg RA, Hunter T, Kuret J. Budding and fission yeast casein kinase I isoforms have dual-specificity protein kinase activity. Mol Biol Cell 1994; 5:877-86. [PMID: 7803855 PMCID: PMC301108 DOI: 10.1091/mbc.5.8.877] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have examined the activity and substrate specificity of the Saccharomyces cerevisiae Hrr25p and the Schizosaccharomyces pombe Hhp1, Hhp2, and Cki1 protein kinase isoforms. These four gene products are isotypes of casein kinase I (CKI), and the sequence of these protein kinases predicts that they are protein serine/threonine kinases. However, each of these four protein kinases, when expressed in Escherichia coli in an active form, was recognized by anti-phosphotyrosine antibodies. Phosphoamino acid analysis of 32P-labeled proteins showed phosphorylation on serine, threonine, and tyrosine residues. The E. coli produced forms of Hhp1, Hhp2, and Cki1 were autophosphorylated on tyrosine, and both Hhp1 and Hhp2 were capable of phosphorylating the tyrosine-protein kinase synthetic peptide substrate polymer poly-E4Y1. Immune complex protein kinases assays from S. pombe cells showed that Hhp1-containing precipitates were associated with a protein-tyrosine kinase activity, and the Hhp1 present in these immunoprecipitates was phosphorylated on tyrosine residues. Although dephosphorylation of Hhp1 and Hhp2 by Ser/Thr phosphatase had little effect on the specific activity, tyrosine dephosphorylation of Hhp1 and Hhp2 caused a 1.8-to 3.1-fold increase in the Km for poly-E4Y1 and casein. These data demonstrate that four different CKI isoforms from two different yeasts are capable of protein-tyrosine kinase activity and encode dual-specificity protein kinases.
Collapse
|
10
|
Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 1994. [PMID: 8007975 DOI: 10.1128/mcb.14.7.4731] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IPL1 gene is required for high-fidelity chromosome segregation in the budding yeast Saccharomyces cerevisiae. Conditional ipl1ts mutants missegregate chromosomes severely at 37 degrees C. Here, we report that IPL1 encodes an essential putative protein kinase whose function is required during the later part of each cell cycle. At 26 degrees C, the permissive growth temperature, ipl1 mutant cells are defective in the recovery from a transient G2/M-phase arrest caused by the antimicrotubule drug nocodazole. In an effort to identify additional gene products that participate with the Ipl1 protein kinase in regulating chromosome segregation in yeast, a truncated version of the previously identified DIS2S1/GLC7 gene was isolated as a dosage-dependent suppressor of ipl1ts mutations. DIS2S1/GLC7 is predicted to encode a catalytic subunit (PP1C) of type 1 protein phosphatase. Overexpression of the full-length DIS2S1/GLC7 gene results in chromosome missegregation in wild-type cells and exacerbates the mutant phenotype in ipl1 cells. In addition, the glc7-1 mutation can partially suppress the ipl1-1 mutation. These results suggest that type 1 protein phosphatase acts in opposition to the Ipl1 protein kinase in vivo to ensure the high fidelity of chromosome segregation.
Collapse
|
11
|
Francisco L, Wang W, Chan CS. Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 1994; 14:4731-40. [PMID: 8007975 PMCID: PMC358846 DOI: 10.1128/mcb.14.7.4731-4740.1994] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The IPL1 gene is required for high-fidelity chromosome segregation in the budding yeast Saccharomyces cerevisiae. Conditional ipl1ts mutants missegregate chromosomes severely at 37 degrees C. Here, we report that IPL1 encodes an essential putative protein kinase whose function is required during the later part of each cell cycle. At 26 degrees C, the permissive growth temperature, ipl1 mutant cells are defective in the recovery from a transient G2/M-phase arrest caused by the antimicrotubule drug nocodazole. In an effort to identify additional gene products that participate with the Ipl1 protein kinase in regulating chromosome segregation in yeast, a truncated version of the previously identified DIS2S1/GLC7 gene was isolated as a dosage-dependent suppressor of ipl1ts mutations. DIS2S1/GLC7 is predicted to encode a catalytic subunit (PP1C) of type 1 protein phosphatase. Overexpression of the full-length DIS2S1/GLC7 gene results in chromosome missegregation in wild-type cells and exacerbates the mutant phenotype in ipl1 cells. In addition, the glc7-1 mutation can partially suppress the ipl1-1 mutation. These results suggest that type 1 protein phosphatase acts in opposition to the Ipl1 protein kinase in vivo to ensure the high fidelity of chromosome segregation.
Collapse
Affiliation(s)
- L Francisco
- Department of Microbiology, University of Texas, Austin 78712
| | | | | |
Collapse
|
12
|
Abstract
Sporulation of the yeast Saccharomyces cerevisiae is restricted to one type of cell, the a/alpha cell, and is initiated after starvation for nitrogen in the absence of a fermentable carbon source. More than 25 characterized genes are expressed only during sporulation and are referred to as meiotic genes or sporulation-specific genes. These genes are in the early, middle, and late expression classes. Most early genes have a 5' regulatory site, URS1, and one of two additional sequences, UASH or a T4C site. URS1 is required both to repress meiotic genes during vegetative growth and to activate these genes during meiosis. UASH and the T4C site also contribute to meiotic expression. A different type of site, the NRE, is found in at least two late genes. The NRE behaves as a repression site in vegetative cells and is neutral in meiotic cells. Many regulatory genes that either repress or activate meiotic genes have been identified. One group of regulators affects the expression of IME1, which specifies a positive regulator of meiotic genes and is expressed at the highest levels in meiotic cells. A second group of regulators acts in parallel with or downstream of IME1 to influence meiotic gene expression. This group includes UME6, which is required both for repression through the URS1 site in vegetative cells and for IME1-dependent activation of an upstream region containing URS1 and T4C sites. IME1 may activate meiotic genes by modifying a UME6-dependent repression complex at a URS1 site. Several additional mechanisms restrict functional expression of some genes to meiotic cells. Translation of IME1 has been proposed to occur only in meiotic cells; several meiotic transcripts are more stable in acetate medium than in glucose medium; and splicing of MER2 RNA depends on a meiosis-specific gene, MER1.
Collapse
Affiliation(s)
- A P Mitchell
- Institute of Cancer Research, Columbia University, New York, New York 10032
| |
Collapse
|
13
|
Ig alpha and Ig beta are functionally homologous to the signaling proteins of the T-cell receptor. Mol Cell Biol 1994. [PMID: 8289790 DOI: 10.1128/mcb.14.2.1095] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.
Collapse
|
14
|
Burkhardt AL, Costa T, Misulovin Z, Stealy B, Bolen JB, Nussenzweig MC. Ig alpha and Ig beta are functionally homologous to the signaling proteins of the T-cell receptor. Mol Cell Biol 1994; 14:1095-103. [PMID: 8289790 PMCID: PMC358465 DOI: 10.1128/mcb.14.2.1095-1103.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Signal transduction by antigen receptors and some Fc receptors requires the activation of a family of receptor-associated transmembrane accessory proteins. One common feature of the cytoplasmic domains of these accessory molecules is the presence is at least two YXXA repeats that are potential sites for interaction with Src homology 2 domain-containing proteins. However, the degree of similarity between the different receptor-associated proteins varies from that of T-cell receptor (TCR) zeta and Fc receptor RIIIA gamma chains, which are homologous, to the distantly related Ig alpha and Ig beta proteins of the B-cell antigen receptor. To determine whether T- and B-cell antigen receptors are in fact functionally homologous, we have studied signal transduction by chimeric immunoglobulins bearing the Ig alpha or Ig beta cytoplasmic domain. We found that Ig alpha and Ig beta cytoplasmic domains were able to activate Ca2+ flux, interleukin-2 secretion, and phosphorylation of the same group of cellular substrates as the TCR in transfected T cells. Chimeric proteins were then used to examine the minimal requirements for activation of the Fyn, Lck, and ZAP kinases in T cells. Both Ig alpha and Ig beta were able to trigger Fyn, Lck, and ZAP directly without involvement of TCR components. Cytoplasmic tyrosine residues in Ig beta were required for recruitment and activation of ZAP-70, but these amino acids were not essential for the activation of Fyn and Lck. We conclude that Fyn and Lck are able to recognize a clustered nonphosphorylated immune recognition receptor, but activation of these kinases is not sufficient to induce cellular responses such as Ca2+ flux and interleukin-2 secretion. In addition, the molecular structures involved in antigen receptor signaling pathways are conserved between T and B cells.
Collapse
Affiliation(s)
- A L Burkhardt
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | | | | | | | |
Collapse
|
15
|
MDS1, a dosage suppressor of an mck1 mutant, encodes a putative yeast homolog of glycogen synthase kinase 3. Mol Cell Biol 1994. [PMID: 8264650 DOI: 10.1128/mcb.14.1.831] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3.
Collapse
|
16
|
Puziss JW, Hardy TA, Johnson RB, Roach PJ, Hieter P. MDS1, a dosage suppressor of an mck1 mutant, encodes a putative yeast homolog of glycogen synthase kinase 3. Mol Cell Biol 1994; 14:831-9. [PMID: 8264650 PMCID: PMC358431 DOI: 10.1128/mcb.14.1.831-839.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3.
Collapse
Affiliation(s)
- J W Puziss
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
17
|
SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol Cell Biol 1993. [PMID: 8355715 DOI: 10.1128/mcb.13.9.5829] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.
Collapse
|
18
|
Zheng P, Fay DS, Burton J, Xiao H, Pinkham JL, Stern DF. SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol Cell Biol 1993; 13:5829-42. [PMID: 8355715 PMCID: PMC360328 DOI: 10.1128/mcb.13.9.5829-5842.1993] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.
Collapse
Affiliation(s)
- P Zheng
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | | | | | | | |
Collapse
|
19
|
Su SS, Mitchell AP. Molecular characterization of the yeast meiotic regulatory gene RIM1. Nucleic Acids Res 1993; 21:3789-97. [PMID: 8367297 PMCID: PMC309893 DOI: 10.1093/nar/21.16.3789] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, genetic studies suggest that the RIM1 gene encodes a positive regulator of meiosis. rim1 mutations cause reduced expression of IME1, which is required for expression of many meiotic genes, and thus lead to a partial defect in meiosis and spore formation. We report the sequence of RIM1 and functional analysis of its coding region. The RIM1 gene product (RIM1) contains three regions similar to C2H2 zinc fingers. Serine substitutions for cysteine in each of the putative zinc fingers abolish RIM1 function. The carboxyl-terminus of RIM1 is enriched in acidic amino acids and is required for full RIM1 activity. RIM1 also contains two putative cAMP-dependent protein kinase (cAPK) phosphorylation sites. At one site, substitution of alanine for serine does not affect RIM1 activity; at the other site, this substitution impairs activity. This analysis of RIM1 suggests that the protein may function as a transcriptional activator. We have used the cloned RIM1 gene to create a complete rim1 deletion. This null allele, like previously isolated rim1 mutations, causes a partial meiotic defect. In addition to RIM1, maximum IME1 expression requires the MCK1 and IME4 gene products. Defects associated with rim1, mck1, and ime4 mutations in expression of a meiotic reporter gene (ime2-lacZ) and in sporulation are additive. These findings suggest that RIM1 acts independently of MCK1 and IME4 to stimulate IME1 expression.
Collapse
Affiliation(s)
- S S Su
- Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | | |
Collapse
|
20
|
Archuleta MM, Schieven GL, Ledbetter JA, Deanin GG, Burchiel SW. 7,12-Dimethylbenz[a]anthracene activates protein-tyrosine kinases Fyn and Lck in the HPB-ALL human T-cell line and increases tyrosine phosphorylation of phospholipase C-gamma 1, formation of inositol 1,4,5-trisphosphate, and mobilization of intracellular calcium. Proc Natl Acad Sci U S A 1993; 90:6105-9. [PMID: 8327490 PMCID: PMC46876 DOI: 10.1073/pnas.90.13.6105] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Previous studies have shown that the immunosuppressive and carcinogenic polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)anthracene (DMBA) impairs Ca(2+)-dependent transmembrane signaling in human and murine lymphocytes. The purpose of the present studies was to analyze potential mechanisms of immunosuppression by DMBA and to examine effects on Ca2+ homeostasis and antigen-receptor signaling in human T cells. DMBA produced a rapid and sustained increase in Ca2+ levels in HPB-ALL cells by release of cytoplasmic Ca2+. DMBA also inhibited anti-CD3/CD4 mobilization of Ca2+ in HPB-ALL cells, with half-maximal inhibition occurring at approximately 4 hr. Thus, the kinetics for initial Ca2+ mobilization and inhibition of the anti-CD3/CD4 response differed. The rapid rise in intracellular Ca2+ induced by DMBA alone was accompanied by a rapid but transient increase in inositol 1,4,5-trisphosphate and tyrosine phosphorylation of phospholipase C-gamma 1. The pattern of tyrosine phosphorylation induced by DMBA in HPB-ALL cells was remarkably similar to that induced by anti-CD3/CD4 activation. Thus, DMBA-induced phosphorylation may mimic antigen-receptor activation in T cells, which may lead to alterations in antigen responsiveness. The mechanism of DMBA-induced tyrosine phosphorylation of phospholipase C-gamma 1 may have been due to an increase in protein-tyrosine kinase activity, since it was found that DMBA produced a > 2-fold increase in the activity of the T-cell receptor-associated Src-family kinases Fyn and Lck. The kinetics of activation of protein-tyrosine kinases demonstrated that Fyn activity was increased within 10 min of exposure to DMBA, whereas maximal Lck activation required 30 min. Thus, it is likely that the Fyn kinase or other protein-tyrosine kinases may be responsible for the early tyrosine phosphorylation of phospholipase C-gamma 1, which results in inositol 1,4,5-trisphosphate release and mobilization of intracellular Ca2+.
Collapse
Affiliation(s)
- M M Archuleta
- University of New Mexico College of Pharmacy, Albuquerque 87131
| | | | | | | | | |
Collapse
|
21
|
Jiang W, Lechner J, Carbon J. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol 1993; 121:513-9. [PMID: 8486733 PMCID: PMC2119569 DOI: 10.1083/jcb.121.3.513] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have cloned and determined the nucleotide sequence of the gene (CBF2) specifying the large (110 kD) subunit of the 240-kD multisubunit yeast centromere binding factor CBF3, which binds selectively in vitro to yeast centromere DNA and contains a minus end-directed microtubule motor activity. The deduced amino acid sequence of CBF2p shows no sequence homologies with known molecular motors, although a consensus nucleotide binding site is present. The CBF2 gene is essential for viability of yeast and is identical to NDC10, in which a conditional mutation leads to a defect in chromosome segregation (Goh, P.-Y., and J. V. Kilmartin, in this issue of The Journal of Cell Biology). The combined in vitro and in vivo evidence indicate that CBF2p is a key component of the budding yeast kinetochore.
Collapse
Affiliation(s)
- W Jiang
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
22
|
Schieven GL, Kirihara JM, Gilliland LK, Uckun FM, Ledbetter JA. Ultraviolet radiation rapidly induces tyrosine phosphorylation and calcium signaling in lymphocytes. Mol Biol Cell 1993; 4:523-30. [PMID: 8334306 PMCID: PMC300955 DOI: 10.1091/mbc.4.5.523] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UV radiation is known to induce lymphocyte nonresponsiveness both in vitro and in vivo. We have found that UV radiation rapidly induced tyrosine phosphorylation and calcium signaling in normal human peripheral blood lymphocytes. In the leukemic T cell line Jurkat and the Burkitt's lymphoma cell line Ramos, UV rapidly induced tyrosine phosphorylation in a wavelength-dependent manner, giving strong signals after UVB and UVC, but not UVA, irradiation. Similarly, in Jurkat cells UV-induced calcium signals were dependent on the dose of UVB or UVC irradiation over a range of 150-1200 J/m2, but only a small signal was observed for UVA at a dose of 1200 J/m2. The UV-induced calcium signals were blocked by the tyrosine kinase inhibitor herbimycin A, indicating that they were dependent on tyrosine phosphorylation. Phospholipase C (PLC) gamma 1 was tyrosine phosphorylated in response to UV irradiation but to a lesser extent than observed after CD3 cross-linking. However, PLC gamma 1-associated proteins demonstrated to bind to the PLC gamma 1 SH2 domain were tyrosine phosphorylated strongly after UV irradiation. A similar dose response was observed for the inhibition by herbimycin A of UV-induced calcium signals and UV-induced tyrosine phosphorylation of PLC gamma 1 and associated proteins. We propose that in contrast to CD3/Ti stimulation, UV aberrantly triggers lymphocyte signal transduction pathways by a mechanism that bypasses normal receptor control.
Collapse
Affiliation(s)
- G L Schieven
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121
| | | | | | | | | |
Collapse
|
23
|
Sherman A, Shefer M, Sagee S, Kassir Y. Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:375-84. [PMID: 8483452 DOI: 10.1007/bf00279441] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MAT alpha 2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Ime1 protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to alpha-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.
Collapse
Affiliation(s)
- A Sherman
- Department of Genetics, Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
24
|
Wee S, Schieven GL, Kirihara JM, Tsu TT, Ledbetter JA, Aruffo A. Tyrosine phosphorylation of CD6 by stimulation of CD3: augmentation by the CD4 and CD2 coreceptors. J Exp Med 1993; 177:219-23. [PMID: 7678115 PMCID: PMC2190871 DOI: 10.1084/jem.177.1.219] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When T cells are activated via the T cell receptor (TCR) complex a number of cellular substrates, including some cell surface proteins, become phosphorylated on tyrosine (Tyr) residues. Phosphorylation of cytoplasmic Tyr renders these cell surface receptors competent to interact with proteins that link cell surface receptors to protein in the intracellular signaling pathways. Here we show that Tyr residues in the cytoplasmic domain of CD6 become phosphorylated upon T cell activation via the TCR complex. Tyr phosphorylation was observed when the T cells were activated by crosslinking CD3 or by cocrosslinking CD3 with CD2 or CD4, but not when the cells were stimulated by crosslinking CD2, CD4, or CD28 alone. Unlike other Tyr kinase substrates, such as the phospholipase C gamma 1-associated pp35/36 protein, whose level of Tyr phosphorylation is highest when T cells are activated by cocrosslinking CD3 with CD2, the levels of CD6 Tyr phosphorylation are highest when T cells were activated by cocrosslinking CD3 with CD4.
Collapse
Affiliation(s)
- S Wee
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121
| | | | | | | | | | | |
Collapse
|
25
|
DeMaggio AJ, Lindberg RA, Hunter T, Hoekstra MF. The budding yeast HRR25 gene product is a casein kinase I isoform. Proc Natl Acad Sci U S A 1992; 89:7008-12. [PMID: 1495994 PMCID: PMC49634 DOI: 10.1073/pnas.89.15.7008] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Saccharomyces cerevisiae HRR25 gene was identified as a regulator of DNA strand-break repair. HRR25 encodes a protein kinase that is closely related to bovine casein kinase I (CKI). CKI is a ubiquitous multipotential protein kinase. Rabbit polyclonal antibodies that recognize and immunoprecipitate Hrr25p have been generated and an immune complex protein kinase assay has been developed. The reaction depends upon HRR25 and shows that Hrr25p uses casein as a substrate. The identity between Hrr25p and bovine CKI suggests that Hrr25p is a yeast isoform of the CKI family and that CKIs may play a role in regulating DNA metabolism.
Collapse
Affiliation(s)
- A J DeMaggio
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037
| | | | | | | |
Collapse
|
26
|
Durocher Y, Chapdelaine A, Chevalier S. Identification of cytosolic protein tyrosine kinases of human prostate by renaturation after SDS/PAGE. Biochem J 1992; 284 ( Pt 3):653-8. [PMID: 1622386 PMCID: PMC1132587 DOI: 10.1042/bj2840653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification of protein tyrosine kinases (PTKs) was successfully achieved by renaturation in gels after SDS/PAGE. To this effect, samples were mixed with a PTK substrate, namely the polydispersed co-polymer of glutamic acid and tyrosine [poly(Glu, Tyr), M(r) from 30,000 to 94,000], and were simultaneously submitted to electrophoresis. Following guanidine hydrochloride denaturation, renaturation and phosphorylation with [gamma-32P]ATP, kinase activity was detected by autoradiography. When applied to cytosol from human hyperplastic prostate, eleven protein kinases were detected, among which one major (M(r) 50,000) and two minor proteins (M(r) 40,000 and 38,000) were identified as PTKs by the presence of phosphotyrosine. Incubation of the gel in hot alkali after glutaraldehyde cross-linking almost completely eliminated the detection of non-PTK enzymes. On the other hand, in the absence of poly(Glu,Tyr), no PTK activity was detected. Partial purification of cytosolic PTKs indicates that the native M(r) of the major phosphotransferase was 44,000, as estimated by gel filtration following ammonium sulphate precipitation and anion-exchange chromatography. Upon renaturation after electrophoresis, this fraction showed only one major band active on poly(Glu,Tyr) which was associated with the polypeptide of M(r) 50,000. This enzyme was also identified following two-dimensional electrophoresis and renaturation in the presence of poly(Glu,Tyr), allowing the determination of a pI in the range 7.5-7.8. Thus PTKs can be easily renatured following electrophoresis and rapidly identified on the basis of their M(r) and pI in both crude or partially purified preparations. With the crucial role played by PTKs in the activation of cell function and carcinogenesis, this procedure could be useful in the identification of such enzymes and in distinguishing them from their substrates in gels.
Collapse
Affiliation(s)
- Y Durocher
- Department of Biochemistry, University of Montréal, Québec, Canada
| | | | | |
Collapse
|
27
|
Parker LL, Atherton-Fessler S, Piwnica-Worms H. p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Natl Acad Sci U S A 1992; 89:2917-21. [PMID: 1372994 PMCID: PMC48774 DOI: 10.1073/pnas.89.7.2917] [Citation(s) in RCA: 202] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
p107wee1 is a protein kinase that functions as a dose-dependent inhibitor of mitosis through its interactions with p34cdc2 in Schizosaccharomyces pombe. To characterize the kinase activity of p107wee1, its carboxyl-terminal catalytic domain was purified to homogeneity from overproducing insect cells. The apparent molecular mass of the purified protein (p37wee1KD) was determined to be approximately 37 kDa by gel filtration, consistent with it being a monomer. Serine and tyrosine kinase activities cofiltered with p37wee1KD, demonstrating that p107wee1 is a dual-specificity kinase. In vitro, p107wee1 phosphorylated p34cdc2 on Tyr-15 only when p34cdc2 was complexed with cyclin. Neither monomeric p34cdc2 nor a peptide containing Tyr-15 was able to substitute for the p34cdc2/cyclin complex in this assay. Furthermore, the phosphorylation of p34cdc2 by p107wee1 in vitro inhibited the histone H1 kinase activity of p34cdc2. These results indicate that p107wee1 functions as a mitotic inhibitor by directly phosphorylating p34cdc2 on Tyr-15 and that the preferred substrate for phosphorylation is the p34cdc2/cyclin complex.
Collapse
Affiliation(s)
- L L Parker
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
28
|
Wu J, Rossomando AJ, Her JH, Del Vecchio R, Weber MJ, Sturgill TW. Autophosphorylation in vitro of recombinant 42-kilodalton mitogen-activated protein kinase on tyrosine. Proc Natl Acad Sci U S A 1991; 88:9508-12. [PMID: 1835084 PMCID: PMC52747 DOI: 10.1073/pnas.88.21.9508] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine protein kinase that becomes enzymatically activated and phosphorylated on tyrosine and threonine following treatment of quiescent cells with a variety of stimulatory agonists. Phosphorylation on both tyrosine and threonine is necessary to maintain full activity, and these two regulatory phosphorylations occur close to each other, separated by a single glutamate. To study the mechanisms by which MAP kinase becomes phosphorylated and activated, we have cloned a full-length cDNA encoding MAP kinase and have expressed the enzyme in Escherichia coli as a soluble nonfusion protein. We find that the enzyme displays a basal, intramolecular autophosphorylation on tyrosine-185 that is accompanied by activation of the enzyme's kinase activity towards an exogenous substrate. The tyrosine-phosphorylated protein displays a small fraction of the activity seen with the fully activated, doubly phosphorylated enzyme isolated from mammalian cells but is activated 10- to 20-fold relative to the unphosphorylated enzyme. These findings raise the possibility that regulation of MAP kinase activity in response to agonist stimulation could occur in part through the enhancement of autophosphorylation on tyrosine.
Collapse
Affiliation(s)
- J Wu
- Department of Microbiology, University of Virginia, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
29
|
Crews CM, Alessandrini AA, Erikson RL. Mouse Erk-1 gene product is a serine/threonine protein kinase that has the potential to phosphorylate tyrosine. Proc Natl Acad Sci U S A 1991; 88:8845-9. [PMID: 1717989 PMCID: PMC52607 DOI: 10.1073/pnas.88.19.8845] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial expression of mouse gene Erk-1 yielded an active kinase with the same substrate specificity shown for ERK1 protein purified from rat cells. Although rat gene ERK1 is believed to encode a serine/threonine kinase based on sequence data and known ERK1 substrate phosphorylation sites, bacterially-produced mouse Erk-1 (bt-Erk-1) autophosphorylated on tyrosine in addition to serine and threonine residues. The bt-Erk-1 protein also had the capacity to reactivate the ribosomal protein S6 kinase (S6KII). Furthermore, treatment of bt-Erk-1 with either serine/threonine-specific phosphatase 2A or tyrosine-specific phosphatase 1B significantly decreased its kinase activity. These findings predict that autophosphorylation may play an important role in Erk-1/ERK1 regulation.
Collapse
Affiliation(s)
- C M Crews
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, MA 02138
| | | | | |
Collapse
|
30
|
Seger R, Ahn NG, Boulton TG, Yancopoulos GD, Panayotatos N, Radziejewska E, Ericsson L, Bratlien RL, Cobb MH, Krebs EG. Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation on both tyrosine and threonine residues: implications for their mechanism of activation. Proc Natl Acad Sci U S A 1991; 88:6142-6. [PMID: 1712480 PMCID: PMC52038 DOI: 10.1073/pnas.88.14.6142] [Citation(s) in RCA: 283] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microtubule-associated protein 2 kinase (MAP kinase), which exists in several forms, is a protein serine/threonine kinase that participates in a growth factor-activated protein kinase cascade in which it activates a ribosomal protein S6 kinase (pp90rsk) while being regulated itself by a cytoplasmic factor (MAP kinase activator). Experiments with recombinant MAP kinase, ERK2, purified from Escherichia coli in a nonactivated form revealed a self-catalyzed phosphate incorporation into both tyrosine and threonine residues. Another MAP kinase, ERK1, purified from insulin-stimulated cells also autophosphorylated on tyrosine and threonine residues. Autophosphorylation of ERK2 correlated with its autoactivation, although both autophosphorylation and autoactivation were slow compared to that occurring in the presence of MAP kinase activator. Therefore, we propose that autophosphorylation is probably involved in the MAP kinase activation process in vitro, but it may not be sufficient for full activation. The specificity toward tyrosine and threonine residues indicates that the MAP kinases ERK1 and ERK2 are members of a group of kinases with specificity for tyrosine as well as serine and threonine residues.
Collapse
Affiliation(s)
- R Seger
- Department of Pharmacology, University of Washington, Seattle 98195
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 1991. [PMID: 2005892 DOI: 10.1128/mcb.11.4.1965] [Citation(s) in RCA: 232] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.
Collapse
|
32
|
Ferrell JE, Wu M, Gerhart JC, Martin GS. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 1991; 11:1965-71. [PMID: 2005892 PMCID: PMC359881 DOI: 10.1128/mcb.11.4.1965-1971.1991] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have examined the time course of protein tyrosine phosphorylation in the meiotic cell cycles of Xenopus laevis oocytes and the mitotic cell cycles of Xenopus eggs. We have identified two proteins that undergo marked changes in tyrosine phosphorylation during these processes: a 42-kDa protein related to mitogen-activated protein kinase or microtubule-associated protein-2 kinase (MAP kinase) and a 34-kDa protein identical or related to p34cdc2. p42 undergoes an abrupt increase in its tyrosine phosphorylation at the onset of meiosis 1 and remains tyrosine phosphorylated until 30 min after fertilization, at which point it is dephosphorylated. p42 also becomes tyrosine phosphorylated after microinjection of oocytes with partially purified M-phase-promoting factor, even in the presence of cycloheximide. These findings suggest that MAP kinase, previously implicated in the early responses of somatic cells to mitogens, is also activated at the onset of meiotic M phase and that MAP kinase can become tyrosine phosphorylated downstream from M-phase-promoting factor activation. We have also found that p34 goes through a cycle of tyrosine phosphorylation and dephosphorylation prior to meiosis 1 and mitosis 1 but is not detectable as a phosphotyrosyl protein during the 2nd through 12th mitotic cell cycles. It may be that the delay between assembly and activation of the cyclin-p34cdc2 complex that p34cdc2 tyrosine phosphorylation provides is not needed in cell cycles that lack G2 phases. Finally, an unidentified protein or group of proteins migrating at 100 to 116 kDa increase in tyrosine phosphorylation throughout maturation, are dephosphorylated or degraded within 10 min of fertilization, and appear to cycle between low-molecular-weight forms and high-molecular-weight forms during early embryogenesis.
Collapse
Affiliation(s)
- J E Ferrell
- Department of Zoology, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|